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Abstract: In this study, we propose a new three-

parameter distribution, the Exponentiated 

Power Ailamujia Distribution (EPAD), as a 

flexible generalization of the Power Ailamujia 

Distribution (PAD). We derive key statistical 

properties of the EPAD, including its 

probability density function (PDF), cumulative 

distribution function (CDF), survival and 

hazard rate functions, raw and incomplete 

moments, quantile function, entropy, stochastic 

ordering, and order statistics. The PDF is 

shown to exhibit various shapes—unimodal, J-

shaped, and bathtub-shaped—depending on 

the parameter configurations. A Monte Carlo 

simulation based on 1,000 replications and 

seven different sample sizes (n = 25 to 1000) 

confirms the consistency of the maximum 

likelihood estimators (MLEs), as root mean 

square errors (RMSEs) decrease from 0.2131 

at n = 25 to 0.1031 at n = 1000. Two real-world 

datasets, including maximum flood levels and 

tax revenue data, are modeled using the EPAD 

and compared against PAD, the Exponentiated 

Power Lindley Distribution (EPLD), and the 

Exponentiated Weibull Distribution (EWD). 

Based on model selection criteria—Akaike 

Information Criterion (AIC), Bayesian 

Information Criterion (BIC), Kolmogorov-

Smirnov (KS), Cramer-von Mises (CVM), and 

Anderson-Darling (AD)—EPAD yields 

superior fits, with the lowest AIC values of -

26.52 and 382.81 for the respective datasets 

and p-values exceeding 0.90. These results 

demonstrate the potential of the EPAD in 

modeling time series data with complex 

distributional behavior. 
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1.0 Introduction 
 

Ailamujia distribution of Lv et al. (2002) is one 

of the existing one-parameter distributions that 

has witnessed several extensions in recent 

times. In particular, the area biased weighted 

Ailamujia distribution was proposed by 

Jayakumar and Elangovan (2019). Statistical 

properties and real-world applications of the 

power Lindley Ailmujia distribution were 

considered by Jan et al. (2020). Rather et al. 

(2022) studied the exponentiated Ailamujia 

distribution, demonstrating the superiority of 

the model to a number of comparable 

distributions when fitted to medical data. Alpha 

power Ailamujia distribution was developed by 

Gomaa et al. (2023). Additionally, the 

theoretical framework and applications of the 

power Ailamujia distribution were explored by 

Jamal et al. (2021). Ragab and Elgarhy. (2025) 

introduced the type II half-logistic Ailamujia, 
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applying and comparing its fits to medical data 

with the fits of other notable distributions. 

Their empirical findings indicate that their 

proposed model can outperform some of the 

existing distributions.  

The development of flexible probability 

distributions plays a central role in statistical 

modeling, especially in fields requiring 

accurate representation of skewness, kurtosis, 

and tail behavior. This is partly because of the 

ineffectiveness of classical distributions such 

as the exponential, normal and Weibull 

distributions to account for the complexity of 

some data observed in practice.  In recent years, 

significant attention has been given to the 

construction of generalized families of 

distributions that can accommodate a wide 

range of data structures encountered in 

reliability analysis, survival analysis, 

hydrology, and financial modeling. The 

exponentiated-H family of distributions 

proposed by Gupta, Gupta and Gupta (1998) is 

useful in obtaining flexible generalizations of 

classical distributions. Members of this class of 

distributions, include the exponentiated 

Weibull distribution (Pal et al., 2006), 

exponentiated Gumbel distribution (Nadarajah, 

2006), a generalized Lindley (Nadarajah et al., 

2011), exponentiated Chen distribution (Dey et 

al.., 2017), exponentiated Akash (Okereke and 

Uwaeme, 2018), exponentiated transmuted 

Lindley distribution (Okereke, 2019) and 

exponentiated power half logistic distribution 

(Okereke et al., 2021), among others. 

The essence of this study is to introduce and 

determine the statistical properties of a new 

member of the exponentiated-H family of 

distributions called the exponentiated power 

ailamujia distribution (EPAD), which doubles 

as a generalization of the power Ailamujia 

distribution.  

Despite the growing number of generalizations 

of the Ailamujia distribution, many of the 

existing models still exhibit limitations in 

flexibility when coding heavy-tailed, or 

multimodal data structures. Furthermore, their 

performance in time series modeling remains 

underexplored, especially in comparison with 

newer exponentiated families. This 

necessitates the development of a more 

adaptable model that can offer improved fitting 

capacity across various real-world 

applications. 

The significance of this study lies in its 

contribution to the ongoing development of 

flexible probability distributions for effective 

modeling of real-world data. By introducing 

the Exponentiated Power Ailamujia 

Distribution (EPAD), this research provides a 

versatile statistical tool that enhances the 

modeling of datasets characterized by 

skewness, heavy tails, and complex structures, 

which are often poorly captured by classical 

and some generalized distributions. The 

EPAD's ability to generalize the power 

Ailamujia distribution and its demonstrated 

superiority in fitting real-world data makes it a 

valuable addition to statistical modeling, 

particularly in fields such as reliability 

analysis, survival studies, hydrology, and time 

series analysis. Moreover, the application of 

EPAD to time series data opens up new 

possibilities for improved forecasting and 

pattern recognition, thereby expanding its 

relevance to financial modeling and other 

temporal data-driven domains. 
 

2.0 Statistical Properties of the EPAD 
 

In this section, the properties of the new 

distribution are determined. Since the PDF of 

the distribution is not in existence, we make 

effort to derive it first. To derive the PDF, it is 

necessary recall the PDF of the PAD. 

Statistically speaking, a continuous random 

variable X follows the PAD if its PDF is of the 

form (Jamal et al; 2021)  

2 2 1( ) , 0, , 0.xg x x e x
    − −=          (1)                

The CDF of the PAD is 

 ( ) 1 (1 ) , 0, , 0.xG x x e x
   −= − +           (2)  
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Applying (2) in (1), the CDF of the EPAD is obtained to be 

 2 2 1 1( ) [1 (1 ) ] , , , 0.x xf x x x e e
          − − − −= − +       (3) 

The differentiation with respect to x of (3) leads to the following PDF of the EPAD: 

 =)(xf  
2

𝑥
2 1−

[1 − (1 + 𝜃𝑥𝛽)𝑒−𝜃𝑥𝛽
]

1−
X𝑒−𝜃𝑥𝛽

,  ,, > 0  (4) 

In Figure 1, we present the plots of the PDF of X for various values of its parameters. The figure 

revealed that the EPAD’s PDF can be increasing, decreasing, left-skewed, right-skewed and 

unimodal. 

 
Fig.1;  Graphical Representation of Different Shapes of the PDF of the EPAD 

 

In accordance with (2.4), we have the following limit, when ∝< 1 
1

, , 1
2

1
0 0, , 1

2

lim ( ) {
x

f x
 

 

  

→  
=           (5) 

If 1,   

2 2 1 1

0 0
lim ( ) lim [1 (1 ) ] 0x x

x x
f x x x e e

      − − − −

→ →
= − + =      (6) 

Furthermore,  
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 2 2 1 1

0 0
lim ( ) lim [1 (1 ) ] 0x x

x x
f x x x e e

      − − − −

→ →
= − + =     (7)  

 It can be deduced from equations 5 to 7 that the EPAD is unimodal if 1,  and 
1

,
2

  The 

unimodality condition also holds when 1.   

For the EPAD, the survival function is ( ) 1 ( )S x F x= −   

1 [1 (1 ) ] , 0, , , 0xx e x
     −= − − +          (8) 

The related hazard rate function (HRF) is  

2 2 1 1

( )
( )

( )

[1 (1 ) ]

[1 (1 ) ]

x x

x

f x
h x

s x

x x e e

x e

 



    

  

 



− − − −

=

− +
=

− +

        (9)  

The graphical representation of the HRF of the EPAD is provided as Fig. 2. It is easily seen that 

the HRF can be increasing, decreasing, J shaped, bathtub shaped or unimodal, depending on the 

values of the parameters of the distribution. 

2.1 Moments of EPAD 

Moment of a continuous random variable are of paramount importance. They are fundamental to 

the  capturing of critical features of the shape of distribution, including location, spread, skewness 

and kurtosis. Sometimes they can be used to obtain method of moments estimates of parameters 

of distribution. 

Given that a continuous random variable 𝑋 follows the EPAD with parameters ∝, 𝛽 𝑎𝑛𝑑 𝜃, as 

indicated in the PDF (2.4), we write 𝑥~   EPAD (∝, 𝛽, 𝜃). The 𝑟𝑡ℎ  raw moment of 𝑋  is  

( )

( )

( )( )

0

2 2 1

0

2 1 2 1 ( )

1 0 0

2 1 2 1 ( )

1 0 0

[ ]

[1 (1 ) ]

( 1) (1 )

( 1) (1 )

( 1)

1 1
1

,
1

( ( 1)) ( ( 1

r x dy x j

j j r j i x dx

j

j j j i r j i x dx

j i

X x f x dx

x x e e dx

x x e

x x e

LetU j x

U U

x dx

J J

 





   

   

   



 

 

  



 

  



 


+ − −


− + − − +

=


− + − − +

=

 =

= − +

= − +

= − +

= +

−

→ = =

+ +





 

 

1
))

du



 

Therefore, 
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( )

( )( )

1

1
2 1

0
0 0

1

2

0
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2 1

[ ] ( 1)
2 1 1

( ( ) ( ( 1))
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2 1
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( 1)
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j
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j i u

i j
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i r
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U
X du

i r
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






 


 

 
  
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






−

− 
 −

= =

−
 

−

= =

+

+ + −   
  
  = −  

+ + −   + +     

 
 −

= + + 
+ + − +

  

−
=

+

 

 

( )( )1

2
0 0

2
j

j

j i

i j
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i




−

+
= =

 
 + + 
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Specifically, 

( )
( )( )1

0 0

( 1) 1
( ) 2

1 1
1 2

jj
j

j i

i j

X i

j i




 


−

= =

 −
 =  + + 

 + + +
  

( )
( )( )2 1

0 0

( 1) 2
( ) 2

2 2
1 2

jj
j

j i

i j

X i

j i




 


−

= =

 −
 =  + + 

 + + +
  

( )
( )( )3 1

0 0

( 1) 3
( ) 2

3 3
1 2

jj
j

j i

i j

X i

j i




 


−

= =

 −
 =  + + 

 + + +
  

( )
( )( )4 1

0 0

( 1) 4
( ) 2

4 4
1 2

jj
j

j i

i j

X i

j i




 


−

= =

 −
 =  + + 

 + + +
  

( ) ( )
22var ( )X X X= −     

Additionally, the coefficient of skewness of the EPAD (∝, 𝛽, 𝜃) 𝑖𝑠 

( )

( )  

3 3 2 2

1 3 3

2 2

( ) 3 ( ) 2 ( )

( )

X X x x

Var xVar x

  


 −  −  + 
= =

  

 

The  corresponding  coefficient of Kurtosis has the form 

( )

( )  

4 4 3 2

1 2 2

( ) 3 ( ) 2 ( )

( )

X X x x

Var xVar x

  


 −  −  + 
= =

  

 

Mean (µ), variance (var), coefficient of skewness (𝛽1 ) and values of coefficient of kurtosis (𝛽2 ) 

of the EPAD values that corresponds to various values of ∝, 𝛽 𝑎𝑛𝑑 𝜃 are contained in Table 1. 

This table shows that the EPAD can be positively skewed and either platykurtic or leptokurtic. 
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Fig. 2: Graphical Representation of Different Shapes of the HRF of the EPAD 

 

Table 1: Descriptive Statistics for the EPAD 
 

        Var 
1  2  

0.5 0.5 0.5 13.8466 997.29 163023 46591472 

0.5 1 1 1.3440 3.46 13 62 

0.5 1.5 1.5 0.7307 0.67 1 1 

0.5 2 2 24.0000 1920.00 322560 92897280 

1 0.5 0.5 2.0000 6.00 24 120 



Communication in Physical Sciences 2025, 12(5): 1636-1650 1642 
 

 
 

1 1 1 0.9399 1.00 1 2 

1 1.5 1.5 39.0000 3600.00 632520 184705920 

1 2 2 2.7500 9.75 43 225 

1.5 0.5 0.5 1.1322 1.38 2 2 

1.5 1 1 13.8466 997.29 163023 46591472 

1.5 1.5 1.5 1.3440 3.46 13 62 

1.5 2 2 0.7307 0.67 1 1 

2 0.5 0.5 24.0000 1920.00 322560 92897280 

2 1 1 2.0000 6.00 24 120 

2 1.5 1.5 0.9399 1.00 1 2 

2 2 2 39.0000 3600.00 632520 184705920 
 

2.2 Incomplete moments 
 

Incomplete moments are useful in deriving important properties of statistical distributions, which 

include mean deviations, mean residual life function, Bonferroni and Lorenz curves. 

Let 𝐽𝑟 (𝑥) denote the 𝑟𝑡ℎ incomplete moment of a random variable 𝑋, where 𝑥~ 𝐸𝑃𝐴𝐷 (∝, 𝛽, 𝜃). 

Then: 

( )( )

0

2 1 2 1 ( 1)

0
0 0

( ) ( )

( 1)

x

r

r

j
x

j j i r j e

j i

i j

j x m f m dm

m e dm
   


− + + − − +

= =

=

= −



 
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


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 
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 + 
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
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where 𝛾 (. ) is the lower incomplete gamma function. 
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1.3 Bonferroni and Lorenz curves 
 

Bonferroni and Lorenz curves are useful in 

studying income distribution. For a probability 

value P, the Bonferroni curve for the EPAD is  

B(p) = 
1( )

0

( )q qt
JEf t d

p p 
=  

The related Lorenz curve has the form 

L (p) = 
1( )

0

( )
,

q qJEf t

p 
=  

where 1( ).q F p−=  
 

2.4 Stochastic Ordering 
 

Here, we derive and present results pertaining 

to stochastic dominance of the EPAD over the 

exponentiated Weibull distribution (EWD) as 

well as likelihood ratio ordering based on 

EPAD.  These results are presented in the 

proofs of Propositions 2.1 and 2.2 respectively.  

Proposition 2.I: Let
1( ; , , )F x     and 

1( ; , , )G x    be the cdfs of the EPAD and 

EWD, each with parameters ∝, 𝛽 𝑎𝑛𝑑 𝜃. Then  

1( ; , , )F x    ≤ 
1( ; , , )G x    . That is the 

EPAD ( , , )   exhibits first-order stochastic 

dominance over the EWD ( , , )   . 

Proof: Certainly, if 𝑥 < 0,  𝐹1(𝑥, ∝, 𝛽, 𝜃) = 0  

and  𝐺1(𝑥, ∝, 𝛽, 𝜃) = 0. Thus, the inequality 

holds when 𝑥 < 0. If 𝑥 ≥ 0. 

1 + 𝜃𝑥𝛽 ≥ 0  indicating that 

𝐹1(𝑥; ∝, 𝛽, 𝜃) = [1 − (1 + 𝜃𝑥𝛽)𝑒−𝜃𝑥𝛽
]

∝

 

≤ 𝐺1(𝑥; ∝, 𝛽, 𝜃) = [1 − 𝑒−𝜃𝑥𝛽
]

∝

 

This completes the proof. 

The significance of Proposition 2.1 is that the 

EPAD can be applied where the EWD is 

empirically deficient. Proposition 2 contains an 

important stochastic ordering results on EPAD. 

Proposition 2.2: let 𝑋1 𝑎𝑛𝑑 𝑋2 refers to two 

random variables having the EPAD such that 

the distribution of 𝑋1   has the parameters 

∝1, 𝛽1, 𝑎𝑛𝑑 𝜃1 and the distribution of 𝑋2 has 

the parameters ∝2, 𝛽2, 𝑎𝑛𝑑 𝜃2. 
If 𝛽1 = 𝛽2 𝑎𝑛𝑑 𝜃1 =  𝜃2, 𝑋2 is larger than 

based on the likelihood ratio ordering if ∝1<
 ∝2 . 
Proof 

To prove proportion 2.2, it becomes important 

to determine the condition under which the 

ratio 
𝑓1(𝑥)

𝑓2(𝑥)
 decreases in 𝑥,  

Where 𝑓1 (𝑥) and 𝑓2 (𝑥) are the pdfs of 

𝑋1 𝑎𝑛𝑑 𝑋2  respectively
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Taking natural log on both sides of the last equation results in 
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Differentiating with respect to x, we have  
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If 𝛽1 =  𝛽2 = 𝛽 and  𝜃1 =  𝜃2 = 𝜃, then  
1
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In this case,  
𝑑

𝑑𝑥
 ln [

𝑓1(𝑥)

𝑓2(𝑥)
] < 0 𝑖𝑓 ∝1, <∝2. 

That is  
𝑓1(𝑥)

𝑓2(𝑥)
  decreases in 𝑥 whenever   

∝1, < ∝2, 𝛽1 =   𝛽2 and 𝜃1, = 𝜃2. This ends the proof.  
 

2.5 Rényi Entropy 
 

Entropy is a measure of uncertainty inherent in a random variable. For the EPAD (∝, 𝛽, 𝜃), Rényi 

entropy is given by   
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2.6 Order statistics 
 

Order statistics and their distributions have found applications in statistical inference, especially 

nonparametric inference. Let 𝑋(1), 𝑋(2), , . . , 𝑋(𝑛),  denote order statistics associated with EPAD 

(∝1, 𝛽, 𝜃). The pdf of the kth order statistic has the form. 

 1

( ) ( )

!
( ) ( ) 1 ( )

( 1)!( )!

n kk

x k x

n
f x f F x F x

k n k

−−= −
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Specifically, the smallest order statistic has the pdf 
2 2 1 1
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Similarly, the pdf of the nth order statistic is  
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2.7 Quantile function  
 

Suppose that q (0,1). The quantile function for the EPAD (∝1, 𝛽, 𝜃), denoted by 𝑥𝑞,  is obtained 

by solving for xq in the equation 
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It follows that  
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where ( )1 .W− is the negative branch of the Lambert W function, 

 

3.0  Maximum likelihood Estimation of parameters of EPAD 

 

Consider a random sample 𝑋1, 𝑋2, , . . , 𝑋𝑛, of size n from the EPAD (∝, 𝛽, 𝜃). The likelihood 

function is  

L = 
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Therefore, the log-likelihood function is  

ln 𝐿 = 𝑛 ln ∝ + ln 𝛽 + 2𝑛 ln 𝜃+∝ −1 
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i 1
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)𝑒−𝜃𝑥𝑖
𝛽

)]- 𝜃
=

n

i
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Partial derivatives of ln 𝐿 with respect to ∝, 𝛽 𝑎𝑛𝑑 𝜃  are as follows 



Communication in Physical Sciences 2025, 12(5): 1636-1650 1646 
 

 
 

𝜕

𝜕∝
 ln 𝐿 = 

𝑛

∝
 + 

=

n

i 1

ln [1 − (1 + 𝜃𝑥𝑖
𝛽

) 𝑒−𝜃𝑥𝑖
𝛽

]  

𝜕

𝜕𝛽
 ln 𝐿 = 

𝑛

𝛽
+ (∝ −1) 

=

n

i 1

𝜃2 𝑥𝑖
2𝛽

ln 𝑥𝑖 𝑒
−𝜃𝑥

𝑖
𝛽

1−(1+𝜃𝑥
𝑖
𝛽

)𝑒
−𝜃𝑥

𝑖
𝛽 

=

−
n

i

ix
1

 ln 𝑥𝑖 

𝜕

𝜕𝜃
 ln 𝐿 = 

2𝑛

𝜃
+ (∝ −1)𝜃 

=

n

i 1

𝑥𝑖
2𝛽

𝑒
−𝜃𝑥

𝑖
𝛽

1−(1+𝜃𝑥
𝑖
𝛽

)𝑒
−𝜃𝑥

𝑖
𝛽  - 

=

n

i

ix
1


 

Solving 
𝜕

𝜕∝
 ln 𝐿 = 0,

𝜕

𝜕𝛽
 ln 𝐿  =  0 and 

𝜕

𝜕𝜃
 ln 𝐿 

=0 

simultaneously enables us to obtain the 

maximum likelihood estimates of the 

parameters ∝, 𝛽 𝑎𝑛𝑑 𝜃. Consequently, only 

numerical solutions can be obtained due to the 

non-linearity of the likelihood equations. 
 

4.0 Simulation Results Based EPAD (∝
, 𝛽, 𝜃) 
 

The consistency property of the maximum 

likelihood estimators of ∝, 𝛽 𝑎𝑛𝑑 𝜃 in EPAD 

(∝, 𝛽 𝑎𝑛𝑑 𝜃) is explored via the Monte Carlo 

simulation procedure. The simulation process 

is predicted on 1000 samples for each of the 

sample sizes n = 25. 50, 75, 100, 200, 500 and 

1000 obtained from the EPAD (∝, 𝛽 𝑎𝑛𝑑 𝜃) 

under different  sets of values of ∝, 𝛽 𝑎𝑛𝑑 𝜃 . 
The different sets of values of ∝, 𝛽 𝑎𝑛𝑑 𝜃 

considered in the Monte Carlo experiment 

include (∝, 𝛽 𝑎𝑛𝑑 𝜃) = (0.5, 0.5, 0.5). For each 

sample size and sets of parameter values, the 

average estimate (AE) of each parameter as 

well as its associated average (AB) and mean 

squared error are computed. The requisite 

numerical results are presented in Table 2. 

Table 2 show that the MSEs tend to zero as n 

increases indicating consistency of the 

estimators. Average bais for each parameters 

estimators decrease as n increases.  
 

Table 1: Simulation Results Based on EPAD 
 

 PARAMETERS AVERAGE BIASES RMSES 

n        AB (̂ ) AB ( b̂ ) AB (̂ ) RMSE(̂
) 

RMSE( b̂ ) RMSE(̂ ) 

25 0.5 0.5 0.5 -0.0118 -0.0747 -0.0564 0.1544 0.1372 0.2131 

50 0.5 0.5 0.5 -0.0178 0.0557 -0.0401 0.1441 0.1236 0.2073 

100 0.5 0.5 0.5 -0.0122 0.0437 -0.032 0.1374 0.1127 0.1988 

200 0.5 0.5 0.5 0.0043 0.0291 -0.0073 0.1331 0.1025 0.1891 

500 0.5 0.5 0.5 -0.0026 0.0211 -0.0091 0.1161 0.038 0.1662 

100

0 

0.5 0.5 0.5  0.0062 0.0031 0.0070 0.0702 0.0435 0.1031 

25 105 0.4 2.9 0.1732 0.0337 -0.2037 0.1947 0.0498 0.2909 

50 105 0.4 2.9 0.1449 0.0211 -0.1261 0.1918 0.0389 0.2311 

100 105 0.4 2.9 0.1248 0.0082 -0.0481 0.1926 0.0269 0.1624 

200 105 0.4 2.9 0.0898 0.0039 -0.0224 0.0199 0.0199 0.1221 

500 105 0.4 2.9 0.0527 0.0011 -0.0065 0.1933 0.01295 0.0823 

100

0 

105 0.4 2.9 0.0428 0.0003 -0.0002 0.1947 0.0088 0.0557 

 

5.0 Applications 
 

Two real-world time series data are used to demonstrate the applicability of the EPAD in this 

section. The first data (Data I) are Maximum flood levels data (Dumonceaux and Antle, 2012): 
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0.654,0.613,0.315,0.449,0.297,0.402,0.379,0.423,0.379,0.3235,0.269,0.740,0.418,0.412,0.494,0.

416,0.338,0.392,0.484,0.265. 

The second data set (Data II) which refers to the actual taxes revenue data (in 1000 million 

Egyptian pounds) is as follows (Nassar and Nada, (2011).): 

5.9, 20.4, 14.9, 16.2, 17.2, 

7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1,6.7,17,8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10, 4.1, 

36, 8.5, 8, 9.2, 26.2, 21.9,16.7,21.3,35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 11.9, 7, 

8.6,12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8. 

The fits of the EPAD to each of the data stated above is compared with the fits of the PAD, 

exponentiated power Lindley distribution (EPLD) (Ashour and Eltehiwy, 2014) and EWD. The 

CDFs of the last two distributions, denoted by 
3( )f x and 

4 ( )f x  are defined below: 

 
3( ) 1 1 , 0, , , 0.

1

xx
f x e x







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

−
  

= − +    
+  

 

 ( )

4 ( ) 1 , 0, , , 0.xf x e x
 

   − = −  
 

 

The criteria used to compare fits of these 

distributions are the Akaike information 

criterion (AIC) and Bayesian information 

criterion (BIC). Additionally, we employ the 

Kolmogorov-Smirnov (KS), Cramer-von 

Mises (CVM) and Anderson-Darling (AD) 

statistics in comparing the goodness of fits of 

the distributions. Accordingly, any of the 

distributions that corresponds to the minimum 

values of the criteria and statistics is adjudged 

the best model for the concerned. The 

maximum likelihood estimates of the 

parameters of the distributions in conjunction 

with the calculated values of the model 

evaluation criteria and the goodness of fit 

statistics are presented in Table 3 for the two 

data sets. The numerical results in the table 

indicate that the EPAD gives the best fit to the 

data compared to the other three data. 

 

Table 3: Maximum likelihood estimates and the associated results based on the distributions 

fitted to Data I and Data II.  
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Distributi
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Loglikelih
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-
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-
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0.11

88 

 

 

0.04
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0.269
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̂

=1.0406 

̂

=11.4077 

16.1217 -

26.243

4 

-

23.256

2 

0.12

66 

0.04

47 

0.290

7 

0.90

56 

EWD ̂
=79.1864 

̂

=0.9234 

̂

=13.4452 
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02 

 

 

 

 

 

 

II 

PAD ̂

=1.3027 

̂

=0.0636 

 

-194.557 

 

393.10

94 

 

397.26

45 

 

0.13

48 

 

0.21

68 
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38 

EPAD  

̂
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6 

̂

=0.3680 
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13 

EPLD  

̂
=58.5503 

̂

=0.4680 
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383.39

81 

 

389.63
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0.07

55 

 

0.06

97 

 

0.040

58 

 

0.88

94 

EWD ̂
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3 

̂

=0.4542 
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=3.1248 

 

-188.5102 

 

383.02

03 

 

389.25

29 

 

0.07

07 

 

0.06

29 

 

0.365
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6.0 Conclusion 
 

This study introduced a novel and flexible 

three-parameter distribution known as the 

Exponentiated Power Ailamujia Distribution 

(EPAD), developed as a generalization of the 

Power Ailamujia Distribution. We 

systematically derived and analyzed the 

statistical properties of the EPAD, including its 
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probability density and hazard rate functions, 

moments, entropy, quantile function, stochastic 

ordering, and order statistics. The shape 

flexibility of the distribution was demonstrated, 

with the PDF and hazard rate function 

accommodating various forms such as 

increasing, decreasing, unimodal, J-shaped, 

and bathtub-shaped patterns. Through Monte 

Carlo simulation, the maximum likelihood 

estimators of the parameters were shown to be 

consistent, with decreasing bias and RMSE as 

sample size increased. 

Furthermore, the applicability of the EPAD 

was validated using two real-world time series 

datasets—maximum flood levels and tax 

revenue data. In comparison with other well-

known models such as PAD, EPLD, and EWD, 

the EPAD exhibited superior performance 

based on goodness-of-fit criteria including 

AIC, BIC, KS, CVM, and AD statistics. These 

findings underscore the robustness and 

practical relevance of the EPAD in modeling 

complex time series data in hydrological and 

economic domains. The distribution holds 

promise for wider applications in fields where 

capturing diverse data behaviors is essential. 
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