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Abstract: This study investigates the influence 

of viscous damping on the load-carrying 

capacity of an imperfect finite column. The 

analysis is based on an established governing 

equation for the lateral displacement of a 

viscously damped finite column, which is solved 

using the regular perturbation method. To 

facilitate the solution, the governing equation is 

first non-dimensionalized through the 

introduction of appropriate dimensionless 

parameters. This transformation naturally 

introduces a slow time scale into the 

formulation, and nonlinear terms of order 

higher than cubic are neglected to simplify the 

analysis. The resulting expression for the lateral 

displacement, as a function of both time and 

spatial coordinates, is derived analytically. An 

asymptotic series expansion is then employed to 

determine the column’s maximum lateral 

displacement, from which the dynamic buckling 

load is obtained. The actual buckling load 

values are computed using MATLAB, and the 

results are subsequently used to assess the 

quantitative effect of viscous damping on the 

dynamic buckling capacity. 
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1. 0 Introduction 
 

In this study, we examine the influence of light 

viscous damping on the dynamic buckling load 

of a finite column supported by a quadratic-

cubic nonlinear elastic foundation. The column 

is subjected to a step load applied immediately 

after the initial time. The configuration of the 

column was previously investigated by Hansen 

and Roorda(1973, 1974), where they analyzed 

the sensitivity of such a structure to 

imperfections, assuming that the inherent 

imperfections were spatially stochastic. 

Elishakoff (1979) later explored the reliability 

approach to imperfection sensitivity for a 

similar column. Similarly, Boyce (1961) studied 

the buckling of a stochastically imperfect 

column on a nonlinear elastic foundation, while 

Amazigo (1971) focused on the buckling 

behavior of a column with randomly distributed 

initial displacement. Other relevant 

investigations in this area include Dumir et al. 

(1987) and Kevorkian (2003), among others. 

This buckling is a form of deformation which 

are caused by stresses as the papers by 

Egbuhuzor and Erumaka(2020) and Egbuhuzor 

and Udoh (2023). The papers solved for 

displacement distributions and stresses acting 

under internal pressure. 

However, while the aforementioned studies 

primarily focused on the stability of these 

structures under static loading, there were also 

investigations that delved into the dynamic 

behavior of these structures. Amazigo and Frank 

(1971), Ette (1992), and others examined the 

dynamic stability of these structures when 

subjected to a step load. Additional research on 

dynamic buckling in relation to columns has 

been conducted by Ette et al. (2018; 2019), 

among others. Some of the problems addressed 

in this study involve two small non-dimensional 

parameters, and the analysis employs two-

timing multi-scaling perturbation techniques, 
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similar to the approaches used in Ozoigbo and 

Ette (2019) and Ette et al. (2019), among other 

references. 

2. 0  Formulation of the Differential 

Equation Governing Lateral Displacement 

The dimensional differential equation 

satisfied by displacement W(X, T) of a finite 

imperfect damped column lying on a quadratic-

cubic nonlinear elastic foundation as given in 

Ette(1992) is 

𝑚0𝑊,𝑇𝑇 + 𝐶0𝑊,𝑇 + 𝐸𝐼𝑊,𝑋𝑋𝑋𝑋 + 𝑃(𝑇)𝑊,𝑋𝑋 + 𝑘1𝑊 − 𝛽1𝑊2 − 𝛽𝑘3𝑊3 = −𝑃(𝑇)
𝑑2𝑊

𝑑𝑋2
, 𝑇 > 0,

0 < 𝑋 < 𝛱                                                                                                 (1) 
𝑊 = 𝑊,𝑋𝑋 = 0      𝑎𝑡  𝑋 = 0, 𝛱                                                            (2) 
𝑊(𝑋, 0) = 𝑊,𝑇(𝑋, 0) = 0      0 < 𝑋 < 𝛱                                           (3) 

 

where m0  is the mass per unit length of the 

column, X and T are the spatial and time 

variables respectively, C0 is the damping 

constant where the damping is taken 

proportional to the first degree of the velocity 

W,T. Here EI is the bending stiffness where E is 

the Young modulus and I is the moment of 

inertia and 𝑘1, 𝛽1, 𝑘3 are spring constants, 

considered positive, while 𝛽 is the imperfection-

sensitivity parameter which is such that if the 

column were lying on a strictly nonlinear cubic 

elastic  foundation   (𝑖𝑒 𝑖𝑓 𝛽1 = 0) then, 𝛽 

would take the values 𝛽 = −1 𝑜𝑟 𝛽 = 1. In this 

case, the resultant column is said to be on a 

“hardening” foundation if  𝛽 = −1 and on a 

“softening” foundation if  𝛽 = 1. However, for 

the case of a column on a quadratic-cubic 

foundation, we still maintain  𝛽 without 

substituting the above values for it. We note that 

the elastic foundation exerts a force per unit 

length given by  𝑘1𝑊 − 𝛽1𝑊2 − 𝛽𝑘3𝑊3. 

Equally of note is the term 𝑊(𝑋) which is a time 

independent twice-differentiable stress-free 

imperfection function while P(T) is the load 

history.  We have neglected axial inertia as well 

as nonlinearities higher than cubic. We have also 

neglected nonlinear derivatives of 𝑊(𝑋) and a 

subscript following a comma indicates partial 

differentiation. 

 

 

3. 0 Non-dimensionalization 
 

As in Elishakoff (1980), we shall nondimensionalize the equations (1) – (3) by introducing the 

following quantities  

𝑥 = (
𝑘1

𝐸𝐼
)

1

4

𝑋, 𝑤 = (
𝑘3

𝑘1
)

1

2

𝑊, 𝜆𝑓(𝑡) =
𝑃(𝑇)

2(𝐸𝐼𝑘1)
1

2

 , 𝑡 = (
𝑘1

𝑚0
)

1

2

𝑇    (4) 

𝜉𝑤 = (
𝑘3

𝑘1
)

1

2

𝑊, 2𝛼𝜉 =
𝐶0

(𝑚0𝑘1)
1

2

 ,                                                                      (5) 

0 < 𝛼 < 1, 0 < 𝜆 < 1, 0 < 𝜉 < 1 

On substituting (4) and (5) into (1) – (3) and simplifying, we get 

𝑤,𝑡𝑡 + 2𝛼𝜉𝑤,𝑡 + 𝑤,𝑥𝑥𝑥𝑥 + 2𝜆𝑓(𝑡)𝑤,𝑥𝑥 +  𝑤 −  𝑘2𝑤2 − 𝛽𝑤3 

=  −2𝜆𝑓(𝑡)𝜉𝑤,𝑥𝑥,    𝑡 > 0,    0 < 𝑥 < 𝜋                        (6) 

𝑤(𝑥, 𝑡) =  𝑤,𝑥𝑥(𝑥, 𝑡) = 0     𝑎𝑡   𝑥 = 0, 𝜋                                                (7) 
𝑤(𝑥, 0) = 𝑤,𝑡(𝑥, 0) = 0 , 0 < 𝑥 < 𝜋                                                          (8) 

where 
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𝑘2 = (
𝛽1

𝑘1𝑘3
) 

 We note that  𝜉 is the amplitude of the imperfection, deemed small relative to unity, while the 

damping is taken in the order of the amplitude of the imperfection𝜉. Here, f(t) is the time dependent 

loading history which in our case is the step load characterized by  

𝑓(𝑡) = 1, 𝑡 > 0                                                                       (9)  
and 𝜆 is the amplitude of the loading history whose specific value at buckling, namely 𝜆𝐷, is what 

we are to evaluate. Normally, as a result of our non-dimensionalization, the inequality  0 < 𝜆 < 1 

holds. We call𝜆𝐷, the dynamic buckling load and it is defined as the largest value of  𝜆 for the solution 

of (2.6) – (2.8) to be bounded for all time t > 0. As in Amazigo and Frank (1971), we determine 𝜆𝐷 

from the maximization  
𝑑𝜆

𝑑𝑊𝑎
= 0                                                                   (10) 

where  𝑾𝒂, as the maximum lateral (normal) displacement, is a function of the load function  𝝀. In 

order to utilize this maximization, we shall first determine the displacement   w(x, t) subsequent upon 

which we determine the maximum lateral displacement 𝑾𝒂. 
 

4. 0 Perturbation and Asymptotics Analysis 
 

In solving Eq.3,we introduce a slow time scale 𝜏 as in Egbuhuzor and Mezie (2014)and is meant 

to take care of the effects of imperfection and damping, such that

 𝜏 = 𝜉𝑡                                                                 (11) 

Thus, our displacement 𝑤(𝑥, 𝑡), will now be expressed  as  

𝑤(𝑥, 𝑡) ≡ 𝑈 (𝑥, 𝑡, 𝜏, 𝜉)   

                            𝑤,𝑡(𝑥, 𝑡) = 𝑈,𝑡 +  𝑈,𝜏                           (12) 

  𝑤,𝑡𝑡(𝑥, 𝑡) = 𝑈,𝑡𝑡 + 2𝜉𝑈,𝑡𝜏 + 𝜉2𝑈,𝜏𝜏     (13) 

 By regular perturbation method, we let     

                                             𝑈 (𝑥, 𝑡, 𝜏, 𝜉) = ∑∞
𝑖=1 𝑈𝑖(𝑥, 𝑡, 𝜏)𝜉𝑖   (14) 

On substituting (12)-(14) into (4)-(6), and assuming term-wise differentiation we get  

𝑂 (𝜉):  𝑈,𝑡𝑡
(1)

+ 𝑈,𝑥𝑥𝑥𝑥
(1)

+ 2𝜆𝑈,𝑥𝑥
(1)

+ 𝑈(1) = −2𝜆𝑤,𝑥𝑥 (15) 

𝑂 (𝜉2):    𝑈,𝑡𝑡
(2)

+ 𝑈,𝑥𝑥𝑥𝑥
(2)

+ 2𝜆𝑈,𝑥𝑥
(2)

+ 𝑈(2) = −2𝑈,𝑡𝜏
(1)

− 2𝛼𝑈,𝑡
(1)

+ 𝑘2(𝑈(1))2  (16) 

𝑂 (𝜉3) :   𝑈,𝑡𝑡
(3)

+ 𝑈,𝑥𝑥𝑥𝑥
(3)

+ 2𝜆𝑈,𝑥𝑥
(3)

+ 𝑈(3) = −2𝑈,𝑡𝜏
(2)

− 2𝛼𝑈,𝑡
(2)

− 2𝛼𝑈,𝜏
(1)

− 𝑈,𝜏𝜏
(1)

 

      +2𝑘2𝑈(1)𝑈(2) + 𝛽(𝑈(1))3                                                                      (17) 

with initial conditions:
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n 

𝑈𝑖(𝑥, 0,0) = 0          𝑓𝑜𝑟 𝑖 = 1,2, 3, …                                   (18) 

𝑈,𝑡
(1)(𝑥, 0,0) = 0                                                                           ( 19) 

𝑈,𝑡
(2)(𝑥, 0,0) + 𝑈,𝜏

(1)(𝑥, 0,0) = 0                                                 (20) 

𝑈,𝑡
(3)(𝑥, 0,0) + 𝑈,𝜏

(2)(𝑥, 0,0) = 0                                                   (21) 

The associated boundary conditions are 

𝑈(𝑖)(𝑥, 𝑡, 𝜏) = 𝑈,𝑥𝑥
(𝑖) (𝑥, 𝑡, 𝜏) = 0     𝑎𝑡  𝑥 = 0, 𝜋 , 𝑖 = 1,2,3, …      (22) 

Based on the boundary conditions (2.2), we let 

𝑤(𝑥) = 𝑎𝑚 𝑠𝑖𝑛 𝑠𝑖𝑛𝑚𝑥, |𝑎𝑚| < 1, 𝑚 𝑖𝑠 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟            (23) 

 

𝑈𝑖(𝑥, 𝑡, 𝜏) = ∑

∞

𝑛=1

𝑈𝑛
𝑖 (𝑡, 𝜏)𝑠𝑖𝑛 𝑛𝑥                                                    (24) 

 

We now substitute (23), (24) into (17) and obtain for i =1, multiply the resultant equation through 

𝑠𝑖𝑛𝑚𝑥 and integrate over the entire column from 0 to 1, and note that the only non vanishing value 

of  𝑈𝑛
(1)

   is when n=m. Thus, for n=m, we have that 

 

                                              𝑈𝑚,𝑡𝑡
(1)

+ 𝜑𝑚
2 𝑈𝑚

(1)
= 2𝑚2𝜆𝑎𝑚      (25) 

𝑈𝑚
(1)(0,0) = 0, 𝑈𝑚,𝑡

(1)(0,0) = 0                                                           (26) 

On solving (25, 26), we obtain 

𝑈𝑚
(1)(𝑡, 𝜏) = 𝛼𝑚

(1)(𝜏)𝑐𝑜𝑠𝜑𝑚𝑡 + 𝛽𝑚
(1)(𝜏)𝑠𝑖𝑛𝜑𝑚𝑡 + 𝐵𝑚                            (27) 

𝐵𝑚 =
2𝑚2𝜆𝑎𝑚

𝜑𝑚
2

                                                                   (28) 

𝛼𝑚
(1)(0) = −𝐵𝑚, 𝛽𝑚

(1)(0) = 0                                               (29) 
Where (29) is obtained by using (28) 

Thus from (24), we obtain the first component of the lateral displacement as 

𝑈(1)(𝑥, 𝑡, 𝜏) = 𝑈𝑚
(1)(𝑡, 𝜏)𝑠𝑖𝑛 𝑚𝑥                                                     (29) 

Where  𝛼𝑚
(1)(𝜏) 𝑎𝑛𝑑 𝛽𝑚

(1)(𝜏)  are yet to be determined in full 

Next, we substitute Eq.(24), for 𝑖 = 2 into Eq(16) using Eq.(23), multiply the resultant equation by 

𝑠𝑖𝑛𝑚𝑥 and integrate over the entire column from 0 to 𝜋 

 

𝑈𝑚,𝑡𝑡
(2)

+ 𝜑𝑚
2 𝑈𝑚

(2)
= −2𝑈𝑚,𝑡𝜏

(1)
− 2𝛼𝑈𝑚,𝑡

(1)
+

8𝑘2

3𝑚𝜋
(𝑈𝑚

(1)
)2(30) 

  𝑈𝑚
(2)(0,0) = 0,   𝑈𝑚,𝑡

(2)(0,0) + 𝑈𝑚,𝜏
(1) (0,0) = 0                     (31) 

Meanwhile we note the following, using (25, 26) 

𝑈𝑚,𝑡𝜏
(1)

= −𝜑𝑚𝛼̇𝑚
(1)

𝑠𝑖𝑛 𝜑𝑚𝑡 + 𝜑𝑚𝛽̇𝑚
(1)

𝑐𝑜𝑠 𝜑𝑚𝑡                                         (32) 

𝑤ℎ𝑒𝑟𝑒         ( )̇ =
𝑑( )

𝑑𝜏
 

𝑈𝑚,𝑡
(1)

= −𝜑𝑚𝛼𝑚
(1)

𝑠𝑖𝑛 𝜑𝑚𝑡 + 𝜑𝑚𝛽𝑚
(1)

𝑠𝑐𝑜𝑠 𝜑𝑚𝑡                                       (33) 

(𝑈𝑚
(1)

)2 = 𝑆𝑚 +  𝜃𝑚𝑐𝑜𝑠 2𝜑𝑚𝑡 + 𝛼𝑚
(1)

𝛽𝑚
(1)

𝑠𝑖𝑛2 𝜑𝑚𝑡 + 2𝛼𝑚
(1)

𝐵𝑚𝑐𝑜𝑠 𝜑𝑚𝑡

+  2𝛽𝑚
(1)

𝐵𝑚𝑠𝑖𝑛 𝜑𝑚𝑡                                                                          (34) 
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𝑤ℎ𝑒𝑟𝑒             𝑆𝑚(𝜏) =
1

2
𝛼𝑚

(1)2
+

1

2
𝛽𝑚

(1)2
+ 𝐵𝑚                                                    

2              (35) 

 𝜃𝑚(𝜏) =
1

2
𝛼𝑚

(1)2
−

1

2
𝛽𝑚

(1)2
                                                                                     (36) 

Using (33), we obtain from (35, 36)      𝑆𝑚(0) =
3

2
𝐵𝑚 

2 ,   𝜃𝑚(0) =
1

2
𝐵𝑚

2  

 

We now rearrange (35) in terms of 𝑠𝑖𝑛 𝜑𝑚𝑡,𝑐𝑜𝑠 𝜑𝑚𝑡, 𝑠𝑖𝑛 2𝜑𝑚𝑡, and 𝑐𝑜𝑠 2𝜑𝑚𝑡, to obtain 

𝑈𝑚,𝑡𝑡
(2)

+ 𝜑𝑚
2 𝑈𝑚

(2)
= 𝑅0𝑐𝑜𝑠 𝜑𝑚𝑡 + 𝑅1𝑠𝑖𝑛 𝜑𝑚𝑡 

+
8𝑘2

3𝑚𝜋
{𝑆𝑚 +  𝜃𝑚𝑐𝑜𝑠 2𝜑𝑚𝑡 + 𝛼𝑚

(1)
𝛽𝑚

(1)
𝑠𝑖𝑛2 𝜑𝑚𝑡}         (42)𝑤ℎ𝑒𝑟𝑒             𝑅0

= −2𝜑𝑚𝛽̇𝑚
(1)

− 2𝛼𝜑𝑚𝛽𝑚
(1)

+
16𝑘2𝛼𝑚

(1)
𝐵𝑚

3𝑚𝜋
                           (37) 

𝑅1 = 2𝜑𝑚𝛼̇𝑚
(1)

+ 2𝛼𝜑𝑚𝛼𝑚
(1)

+
16𝑘2𝛽𝑚

(1)
𝐵𝑚

3𝑚𝜋
                                                (38) 

 

 Now, since we are dealing with a real life situation, for us to obtain a uniformly valid solution of 

(38) in terms of t, we must equate the coefficients of  𝑠𝑖𝑛 𝜑𝑚𝑡 and 𝑐𝑜𝑠 𝜑𝑚𝑡 to zero. This will result 

to 

𝛽̇
𝑚

(1)
+ 𝛼𝛽𝑚

(1)
= 𝑤𝑚𝛼𝑚

(1)
                                                                        (39) 

𝛼̇𝑚
(1)

+ 𝛼𝛼𝑚
(1)

= −𝑤𝑚𝛽𝑚
(1)

                                                                        (40) 
 

𝑤𝑚 =
8𝑘2𝐵𝑚

3𝑚𝜑𝑚𝜋
                                                                 (41) 

Solving (39, 36) simultaneously, we obtain that 

𝛽
𝑚
(1)(𝜏) = −𝐵𝑚𝑒−𝛼𝜏𝑠𝑖𝑛 𝑤𝑚𝜏                                                                       (42) 

𝛼𝑚
(1)

(𝜏) = −𝐵𝑚𝑒−𝛼𝜏𝑐𝑜𝑠 𝑤𝑚𝜏                                                                      (43) 

Thus with (48, 49), we have determined 𝑈𝑚
(1)(𝑡, 𝜏) in full 

 From (40, 41), we also obtain that 

𝛽̇
𝑚

(1)
(0) = − 𝑤𝑚𝐵𝑚  , 𝛼̇𝑚

(1)(0) = 𝛼𝐵𝑚                                        (44) 

Now, the remaining equation in (42) is  

𝑈𝑚,𝑡𝑡
(2)

+ 𝜑𝑚
2 𝑈𝑚

(2)
=

8𝑘2

3𝑚𝜋
{𝑆𝑚 +  𝜃𝑚𝑐𝑜𝑠 2𝜑𝑚𝑡 + 𝛼𝑚

(1)
𝛽𝑚

(1)
𝑠𝑖𝑛2 𝜑𝑚𝑡}(45) 

 

we obtain that 

𝑈𝑚
(2)(𝑡, 𝜏) = 𝛼𝑚

(2)(𝜏)𝑐𝑜𝑠𝜑𝑚𝑡 + 𝛽𝑚
(2)(𝜏)𝑠𝑖𝑛𝜑𝑚𝑡 

 +
8𝑘2

3𝑚𝜋
{

𝑆𝑚

𝜑𝑚
2

−
 𝜃𝑚𝑐𝑜𝑠 2𝜑𝑚𝑡

3𝜑𝑚
2

−
− 𝛼𝑚

(1)
𝛽𝑚

(1)
𝑠𝑖𝑛 2𝜑𝑚𝑡

3𝜑𝑚
2

}                (46) 

𝛼𝑚
(2)(0) = −

32𝑘2𝐵𝑚
2

9𝑚𝜑𝑚
2 𝜋

                                                                       (47) 

 

𝛽
𝑚
(2)(0) = −

𝛼𝐵𝑚

𝜑𝑚
                                                                          (48) 

𝑈(2)(𝑥, 𝑡, 𝜏) = 𝑈𝑚
(2)(𝑡, 𝜏)𝑠𝑖𝑛 𝑚𝑥                                                          (49) 
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We  obtain, for i=3, 

∑

∞

𝑛=1

{𝑈𝑛,𝑡𝑡
(3)

+ 𝜑𝑛
2𝑈𝑛

(3)
}𝑠𝑖𝑛 𝑛𝑥 =  −2𝑈,𝑡𝜏

(2)
− 2𝛼𝑈,𝑡

(2)
− 2𝛼𝑈,𝜏

(1)
− 𝑈,𝜏𝜏

(1)
 

+2𝑘2𝑈(1)𝑈(2) + 𝛽(𝑈(1))3                                                 (50)  
Also, we substitute for (34) and (55) on the right hand side of (56) obtaining 

∑

∞

𝑛=1

{𝑈𝑛,𝑡𝑡
(3)

+ 𝜑𝑛
2𝑈𝑛

(3)
}𝑠𝑖𝑛 𝑛𝑥 =  −2𝑈𝑚,𝑡𝜏

(2)
𝑠𝑖𝑛 𝑚𝑥 − 2𝛼𝑈𝑚,𝑡

(2)
𝑠𝑖𝑛 𝑚𝑥 

−2𝛼𝑈𝑚,𝜏
(1)

𝑠𝑖𝑛 𝑚𝑥 − 𝑈𝑚,𝜏𝜏
(1)

𝑠𝑖𝑛 𝑚𝑥  + 2𝑘2𝑈(1)𝑈(2)𝑠𝑖𝑛2𝑚𝑥 + 𝛽(𝑈(1))3𝑠𝑖𝑛3𝑚𝑥(51) 

This in linear form gives 

∑

∞

𝑛=1

{𝑈𝑛,𝑡𝑡
(3)

+ 𝜑𝑛
2𝑈𝑛

(3)
}𝑠𝑖𝑛 𝑛𝑥 =  −2𝑈𝑚,𝑡𝜏

(2)
𝑠𝑖𝑛 𝑚𝑥 − 2𝛼𝑈𝑚,𝑡

(2)
𝑠𝑖𝑛 𝑚𝑥 

 

−2𝛼𝑈𝑚,𝜏
(1)

𝑠𝑖𝑛 𝑚𝑥 − 𝑈𝑚,𝜏𝜏
(1)

𝑠𝑖𝑛 𝑚𝑥  + 𝑘2𝑈(1)𝑈(2)(1 − 𝑐𝑜𝑠 2𝑚𝑥) 

+
𝛽(𝑈(1))3

4
(3𝑠𝑖𝑛 𝑚𝑥 − 𝑠𝑖𝑛 3𝑚𝑥)                                  (52) 

 
We multiply (52) in turn by Sin 𝑚𝑥 and Sin 3𝑚𝑥 respectively obtaining 

∑

∞

𝑛=1

{𝑈𝑛,𝑡𝑡
(3)

+ 𝜑𝑛
2𝑈𝑛

(3)
}𝑠𝑖𝑛 𝑛𝑥𝑠𝑖𝑛 𝑚𝑥 =  −2𝑈𝑚,𝑡𝜏

(2)
𝑠𝑖𝑛2𝑚𝑥 − 2𝛼𝑈𝑚,𝑡

(2)
𝑠𝑖𝑛2𝑚𝑥 

−2𝛼𝑈𝑚,𝜏
(1)

𝑠𝑖𝑛2𝑚𝑥 − 𝑈𝑚,𝜏𝜏
(1)

𝑠𝑖𝑛2𝑚𝑥 + 𝑘2𝑈(1)𝑈(2)(1 − 𝑐𝑜𝑠 2𝑚𝑥)𝑠𝑖𝑛 𝑚𝑥

+
𝛽(𝑈(1))3

4
(3𝑠𝑖𝑛 𝑚𝑥 − 𝑠𝑖𝑛 3𝑚𝑥)𝑠𝑖𝑛 𝑚𝑥                                           (53) 

and  

∑

∞

𝑛=1

{𝑈𝑛,𝑡𝑡
(3)

+ 𝜑𝑛
2𝑈𝑛

(3)
}𝑠𝑖𝑛 𝑛𝑥𝑠𝑖𝑛 3𝑚𝑥 =  −2𝑈𝑚,𝑡𝜏

(2)
𝑠𝑖𝑛 𝑚𝑥𝑠𝑖𝑛 3𝑚𝑥 

−2𝛼𝑈𝑚,𝑡
(2)

𝑠𝑖𝑛 𝑚𝑥𝑠𝑖𝑛 3𝑚𝑥 − 2𝛼𝑈𝑚,𝜏
(1)

𝑠𝑖𝑛 𝑚𝑥𝑠𝑖𝑛 3𝑚𝑥 − 𝑈𝑚,𝜏𝜏
(1)

𝑠𝑖𝑛 𝑚𝑥𝑠𝑖𝑛 3𝑚𝑥   

𝑘2𝑈(1)𝑈(2)(1 − 𝑐𝑜𝑠 2𝑚𝑥)𝑠𝑖𝑛 3𝑚𝑥 +
𝛽(𝑈(1))3

4
(3𝑠𝑖𝑛 𝑚𝑥 − 𝑠𝑖𝑛 3𝑚𝑥)𝑠𝑖𝑛 3𝑚𝑥( 54) 

 
We integrate (53) over the entire column and notice, as in (24), that the only non- vanishing value of 

𝑈𝑛
(3)

  is when n=m. Thus for n=m, where values of m are odd, we have that  

𝑈𝑚,𝑡𝑡
(3)

+ 𝜑𝑚
2 𝑈𝑚

(3)
= −2𝑈𝑚,𝑡𝜏

(2)
− 𝑈𝑚,𝜏𝜏

(1)
− 2𝛼𝑈𝑚,𝑡

(2)
− 2𝛼𝑈𝑚,𝜏

(1)
 

+
16𝑘2

3𝑚𝜋
𝑈𝑚

(1)
𝑈𝑚

(2)
−

3𝛽

4
(𝑈𝑚

(1)
)3                                                       (55) 

𝑈𝑚
(3)(0,0) = 0, 𝑈𝑚,𝑡

(3) (0,0) + 𝑈𝑚,𝜏
(2) (0,0) = 0                                  (56) 

 

We note the following 

𝑈𝑚,𝜏
(1)

= 𝛼̇𝑚
(1)

𝑐𝑜𝑠 𝜑𝑚𝑡 + 𝛽̇𝑚
(1)

𝑠𝑖𝑛 𝜑𝑚𝑡                                                 (57) 

𝑈𝑚,𝜏𝜏
(1)

= 𝛼̈𝑚
(1)

𝑐𝑜𝑠 𝜑𝑚𝑡 + 𝛽̈𝑚
(1)

𝑠𝑖𝑛 𝜑𝑚𝑡                                                   (58) 
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𝑈𝑚,𝑡
(2)

= −𝜑𝑚(𝛼𝑚
(2)

𝑠𝑖𝑛 𝜑𝑚𝑡 − 𝛽𝑚
(2)

𝑐𝑜𝑠 𝜑𝑚𝑡) 

+
16𝜑𝑚𝑘2

3𝑚𝜋
{
𝜃𝑚𝑠𝑖𝑛 2 𝜑𝑚𝑡

3𝜑𝑚
2

− 𝛼𝑚
(1)

𝛽𝑚
(1) 𝑐𝑜𝑠 2 𝜑𝑚𝑡

3𝜑𝑚
2

}                              (59) 

 

𝑈𝑚,𝑡𝜏
(2)

= −𝜑𝑚(𝛼̇𝑚
(2)

𝑠𝑖𝑛 𝜑𝑚𝑡 − 𝛽̇𝑚
(2)

𝑐𝑜𝑠 𝜑𝑚𝑡) 

+
16𝜑𝑚𝑘2

3𝑚𝜋
{

𝜃̇𝑚𝑠𝑖𝑛 2 𝜑𝑚𝑡

3𝜑𝑚
2

−
(𝛼𝑚

(1)
𝛽𝑚

(1)
)

.

𝑐𝑜𝑠 2 𝜑𝑚𝑡

3𝜑𝑚
2

}                          (60) 

𝑈𝑚
(1)

𝑈𝑚
(2)

=
𝛼𝑚

(1)
𝛼𝑚

(2)

2
+

𝛽𝑚
(1)

𝛽𝑚
(2)

2
+

8𝑘2𝐵𝑚𝑆𝑚

3𝑚𝜋𝜑𝑚
2

+ {
8𝑘2𝛼𝑚

(1)

3𝑚𝜋𝜑𝑚
2

(𝑆𝑚 −
𝜃𝑚

6
−

𝛽𝑚
(1)2

6
) + 𝐵𝑚𝛼𝑚

(2)
} 𝑐𝑜𝑠 𝜑𝑚𝑡

+ {
8𝑘2𝛽𝑚

(1)

3𝑚𝜋𝜑𝑚
2

(𝑆𝑚 +
𝜃𝑚

6
−

𝛼𝑚
(1)2

6
) + 𝐵𝑚𝛽𝑚

(2)
} 𝑠𝑖𝑛 𝜑𝑚𝑡

+ {
𝛼𝑚

(1)
𝛼𝑚

(2)

2
−

𝛽𝑚
(1)

𝛽𝑚
(2)

2
−

8𝑘2𝐵𝑚𝜃𝑚

9𝑚𝜋𝜑𝑚
2

} 𝑐𝑜𝑠 2𝜑𝑚𝑡

+ {
𝛼𝑚

(1)
𝛽𝑚

(2)

2
+

𝛽𝑚
(1)

𝛼𝑚
(2)

2
−

8𝑘2𝐵𝑚𝛼𝑚
(1)

𝛽𝑚
(1)

9𝑚𝜋𝜑𝑚
2

} 𝑠𝑖𝑛 2𝜑𝑚𝑡

+ {
8𝑘2𝛼𝑚

(1)

3𝑚𝜋𝜑𝑚
2

(−
𝜃𝑚

6
+

𝛽𝑚
(1)2

6
)} 𝑐𝑜𝑠 3𝜑𝑚𝑡

+ {
8𝑘2𝛽𝑚

(1)

3𝑚𝜋𝜑𝑚
2

(−
𝜃𝑚

6
−

𝛼𝑚
(1)2

6
)} 𝑠𝑖𝑛 3𝜑𝑚𝑡                                             (61) 

 

𝑈𝑚
(1)3

=
𝐵𝑚

2
(3𝛼𝑚

(1)2
+ 3𝛽𝑚

(1)2
+ 2𝐵𝑚

2 ) + {
3𝛼𝑚

(1)

4
(𝛼𝑚

(1)2
+ 𝛽𝑚

(1)2
+ 4𝐵𝑚

2 )} 𝑐𝑜𝑠 𝜑𝑚𝑡

+
3𝛽𝑚

(1)

4
(𝛼𝑚

(1)2
+ 𝛽𝑚

(1)2
+ 4𝐵𝑚

2 ) 𝑠𝑖𝑛 𝜑𝑚𝑡 +
3𝐵𝑚

2
(𝛼𝑚

(1)2
− 𝛽𝑚

(1)2
) 𝑐𝑜𝑠 2𝜑𝑚𝑡

+ 3𝐵𝑚𝛼𝑚
(1)

𝛽𝑚
(1)

𝑠𝑖𝑛 2𝜑𝑚𝑡 +
𝛼𝑚

(1)

4
(𝛼𝑚

(1)2
− 3𝛽𝑚

(1)2
) 𝑐𝑜𝑠 3𝜑𝑚𝑡

+
𝛽𝑚

(1)

4
(3𝛼𝑚

(1)2
− 𝛽𝑚

(1)2
) 𝑠𝑖𝑛 3𝜑𝑚𝑡                                                          (62) 

We also integrate (3.40) over the entire column and notice that, the only non- vanishing value of  

𝑈𝑛
(3)

  is when n=3m. Thus, for n=3m, where values of m are odd, we have that 

𝑈3𝑚,𝑡𝑡
(3)

+ 𝜑3𝑚
2 𝑈3𝑚

(3)
= −

16𝑘2

15𝑚𝜋
𝑈𝑚

(1)
𝑈𝑚

(2)
−

𝛽

4
(𝑈𝑚

(1)
)3                                       (63) 

𝑈3𝑚
(3)(0,0) = 0, 𝑈3𝑚,𝑡

(3) (0,0) = 0                                                                 (64) 

𝑤ℎ𝑒𝑟𝑒       𝜑3𝑚
2 = 81𝑚4 − 18𝑚2𝜆 + 1                                                           (65) 
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If we substitute for  𝑈𝑚
(1)

𝑎𝑛𝑑 𝑈𝑚
(2)

 in (69) and simplify, we get 

𝑈3𝑚,𝑡𝑡
(3)

+ 𝜑3𝑚
2 𝑈3𝑚

(3)
= 𝑇0 + 𝑇1𝑐𝑜𝑠 𝜑𝑚𝑡 + 𝑇2𝑠𝑖𝑛 𝜑𝑚𝑡 + 𝑇3𝑐𝑜𝑠 2𝜑𝑚𝑡 

+𝑇4𝑠𝑖𝑛2𝜑𝑚𝑡 + 𝑇5𝑐𝑜𝑠 3𝜑𝑚𝑡 + 𝑇6𝑠𝑖𝑛 3𝜑𝑚𝑡                                        (66) 
where 

𝑇0(𝜏) = −
16𝑘2

15𝑚𝜋
{
𝛼𝑚

(1)
𝛼𝑚

(2)

2
+

𝛽𝑚
(1)

𝛽𝑚
(2)

2
+

8𝑘2𝐵𝑚𝑆𝑚

3𝑚𝜋𝜑𝑚
2

} −
𝛽𝐵𝑚

8
{3𝛼𝑚

(1)2
+ 3𝛽𝑚

(1)2
+ 2𝐵𝑚

2 } (67) 

𝑇0(0) = −
832𝑘2

2𝐵𝑚
3

135(𝑚𝜋𝜑𝑚)2
−

5𝛽𝐵𝑚
3

8
                                               (68) 

𝑇1(𝜏) = −
16𝑘2

15𝑚𝜋
{

8𝑘2𝛼𝑚
(1)

3𝑚𝜋𝜑𝑚
2

(𝑆𝑚 −
𝜃𝑚

6
−

𝛽𝑚
(1)2

6
) + 𝐵𝑚𝛼𝑚

(2)
}

−
3𝛽𝛼𝑚

(1)

16
{𝛼𝑚

(1)2
+ 𝛽𝑚

(1)2
+ 4𝐵𝑚

2 }                                    (69)  

 

𝑇1(0) =
352𝑘2

2𝐵𝑚
3

45(𝑚𝜋𝜑𝑚)2
+

15𝛽𝐵𝑚
3

16
                                                        (70) 

𝑇2(𝜏) = −
16𝑘2

15𝑚𝜋
{

8𝑘2𝛽𝑚
(1)

3𝑚𝜋𝜑𝑚
2

(𝑆𝑚 +
𝜃𝑚

6
−

𝛼𝑚
(1)2

6
) + 𝐵𝑚𝛽𝑚

(2)
}

−
3𝛽𝛽𝑚

(1)

16
{𝛼𝑚

(1)2
+ 𝛽𝑚

(1)2
+ 4𝐵𝑚

2 }                              (71) 

𝑇2(0) =
16𝛼𝑘2𝐵𝑚

2

15𝑚𝜋𝜑𝑚
                                                                                   (72) 

 

𝑇3(𝜏) = −
16𝑘2

15𝑚𝜋
(

𝛼𝑚
(1)

𝛼𝑚
(2)

2
−

𝛽𝑚
(1)

𝛽𝑚
(2)

2
−

8𝑘2𝐵𝑚𝜃𝑚

9𝑚𝜋𝜑𝑚
2

) −
3𝛽𝐵𝑚𝜃𝑚

4
                   (73) 

𝑇3(0) = −
64𝑘2

2𝐵𝑚
3

45(𝑚𝜋𝜑𝑚)2
−

3𝛽𝐵𝑚
3

8
                                                                             (74) 

𝑇4(𝜏) = −
16𝑘2

15𝑚𝜋
(

𝛼𝑚
(1)

𝛽𝑚
(2)

2
−

𝛽𝑚
(1)

𝛼𝑚
(2)

2
−

8𝑘2𝐵𝑚𝛼𝑚
(1)

𝛽𝑚
(1)

9𝑚𝜋𝜑𝑚
2

) −
3𝛽𝐵𝑚𝛼𝑚

(1)
𝛽𝑚

(1)

4
        (75) 

𝑇4(0) = −
8𝛼𝑘2𝐵𝑚

2

15𝑚𝜋𝜑𝑚
                                                                                                       (76) 

𝑇5(𝜏) = −
16𝑘2

15𝑚𝜋
{

8𝑘2𝛼𝑚
(1)

3𝑚𝜋𝜑𝑚
2

(−
𝜃𝑚

6
+

𝛽𝑚
(1)2

6
)} −

𝛽𝛼𝑚
(1)

16
(𝛼𝑚

(1)2
− 3𝛽𝑚

(1)2
)            (77) 

𝑇5(0) = −
32𝑘2

2𝐵𝑚
3

135(𝑚𝜋𝜑𝑚)2
+

𝛽𝐵𝑚
3

16
                                                                        (78) 

𝑇6(𝜏) = −
16𝑘2

15𝑚𝜋
{

8𝑘2𝛽𝑚
(1)

3𝑚𝜋𝜑𝑚
2

(−
𝜃𝑚

6
−

𝛼𝑚
(1)2

6
)} −

𝛽𝛽𝑚
(1)

16
(3𝛼𝑚

(1)2
− 𝛽𝑚

(1)2
)        (79) 

𝑇6(0) = 0                                                                                                   (80) 
We now arrange (61) in terms of 𝑐𝑜𝑠 𝜑𝑚𝑡, 𝑠𝑖𝑛 𝜑𝑚𝑡, 𝑐𝑜𝑠 2𝜑𝑚𝑡, sin2𝜑𝑚𝑡, 𝑐𝑜𝑠 3𝜑𝑚𝑡  and sin 3𝜑𝑚𝑡 
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and obtain 

𝑈𝑚,𝑡𝑡
(3)

+ 𝜑𝑚
2 𝑈𝑚

(3)
= 𝑆0 + 𝑆1𝑐𝑜𝑠 𝜑𝑚𝑡 + 𝑆2𝑠𝑖𝑛 𝜑𝑚𝑡 + 𝑆3𝑐𝑜𝑠 2𝜑𝑚𝑡 

+𝑆4𝑠𝑖𝑛2𝜑𝑚𝑡 + 𝑆5𝑐𝑜𝑠 3𝜑𝑚𝑡 + 𝑆6𝑠𝑖𝑛 3𝜑𝑚𝑡                                                               (81) 
 

 

𝑆1(𝜏) = −2𝜑𝑚(𝛽̇𝑚
(2)

+ 2𝛼𝛽𝑚
(2)

) − 𝛼̈𝑚
(1)

− 2𝛼𝛼̇𝑚
(1)

+
16𝑘2𝛼𝑚

(2)
𝐵𝑚

3𝑚𝜋

+ 𝛼𝑚
(1)

{
128𝑘2

2

9(𝑚𝜋𝜑𝑚)2
(𝑆𝑚 −

𝜃𝑚

6
−

𝛽𝑚
(1)2

6
) +

9𝛽

16
(𝛼𝑚

(1)2
+ 𝛽𝑚

(1)2
+ 4𝐵𝑚

2 )} (82) 

 

𝑆2(𝜏) = 2𝜑𝑚(𝛼̇𝑚
(2)

+ 2𝛼𝛼𝑚
(2)

) − 𝛽̈𝑚
(1)

− 2𝛼𝛽̇𝑚
(1)

+
16𝑘2𝛽𝑚

(2)
𝐵𝑚

3𝑚𝜋

+ 𝛽𝑚
(1)

{
128𝑘2

2

9(𝑚𝜋𝜑𝑚)2
(𝑆𝑚 +

𝜃𝑚

6
−

𝛼𝑚
(1)2

6
)

+
9𝛽

16
(𝛼𝑚

(1)2
+ 𝛽𝑚

(1)2
+ 4𝐵𝑚

2 )}                                                              (83) 

𝑆0(𝜏) =
16𝑘2

3𝑚𝜋
(

𝛼𝑚
(1)

𝛼𝑚
(2)

2
+

𝛽𝑚
(1)

𝛽𝑚
(2)

2
+

8𝑘2𝐵𝑚𝑆𝑚

3𝑚𝜋𝜑𝑚
2

) +
3𝛽𝐵𝑚

8
(3𝛼𝑚

(1)2
+ 3𝛽𝑚

(1)2
+ 2𝐵𝑚

2 ) (84) 

𝑆0(0) =
832𝑘2

2𝐵𝑚
3

27(𝑚𝜋𝜑𝑚)2
+

15𝛽𝐵𝑚
3

8
                                                                                   (85) 

𝑆3(𝜏) =
32𝑘2

9𝑚𝜋𝜑𝑚
{(𝛼𝑚

(1)
𝛽𝑚

(1)
)

.

+ 𝛼𝛼𝑚
(1)

𝛽𝑚
(1)

} 

+
16𝑘2

3𝑚𝜋
(

𝛼𝑚
(1)

𝛼𝑚
(2)

2
−

𝛽𝑚
(1)

𝛽𝑚
(2)

2
−

8𝑘2𝐵𝑚𝜃𝑚

9𝑚𝜋𝜑𝑚
2

) +
9𝛽𝜃𝑚𝐵𝑚

4
                                            (86) 

𝑆3(0) =
448𝑘2

2𝐵𝑚
3

27(𝑚𝜋𝜑𝑚)2
+

9𝛽𝐵𝑚
3

8
                                                                                (87) 

𝑆4(𝜏) = −
32𝑘2

9𝑚𝜋𝜑𝑚
(𝜃̇𝑚 − 𝛼𝜃𝑚) +

16𝑘2

3𝑚𝜋
(

𝛼𝑚
(1)

𝛽𝑚
(2)

2
+

𝛽𝑚
(1)

𝛼𝑚
(2)

2
−

8𝑘2𝐵𝑚𝛼𝑚
(1)

𝛽𝑚
(1)

9𝑚𝜋𝜑𝑚
2

) 

+
9𝛽𝛼𝑚

(1)
𝛽𝑚

(1)
𝐵𝑚

4
(94) 

𝑆4(0) =
40𝛼𝑘2𝐵𝑚

2

9𝑚𝜋𝜑𝑚
                                                                                                         (88) 

𝑆5(𝜏) =
16𝑘2

3𝑚𝜋
{

8𝑘2𝛼𝑚
(1)

3𝑚𝜋𝜑𝑚
2

(−
𝜃𝑚

6
+

𝛽𝑚
(1)2

6
)} +

3𝛽𝛼𝑚
(1)

16
(𝛼𝑚

(1)2
− 3𝛽𝑚

(1)2
)             (89) 

𝑆5(0) =
32𝑘2

2𝐵𝑚
3

27(𝑚𝜋𝜑𝑚)2
−

3𝛽𝐵𝑚
3

16
                                                                  (90) 
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𝑆6(𝜏) =
16𝑘2

3𝑚𝜋
{

8𝑘2𝛽𝑚
(1)

3𝑚𝜋𝜑𝑚
2

(−
𝜃𝑚

6
−

𝛼𝑚
(1)2

6
)} +

3𝛽𝛽𝑚
(1)

16
(3𝛼𝑚

(1)2
− 𝛽𝑚

(1)2
)     (91) 

 

𝑆6(0) = 0                                                                                         (92) 
Using Si(𝜏), i=0,1,…,6 at 𝜏 = 0  above. 

Now, to ensure a uniformly valid solution in terms of t, we equate the coefficient s of cos 𝜑𝑚𝑡, and 

sin 𝜑𝑚𝑡,  to zero and obtain the respective equations 

𝛽̇
𝑚

(2)
+ 𝛼𝛽𝑚

(2)
=

1

2𝜑𝑚
{

16𝑘2𝛼𝑚
(2)

𝐵𝑚

3𝑚𝜋

+ 𝛼𝑚
(1)

(
128𝑘2

2

9(𝑚𝜋𝜑𝑚)2
(𝑆𝑚 −

𝜃𝑚

6
+

𝛽𝑚
(1)2

6
) +

9𝛽

16
(𝛼𝑚

(1)2
+ 𝛽𝑚

(1)2
+ 4𝐵𝑚

2 )) − 𝛼̈𝑚
(1)

− 2𝛼𝛼̇𝑚
(1)

}                                                                                                   (93) 

𝛼̇𝑚
(2) + 𝛼𝛼𝑚

(2)
= −

1

2𝜑𝑚
{

16𝑘2𝛽𝑚
(2)

𝐵𝑚

3𝑚𝜋

+ 𝛽𝑚
(1)

(
128𝑘2

2

9(𝑚𝜋𝜑𝑚)2
(𝑆𝑚 +

𝜃𝑚

6
−

𝛼𝑚
(1)2

6
) +

9𝛽

16
(𝛼𝑚

(1)2
+ 𝛽𝑚

(1)2
+ 4𝐵𝑚

2 )) − 𝛽̈𝑚
(1)

− 2𝛼𝛽̇𝑚
(1)

}                                                                                                    (94) 

Since explicit values of  𝛽
𝑚
(2) 𝑎𝑛𝑑𝛼𝑚

(2)
 are not needed in this analysis, we shall omit determining 

them. However, values of   𝛽̇
𝑚

(2)
(0) 𝑎𝑛𝑑 𝛼̇𝑚

(2)(0) will be needed and so from (93, 94), we get at  

𝜏 = 0 

𝛽̇
𝑚

(2)
(0) = −

368𝑘2
2𝐵𝑚

3

27𝜑𝑚(𝑚𝜋𝜑𝑚)2
−

45𝛽𝐵𝑚
3

32𝜑𝑚
                                                 (95) 

𝛼̇𝑚
(2)(0) =

56𝛼𝑘2𝐵𝑚
2

9𝑚𝜋𝜑𝑚
2

                                                                                (96) 

The remaining equation is 

𝑈𝑚,𝑡𝑡
(3)

+ 𝜑𝑚
2 𝑈𝑚

(3)
= 𝑆0+𝑆3𝑐𝑜𝑠 2𝜑𝑚𝑡 + 𝑆4𝑠𝑖𝑛2𝜑𝑚𝑡 + 𝑆5𝑐𝑜𝑠 3𝜑𝑚𝑡 

+𝑆6𝑠𝑖𝑛 3𝜑𝑚𝑡                                                                                         (97) 
On solving (95), we obtain the following 

𝑈𝑚
(3)(𝑡, 𝜏) = 𝛼𝑚

(3)(𝜏)𝑐𝑜𝑠𝜑𝑚𝑡 + 𝛽𝑚
(3)(𝜏)𝑠𝑖𝑛𝜑𝑚𝑡 +

𝑆0

𝜑𝑚
2 −

𝑆3𝑐𝑜𝑠 2𝜑𝑚𝑡

3𝜑𝑚
2 −

𝑆4𝑠𝑖𝑛2𝜑𝑚𝑡

3𝜑𝑚
2 −

𝑆5𝑐𝑜𝑠 3𝜑𝑚𝑡

8𝜑𝑚
2 −

𝑆6𝑠𝑖𝑛 3𝜑𝑚𝑡

8𝜑𝑚
2                              (98) 
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𝛼𝑚
(3)(0) = −

2036𝑘2
2𝐵𝑚

3

81𝜑𝑚
2 (𝑚𝜋𝜑𝑚)2

−
195𝛽𝐵𝑚

3

128𝜑𝑚
2        (99) 

𝛽
𝑚
(3)(0) = −

40𝛼𝑘2𝐵𝑚
2

27(𝑚𝜋𝜑𝑚
2 )𝜑𝑚

                                              (100) 

We obtain the following 

𝑈3𝑚
(3)(𝑡, 𝜏) = 𝛼3𝑚

(3)(𝜏)𝑐𝑜𝑠𝜑3𝑚𝑡 + 𝛽3𝑚
(3)(𝜏)𝑠𝑖𝑛𝜑3𝑚𝑡 +

𝑇0

𝜑3𝑚
2 +

𝑇1𝑐𝑜𝑠 𝜑𝑚𝑡

𝜑3𝑚
2 − 𝜑𝑚

2
+

𝑇2𝑠𝑖𝑛𝜑𝑚𝑡

𝜑3𝑚
2 − 𝜑𝑚

2
+

𝑇3𝑐𝑜𝑠 2𝜑𝑚𝑡

𝜑3𝑚
2 − 4𝜑𝑚

2

+
𝑇4𝑠𝑖𝑛2𝜑𝑚𝑡

𝜑3𝑚
2 − 𝜑𝑚

2
+

𝑇5𝑐𝑜𝑠 3𝜑𝑚𝑡

𝜑3𝑚
2 − 9𝜑𝑚

2
+

𝑇6𝑠𝑖𝑛 3𝜑𝑚𝑡

𝜑3𝑚
2 − 9𝜑𝑚

2
                                          (101) 

𝛼3𝑚
(3) (0) =

32𝑘2
2𝐵𝑚

3

135(𝑚𝜋𝜑𝑚)2
{

26

𝜑3𝑚
2 −

33

𝜑3𝑚
2 −𝜑𝑚

2 −
6

𝜑3𝑚
2 −4𝜑𝑚

2 +
1

𝜑3𝑚
2 −9𝜑𝑚

2 } −
𝛽𝐵𝑚

3

16
{

10

𝜑3𝑚
2 −

15

𝜑3𝑚
2 −𝜑𝑚

2 +

6

   𝜑3𝑚
2 −4𝜑𝑚

2 −
1

𝜑3𝑚
2 −𝜑𝑚

2 }         (102) 

𝛽
3𝑚
(3) (0) =

16𝛼𝑘2𝐵𝑚
2

15𝑚𝜋𝜑3𝑚
{−

1

𝜑3𝑚
2 −𝜑𝑚

2 +
1

𝜑3𝑚
2 −4𝜑𝑚

2 }                (103) 

Thus, the expression for the third component of the lateral displacement is 

𝑈(3)(𝑥, 𝑡, 𝜏) = 𝑈𝑚
(3)(𝑡, 𝜏)𝑠𝑖𝑛 𝑚𝑥 + 𝑈3𝑚

(3)(𝑡, 𝜏)𝑠𝑖𝑛 3𝑚𝑥                    (104) 

we obtain the expression for the lateral displacement as 𝑈 (𝑥, 𝑡, 𝜏, 𝜉) = 𝑈(1)(𝑥, 𝑡, 𝜏)𝜉 +

𝑈(2)(𝑥, 𝑡, 𝜏)𝜉2 + 𝑈(3)(𝑥, 𝑡, 𝜏)𝜉3 + ⋯ 

= (𝑈𝑚
(1)(𝑡, 𝜏)𝜉 + 𝑈𝑚

(2)(𝑡, 𝜏)𝜉2 + 𝑈𝑚
(3)(𝑡, 𝜏)𝜉3) 𝑠𝑖𝑛 𝑚 + 𝑈3𝑚

(3)(𝑡, 𝜏)𝜉3𝑠𝑖𝑛 3𝑚𝑥 + ⋯        (105) 

 

5. 0 The Dynamic Buckling Load 

 

The maximum load, sometimes called the critical load causes a column to be in a state of 

unstable equilibrium, that is, any increase in the loads or the introduction of the slightest lateral force 

will cause the column to fail by buckling. 

We can determine the dynamic buckling load 𝜆𝐷of the damped imperfect column by 

maximizing the load parameter 𝜆 with respect to the maximum displacement 𝑈𝑎(𝜆)as in (13). This 

can be achieved as in Elishakoff (1979), by reversing (121) and obtaining 𝜉as an asymptotic series 

in powers of  𝑈𝑎(𝜆), that is, setting  

𝜉  = 𝑒1𝑈𝑎(𝜆) + 𝑒2𝑈𝑎
2(𝜆) + 𝑒3𝑈𝑎

3(𝜆) + …                                                     (106) 

 and determining the𝑒𝑖′𝑠, i=1,2,3,…, which are functions of   𝜆. Substituting and higher powers 

we obtain 

𝜉 = 𝑒1𝐶1𝜉 + (𝑒1𝐶2 + 𝑒2𝐶1
2) 𝜉2 + (𝑒1𝐶3 + 2𝑒2𝐶1𝐶2 + 𝑒3𝐶1

3) 𝜉3 + ⋯   (107) 

Equating the coefficients  in order of  𝜉, we obtain the following  

𝑒1 =
1

𝐶1
, 𝑒2 =

−𝐶2

𝐶1
3 , 𝑒3 =

2𝐶2
2 − 𝐶1𝐶3

𝐶1
5                                          (108) 

The dynamic buckling load 𝜆𝐷, is obtained from the following maximization using the modified 

form  as 

𝑑𝜆

𝑑𝑈𝑎
= 0                                                                                                   (109) 

On differentiating (109) with respect to  𝑈𝑎(𝜆), we obtain 

𝑒1 + 2𝑒2𝑈𝑎( 𝜆𝐷) + 3𝑒3𝑈𝑎
2( 𝜆𝐷) = 0                                                         (110) 

𝑤ℎ𝑒𝑟𝑒  𝜆 = 𝜆𝐷  𝑎𝑡 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 
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Evaluating (110) we obtain 

𝑈𝑎( 𝜆𝐷) =
−𝑒2 ± (𝑒2

2 − 3𝑒1𝑒3)
1

2

3𝑒3
                                                    (111) 

𝑒3 =
1

32𝐵𝑚
5 {2 (

64𝑘2𝐵𝑚
2 𝐹1

9𝑚𝜋𝜑𝑚
2

)

2

− 2𝐵𝑚 (
3𝛽𝐵𝑚

3 𝐹2

𝜑𝑚
2

)} =
−1

16𝐵𝑚
{

3𝛽𝐹2

𝜑𝑚
2

−
(64𝑘2𝐹1)2

81𝑚2𝜑𝑚
4 𝜋2

} 

=
−3𝛽𝐹2𝑌

16𝜑𝑚
2 𝐵𝑚

                                                                                        (112) 

where 

𝑌 = 1 −
(64𝑘2𝐹1)2

243𝛽𝐹2𝑚2𝜑𝑚
2 𝜋2

                                                                (113) 

We consider only the negative square root since the positive part is of no real physical significance 

and obtain 

−𝑒2 − (𝑒2
2 − 3𝑒1𝑒3)

1

2 = −
1

8𝐵𝑚
{(

18𝛽𝐹2

𝜑𝑚
2

− 5 (
64𝑘2𝐹1

9𝑚𝜋𝜑𝑚
2

)
2

)

1

2

−
64𝑘2𝐹1

9𝑚𝜋𝜑𝑚
2

} 

 

= −
3√𝛽𝐹2𝑅

4√2
                                                                                           (114) 

where 

𝑅 = {(1 −
5(64𝑘2𝐹1)2

1458𝛽𝐹2(𝑚𝜑𝑚𝜋)2
)

1

2

−
64𝑘2𝐹1

27𝑚𝜋𝜑𝑚√2𝛽𝐹2

}                    (115) 

By substitute we obtain 

𝑈𝑎( 𝜆𝐷) =
4𝜑𝑚𝑅𝑌−1

3√2𝛽𝐹2

                                                                          (116) 

We however evaluate at  𝜆 = 𝜆𝐷 to obtain 

𝜑𝑚 = (𝑚4 − 2𝜆𝐷𝑚2 + 1)
1

2                                                               (117) 

𝑒3𝑈𝑎
3(𝜆𝐷) = −

𝑒1𝑈𝑎(𝜆𝐷)

3
−

2𝑒2𝑈𝑎
2(𝜆𝐷)

3
                                            (118) 

 

3𝜉 =
2𝑈𝑎

𝐶1
(1 −

𝑈𝑎𝐶2

2𝐶1
2 )                                                                   (119) 

3𝜉 =
2𝜑𝑚

3 𝑅𝑌−1

3𝜆𝐷𝑚2𝑎𝑚√2𝛽𝐹2

(1 −
32𝑘2𝐹1𝑅𝑌−1

27𝑚𝜋𝜑𝑚√2𝛽𝐹2

) 

Leading to the expression of dynamic buckling load as 

𝜑𝑚
3 =

9𝑌𝑅−1𝜆𝐷𝑚2𝑎𝑚√2𝛽𝐹2𝜉

2
(1 −

32𝑘2𝐹1𝑅𝑌−1

27𝑚𝜋𝜑𝑚√2𝛽𝐹2

)

−1

                   (120) 

On substituting for  𝜑𝑚, we get 

(𝑚4 − 2𝜆𝐷𝑚2 + 1)
3

2 =
9𝑌𝑅−1𝜆𝐷𝑚2𝑎

𝑚
√2𝛽𝐹2𝜉

2
(1 −

32𝑘2𝐹1𝑅𝑌−1

27𝑚𝜋𝜑𝑚√2𝛽𝐹2

)

−1

           (121) 

Where we have retained the original form of   𝜑𝑚  on the right hand side.  
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6. 0 Analysis of Result. 

 

In computing specific values of dynamic buckling load (𝜆𝐷) at different values of viscous 

damping and imperfection parameter using MATLAB computation platform. 

The computation was done by setting damping factor  at 0.01, 0.02 and 0.05 and a case where the 

column was not damped, hence damping factor becomes 0.00

For Figs. 4.1 and 4.5. In each case, the load required to cause buckling increases as the damping 

level increases and reduces as the imperfection increases. 

Fig.4. 5 shows that below the imperfection level of 0.05, the load required to cause buckling in 

an undamped column is less than the load required to cause buckling in the column at 0.01, 0.02 

and 0.05 and buckling load imperfection levels increases with increment  in the damping level.

At imperfection level of 0.05 and above, the load required to cause buckling in the undamped  

column becomes bigger compared to that of the damped column at damping levels of 0.01 and 

0.02. 

 
Fig 4.1 Buckling of damping  at level 0.01 

 

Fig 4.2 Buckling of damping  at level 0.02 
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Fig 4.3  Buckling of damping  at level 0.05 

 

 

Fig 4.4 Buckling of damping  at level 0.00 
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Fig 4.5 Buckling of damping  at level 0.01, 0.02, 0.05 and no damping 

 

7. 0 Conclusion. 

We deduced from the observations made in 

chapter four that, if geometrical impurities 

otherwise known as imperfections are 

reduced, then a more stable column will be 

produced. Also, we determined that damping 

makes a column to become more stable. It is 

also deduced that a column can still buckle 

even after damping it. It is of utmost 

importance then, that we should know the 

level of imperfections of the column so as to 

apply the exact level of damping that will 

produce as table column. For optimum 

stability of a column, we use high level of 

damping on a column with high imperfection 

level. 

Though damping strengthens a column 

thereby preventing early dynamic buckling, 

the stability or otherwise of a column on the 

other hand depends entirely on the ability to 

determine the exact imperfection level in 

order to apply the appropriate level of 

damping that will produce a stable column. 
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