Radiological Assessment of Radionuclides in Fishes and Health Risks on the Consumer from the Ijagun River in the Ijebu Area of Ogun State

Olusegun Sowole*, Mary Abidemi Faleke, Adetokunbo Abayomi Okusanya and Temitope **Olasile Fowodu**

Received: 24 July 2025/Accepted 10 August 2025/Published online: 21 August 2025

https://dx.doi.org/10.4314/cps.v12i6.7

Abstract: Natural radionuclides have specific half lives and are capable of disintegrating with the release of ionizing radiations along with a huge amount of energy, which can be so harmful to living organisms. Activity concentrations and radiological indices of 40 K, ²²⁶Ra and ²²⁸Ra in fish species from Ijagun River in Southwest of Nigeria where mining activities are taking place, had been determined by the gamma spectrometry method using NaI (TI) detector coupled with a preamplifier base to a multiple channel analyzer (MCA). Twenty (20) samples of fishes were collected from the River, having four (4) species: Hemichromis fasciatus, Clarias gariepinus, Foerschichthys nigeriensis and Clarias anguillaris. The samples were collected at distances of 15 - 30 m from one another along the River with the use of a fishing net. The highest dose rates of 40K, 226Ra and ²²⁸Ra were obtained in Clarias gariepinus of values $0.407 \times 10^{-4} \text{mGyhr}^{-1}$, 0.951×10^{-1} $x = 10^{-15} m G vhr^{-1}$ $^{9}mGyhr^{-1}$ and 0.629 respectively. The highest annual committed effective dose of ⁴⁰K to man the consumer was 0.0450mSvyr⁻¹ from Clarias gariepinus, that of ²²⁶Ra was 0.2286mSvyr⁻¹ from Foerschichthys nigeriensis and that of ²²⁸Ra was 0.5654mSvyr from Hemichromis fasciatus. The highest excess lifetime cancer risk of 40K to the consumer was 0.1574 x 10⁻³, that of ²²⁶Ra was 0.8002 x 10⁻⁴ and ²²⁸Ra was 1.9788 x 10⁻⁴. All the values obtained were within the limits recommended globally, indicating that there was no significant radiological health risk to the aquatic animals and man the consumer.

Keywords: Radionuclides, Fish, Gamma spectrometry, Dose rate, Health risk, Cancer

Olusegun Sowole*

Department of Physics, Tai Solarin University of Education

P.M.B. 2118, Ijagun, Ijebu-Ode, Nigeria

Email: sowoleo@tasued.edu.ng Orcid id: 0000-0001-7228-4688

Mary Abidemi Faleke

Department of Health and Safety Promotion Tai Solarin University of Education

P.M.B. 2118, Ijagun, Ijebu-Ode, Nigeria

Email: falekema@tasued.edu.ng Orcid id: 0009-0003-6358-3303

Adetokunbo Abayomi Okusanya

Department of Physics, Tai Solarin University of Education

P.M.B. 2118, Ijagun, Ijebu-Ode, Nigeria

Email: okusanyaaa@tasued.edu.ng

Temitope Olasile Fowodu

Department of Physics, Tai Solarin University of Education

P.M.B. 2118, Ijagun, Ijebu-Ode, Nigeria

Email: fowoduto@tasued.edu.ng Orcid id: 0000-0002-8952-3785

1.0 Introduction

Radioactivity is the sudden disintegration of an unstable nuclide resulting in the release of ionizing radiations, which can be destructive if not controlled. Natural radionuclides are elements that are found naturally in water, soil, rock and air. According to Sowole et al. (2019), they are capable of disintegrating with the release of ionizing radiations along with a huge amount of energy, which can be destructive. Due to geological exploration and exploitation of natural resources from the soil, these processes contribute greatly to an increase in pollution of the environment with these naturally occurring radionuclides. The presence of radionuclides in any environment is connected to natural or artificial sources. The environmental behaviour of these radionuclides depends to a large extent on the characteristics of the ecosystem, understanding the behaviour, mobility, and potential hazard of natural radionuclides is very important for decision-making to protect the environment (Salahel Din, 2023).

Medical experts have made it known that fish consumption is very beneficial to humans as a major source of protein and one of the classes of food in the diet. Fishes in rivers are exposed to radionuclides due to their presence in river water and sediments. Ingestion of these radionuclides by fishes, get them exposed to radiological health hazards, and also to their consumers. The severity of the damage depends on the absorbing tissue or organ, the nature of the radiation and the dose (Orosun et al., 2018). According to Sowole et al. (2019), ingestion of these contaminated aquatic organisms may result to long-term radiological health risk to the public, and may result to destruction of organs such as liver, kidney and lungs, leading to cancer. Continuous striking of body tissues and organs by ionizing radiations produced from the decay of ingested radionuclides is known to have triggered or induced cancer in living tissues such as kidney or the brain (Fasae and Isinkaye, 2018; Orosun, et al., 2018). According to Tawalbeh et al. (2012), ingested radionuclides could be concentrated in certain parts of the body. Chemical uranium toxicity primarily affects the kidney, causing damage to the proximal tubule, while this metal has also been identified as a potential reproductive toxicant (Linares et al., 2006). 232Th causes effects in the lungs, liver and skeletal tissues, and 40K causes effects in muscles. Depositions of large quantities of these radionuclides in particular organs will affect the health condition of the

human such as weakening the immune system, inducing various types of diseases, and finally increasing in mortality rate (Tawalbeh *et al.*, 2012).

Uzorka et al. (2025) analyzed the concentration of selected radionuclides (226Ra, 232Th, and 40K) in the fish samples of Lake Edward, Rukungiri District, Uganda, to assess potential radiological impacts on the local population. Fish samples were collected from the lake and analyzed using gamma spectroscopy. The study measured radionuclide activity concentrations, calculated absorbed dose rates and effective doses, and evaluated hazard indices for fish. The activity concentrations in fish ranged from 12.76 to 18.73 Bq/kg for 226Ra, 2.28-4.83 Bq/kg for 232Th, and 165.33-209.06 Bq/kg for 40K. The mean absorbed dose rate (41.00 nGy/h) and effective dose (0.59 mSv/y) were below global safety limits. Hazard indices for external (0.27) and internal (0.31) exposures were well below the recommended threshold of 1mSv/y. Sowole and Adebambo (2021) determined activity concentrations and radiological indices of 40K, 226Ra and 228Ra in crab species from Igbokoda River in the coastal area of South Western Nigeria. using the gamma spectrometry method. Twenty (20) samples of three different species (Callinectes latimanus, Callinectes amnicola and Cadiosoma armatum) of crabs were collected from the River. The results obtained indicated that the highest dose rates of ⁴⁰K, ²²⁶Ra and ²²⁸Ra were obtained in Callinectes latimanus of values 1.12 x 10⁻¹ ²mGyhr⁻¹, 1.26 x 10⁻⁶mGyhr⁻¹ and 1.10 x 10⁻⁶ ¹²mGyhr⁻¹, respectively. The highest annual committed effective dose of ⁴⁰K to man was 0.0026mSvyr⁻¹ from *Callinectes latimanus*, that of ²²⁶Ra was 0.0068mSvyr⁻¹ and that of ²²⁸Ra was 0.0208mSvyr⁻¹.The highest excess lifetime cancer risk of ⁴⁰K to the consumer was 0.0091×10^{-3} , that of ²²⁶Ra was 0.0237×10^{-3} and 228 Ra was 0.0728×10^{-3} . All the values obtained were within the limits recommended globally; indicating that there was significant radiological health implication to

the aquatic animals and the consumer. Also, Khan et al. (2007) assessed the ingestion dose for natural radionuclides of 25.0µSvyr⁻¹ through the consumption of fish by man around the Kudankulam Nuclear Power Project site. Ingestion dose via fish had an estimate of 18.0µSvyr⁻¹ from natural radionuclides for the critical population in Chitrapuzha River, near Cochin (Haridasanet et al., 2001), which was below the recommended limit of 1.0mSvyr⁻¹ according to ICRP (2007). The study of the ²²⁶Ra 40 K. radionuclides: and concentration levels was carried out by Sowole et al. (2019) along with their dose rates in species of fish from Victoria Island lagoon in Lagos State, Southwest of Nigeria. The average dose rates of ⁴⁰K, ²²⁶Ra and ²²⁸Ra in the fishes were calculated to be 0.0049 mGy hr⁻¹, 5.32 x 10⁻⁷ mGy hr⁻¹ and 8.96 x 10⁻¹³ mGy hr⁻¹ respectively which were below the limit of 0.4 mGyhr⁻¹recommended by NCRP (1991) as reported by Blaylock et al. (1993) and the annual dose rate in man consuming them was calculated to be 0.216 mSv yr⁻¹ which was below the limit of 1.0 mSv yr⁻¹ (ICRP, 2007), therefore did not pose radiological health problem to the aquatic animals and the consumers.

2.0 Materials and Methods

The method of gamma spectrometry was adopted for the analysis of the samples collected in order to obtain concentration data of ⁴⁰K, ²²⁶Ra and ²²⁸Ra from the samples. 20 samples of fish from the Ijagun River were collected at distances of 15 - 30m from one another along the River with the use of a fishing net. Four (4) species were obtained: Hemichromis fasciatus, Clarias gariepinus, Foerschichthys nigeriensis and Clarias anguillaris. They were preserved in 40% formaldehyde in labelled containers. They were identified and grouped into their species. The groups were then oven dried at 80 °C (Akinloye et al., 1999). The dried animal samples were later pulverized, weighed, packed 100.0g by mass in plastic containers and carefully sealed for 4 weeks in order to

establish secular radioactive equilibrium between the natural radionuclides and their respective progenies (Sowole, 2011).

The method of gamma spectrometry was adopted for the analysis of the samples collected in order to obtain the concentrations of 40 K, 226 Ra and 228 Ra in the samples collected. The spectrometer used was a Canberra lead shielded 7.6cm x 7.6cm NaI (Tl) detector coupled to a multichannel analyzer (MCA) through a preamplifier base. The resolution of the detector is about 10% at 0.662MeV of 137 Cs. For the analysis of 40 K, 226 Ra and 228 Ra, the photo peak regions of 40 K (1.46 MeV), 214 Bi (1.76 MeV) and 208 TI (2.615 MeV) were respectively used.

The cylindrical plastic containers holding the samples were put to sit on the high geometry 7.6cm x 7.6cm NaI (TI) detector. High level shielding against the environmental background radiation was achieved counting in a Canberra 10cm thick lead castle. The counting of each sample was done for 8 hours. The areas under the photo-peaks of ⁴⁰K. ²²⁶Ra and ²²⁸Ra were computed using the Multichannel Analyzer system. The concentrations of the radionuclides were determined based on the measured efficiency of the detector and the net count rate under each photopeak over a period of 8 hours using equation 1 (Jibiri and Ajao, 2005).

$$A = \frac{N(E_{\gamma})}{\varepsilon(E_{\gamma})I_{\gamma}Mt_{c}} \tag{1}$$

where $N(E_{\gamma})=Net$ peak area of the radionuclide of interest, $\epsilon(E_{\gamma})=Efficiency$ of the detector for the γ - γ -energy of interest, $I_{\gamma}=Intensity$ per decay for the γ - γ -energy of interest, M=Mass of the sample and $t_c=Total$ counting time in seconds (28800s).

2.1 Dose rate of natural radionuclides in Fish species

The dose rates of the radionuclides in the aquatic species were determined using the equation 2 of Blaylock *et al.* (1993):

$$D = 5.76 \times 10^{-4} E n \Phi C$$
 (2)

Where: E is the average emitted energy for gamma radiations (MeV), n is the proportion of

transitions producing an emission of energy E, Φ is the fraction of the emitted energy absorbed, which are constants obtained from Blaylock *et al.* (1993), C is the concentration of the radionuclide of consideration and D is the dose rate of the radionuclide of consideration.

2.2 Annual committed effective dose to consumer

Furthermore, the annual committed effective dose (ACED) for ingestion of NORMs in fish species to man was determined using equation 3. (Tettey-Larbi *et al.*, 2013):

2.4 Excess Lifetime Cancer Risk to the consumers

Excess lifetime cancer risk (ELCR) to man the consumer was determined based on the values of the annual committed effective dose as shown in table 3.0 using equation 4 (Qureshi *et al.*, 2014):

$$ELCR = ACED \times LE \times RF \tag{4}$$

Where LE is life expectancy taken to be 70 years and RF is the fatal risk factor per sievert, which was 0.05 (ICRP, 2007)

3.0 Results and Discussion

Activity concentrations of radionuclides in fish species from the study area were shown in table 1. The lowest concentration of ⁴⁰K was found

in sample IJAFS13; Hemichromis fasciatus of value 31.63 ± 4.05 Bqkg⁻¹ and the highest was from IJAFS14; Clarias gariepinus of value 50.38 ± 6.47 Bqkg⁻¹. Hemichromis fasciatus had the lowest concentration of ²²⁶Ra in sample IJAFS20 of value 3.24 ± 0.65 Bqkg⁻¹, and the highest from sample was IJAFS8, Foerschichthys nigeriensis of value 5.67 ± 1.86 ²²⁸Ra, Bqkg⁻¹. Concerning the lowest concentration was obtained from sample IJAFS11 in Foerschichthys nigeriensis of value 3.27 ± 0.42 Bqkg⁻¹ and the highest was from sample IJAFS15, Hemichromis fasciatus of value 5.86 ± 2.02 Bqkg⁻¹. The values were lower than those obtained by Uzorka et al. (2025).

The highest dose rate of ⁴⁰K (Table 2.) was obtained from IJAFS14 in Clarias gariepinus of value 0.407 x 10⁻⁴ mGyhr⁻¹ and the lowest was from IJAFS13, Hemichromis fasciatus of value 0.256 x 10⁻⁴ mGyhr⁻¹. For ²²⁶Ra, Foerschichthys nigeriensis had the highest dose rate of value 0.951 x 10⁻⁹mGyhr⁻¹ the lowest (IJAFS8) and was from Hemichromis fasciatus (IJAFS20) of value 0.543 x 10⁻⁹mGyhr⁻¹. Concerning ²²⁸Ra, the highest dose rate was obtained in Hemichromis fasciatus (IJAFS15) of value 0.629 x 10⁻¹⁵ mGyhr⁻¹ and the lowest was from Foerschichthys nigeriensis of value 0.351 x 10⁻¹ ¹⁵mGyhr⁻¹. All the values were below the 0.4mGyhr⁻¹ limit

Table 1: Activity concentrations of radionuclides in fish

River	Comple	Specie	Activity concentrations of radionuclides in fishes (Bqkg ⁻¹)		
Kiver	Sample	Specie	$^{40}{ m K}$	²²⁶ Ra	²²⁸ Ra
Ijagun	IJAFS1	Clarias gariepinus	33.27 ± 5.04	4.25 ± 0.76	3.42 ± 0.58
	IJAFS2	Foerschichthys nigeriensis	38.29 ± 4.73	5.12 ± 1.85	4.36 ± 0.75
	IJAFS3	Foerschichthys nigeriensis	43.64 ± 4.98	3.55 ± 0.47	5.24 ± 1.07
	IJAFS4	Clarias gariepinus	41.06 ± 6.83	5.37 ± 1.15	3.92 ± 0.67

IJAFS5	Clarias gariepinus	36.28 ± 5.35	4.16 ± 1.08	3.79 ± 1.36
IJAFS6	Hemichromis fasciatus	41.35 ± 3.28	5.14 ± 0.76	4.95 ± 2.16
IJAFS7	Clarias	32.53 ± 4.92	3.74 ±	5.41 ±
	anguillaris		0.46	1.05
IJAFS8	Foerschichthys	50.26 ± 6.83	$5.67 \pm$	$4.33 \pm$
	nigeriensis		1.86	1.38
IJAFS9	Clarias	42.76 ± 7.25	$3.43 \pm$	$3.86 \pm$
	anguillaris		0.74	0.34
IJAFS1	Clarias	47.28 ± 6.19	$4.08 \pm$	$5.35 \pm$
0	anguillaris		1.65	1.96
IJAFS1	Foerschichthys	34.53 ± 5.58	$5.13 \pm$	$3.27 \pm$
1	nigeriensis		1.64	0.42
IJAFS1	Clarias gariepinus	39.05 ± 5.31	$4.63 \pm$	$5.42 \pm$
2			1.17	0.99
IJAFS1	Hemichromis	31.63 ± 4.05	$4.86 \pm$	3.75 ± 1.10
3	fasciatus		0.84	
IJAFS1	Clarias gariepinus	50.38 ± 6.47	$5.43 \pm$	4.88 ± 1.62
4			1.74	
IJAFS1	Hemichromis	47.13 ± 6.55	$4.85 \pm$	5.86 ± 2.02
5	fasciatus		1.09	
IJAFS1	Foerschichthys	38.64 ± 4.94	$4.36 \pm$	5.42 ± 1.43
6	nigeriensis		1.86	
IJAFS1	Clarias gariepinus	32.41 ± 5.37	$5.38 \pm$	3.74 ± 0.86
7			1.95	
IJAFS1	Clarias gariepinus	43.52 ± 6.54	$3.94 \pm$	5.26 ± 1.73
8			0.57	
IJAFS1	Clarias	40.64 ± 4.82	$4.88 \pm$	5.54 ± 1.56
9	anguillaris		1.16	
IJAFS2	Hemichromis	46.31 ± 5.97	$3.24 \pm$	4.18 ± 1.29
0	fasciatus		0.65	

Table 2: Determined values of dose rates of radionuclides in fish samples

Sample	Specie	⁴⁰ K x 10 ⁻⁴	²²⁶ Ra x 10 ⁻⁹	²²⁸ Ra x 10 ⁻
		(mGyhr ⁻¹)	$(mGyhr^{-1})$	$(mGyhr^{-1})$
IJAFS1	Clarias gariepinus	0.269	0.713	0.367
IJAFS2	Foerschichthys nigeriensis	0.310	0.859	0.468
IJAFS3	Foerschichthys nigeriensis	0.353	0.595	0.562
IJAFS4	Clarias gariepinus	0.332	0.901	0.421
IJAFS5	Clarias gariepinus	0.293	0.698	0.407

IJAFS6	Hemichromis fasciatus	0.334	0.862	0.531
IJAFS7	Clarias anguillaris	0.263	0.627	0.581
IJAFS8	Foerschichthys nigeriensis	0.407	0.951	0.465
IJAFS9	Clarias anguillaris	0.346	0.575	0.414
IJAFS10	Clarias anguillaris	0.382	0.684	0.574
IJAFS11	Foerschichthys nigeriensis	0.279	0.860	0.351
IJAFS12	Clarias gariepinus	0.316	0.777	0.582
IJAFS13	Hemichromis fasciatus	0.256	0.815	0.402
IJAFS14	Clarias gariepinus	0.407	0.911	0.524
IJAFS15	Hemichromis fasciatus	0.381	0.813	0.629
IJAFS16	Foerschichthys nigeriensis	0.313	0.731	0.582
IJAFS17	Clarias gariepinus	0.262	0.902	0.401
IJAFS18	Clarias gariepinus	0.352	0.661	0.564
IJAFS19	Clarias anguillaris	0.329	0.818	0.595
IJAFS20	Hemichromis fasciatus	0.375	0.543	0.449

Table 3: Determined values of annual committed effective doses (ACED) to the consumers

Sample	Specie	⁴⁰ K ACED (mSvyr ⁻¹)	²²⁶ Ra ACED (mSvyr ⁻ ¹)	²²⁸ Ra ACED (mSvyr ⁻
IJAFS1	Clarias gariepinus	0.0297	0.1713	0.3300
IJAFS2	Foerschichthys nigeriensis	0.0342	0.2064	0.4207
IJAFS3	Foerschichthys nigeriensis	0.0390	0.1431	0.5056
IJAFS4	Clarias gariepinus	0.0367	0.2165	0.3782
IJAFS5	Clarias gariepinus	0.0324	0.1677	0.3657
IJAFS6	Hemichromis fasciatus	0.0369	0.2073	0.4776
IJAFS7	Clarias anguillaris	0.0290	0.1508	0.5220
IJAFS8	Foerschichthys nigeriensis	0.0449	0.2286	0.4178
IJAFS9	Clarias anguillaris	0.0382	0.1383	0.3724
IJAFS10	Clarias anguillaris	0.0422	0.1645	0.5162
IJAFS11	Foerschichthys nigeriensis	0.0308	0.2068	0.3155

IJAFS12	Clarias gariepinus	0.0349	0.1867	0.5229
IJAFS13	Hemichromis fasciatus	0.0282	0.1960	0.3618
IJAFS14	Clarias gariepinus	0.0450	0.2189	0.4708
IJAFS15	Hemichromis fasciatus	0.0421	0.1956	0.5654
IJAFS16	Foerschichthys nigeriensis	0.0345	0.1758	0.5229
IJAFS17	Clarias gariepinus	0.0289	0.2169	0.3608
IJAFS18	Clarias gariepinus	0.0389	0.1589	0.5075
IJAFS19	Clarias anguillaris	0.0363	0.1968	0.5345
IJAFS20	Hemichromis fasciatus	0.0414	0.1306	0.4033

Table 4: Determined values of excess lifetime cancer risk (ELCR) to the consumers

_				
Sample	Specie	⁴⁰ K ELCR x 10 ⁻³	²²⁶ Ra ELCR x 10 ⁻	²²⁸ Ra ELCR x 10 ⁻⁴
		LLCIATO	4	EECH A 10
IJAFS1	Clarias gariepinus	0.1040	0.5998	1.1549
IJAFS2	Foerschichthys nigeriensis	0.1197	0.7225	1.4723
IJAFS3	Foerschichthys nigeriensis	0.1364	0.5010	1.7694
IJAFS4	Clarias gariepinus	0.1283	0.7578	1.3237
IJAFS5	Clarias gariepinus	0.1134	0.5871	1.2798
IJAFS6	Hemichromis fasciatus	0.1292	0.7254	1.6715
IJAFS7	Clarias anguillaris	0.1017	0.5278	1.8269
IJAFS8	Foerschichthys nigeriensis	0.1571	0.8002	1.4622
IJAFS9	Clarias anguillaris	0.1336	0.4840	1.3035
IJAFS10	Clarias anguillaris	0.1477	0.5758	1.8066
IJAFS11	Foerschichthys nigeriensis	0.1079	0.7240	1.1042
IJAFS12	Clarias gariepinus	0.1220	0.6534	1.8302
IJAFS13	Hemichromis fasciatus	0.0988	0.6858	1.2663
IJAFS14	Clarias gariepinus	0.1574	0.7663	1.6479
IJAFS15	Hemichromis fasciatus	0.1473	0.6844	1.9788
IJAFS16	Foerschichthys nigeriensis	0.1207	0.6153	1.8302
IJAFS17	Clarias gariepinus	0.1013	0.7592	1.2629

IJAFS18	Clarias gariepinus	0.1360	0.5560	1.7762
IJAFS19	Clarias anguillaris	0.1270	0.6887	1.8707
IJAFS20	Hemichromis	0.1447	0.4572	1.4115
	fasciatus			

recommended by NCRP (1991) as reported by Blaylock et al. (1993). The highest annual committed effective dose of ⁴⁰K (Table 3.) to man the consumer was 0.0450 mSvvr⁻¹ from IJAFS14 (Clarias gariepinus), and the lowest was from IJAFS13 (Hemichromis fasciatus) of value 0.0282 mSvyr⁻¹. For ²²⁶Ra, the highest value was 0.2286mSvyr⁻¹ from IJAFS8 (Foerschichthys nigeriensis) and the lowest 0.1306 mSvvr⁻¹ from was IJAFS20 (*Hemichromis fasciatus*), the highest for ²²⁸Ra 0.5654mSvyr⁻¹ from IJAFS15 (Hemichromis fasciatus) and the lowest was from IJAFS11 (Foerschichthys nigeriensis) of value 0.3155 mSvyr⁻¹. The values were below the recommended limit of 1.0 mSvvr⁻¹ (ICRP. 2007). All the values obtained in this work were lower than those obtained by Uzorka et al. (2025), but higher than those obtained by Khan et al. (2007). The highest ELCR of ⁴⁰K to the consumers was 0.1574 x 10⁻³ from IJAFS14 (Clarias gariepinus) and lowest was 0.0988 x 10⁻³ from IJAFS13 (*Hemichromis fasciatus*) as shown in table 4, that of ²²⁶Ra had the highest value to be 0.8002 x 10⁻⁴ from IJAFS8 (Foerschichthys nigeriensis) and lowest was from IJAFS20 (Hemichromis fasciatus) of value 0.4572 x 10⁻⁴. For ²²⁸Ra the highest value was 1.9788 x 10⁻⁴ from IJAFS15 (Hemichromis fasciatus), and the lowest was 1.1042×10^{-4} from IJAFS11 (Foerschichthys nigeriensis). The values were below the recommended limit of 0.29×10^{-3} (UNSCEAR, 2000).

4.0 Conclusion

Radiological assessment of natural radionuclides in fish species from Ijagun River in Ogun State had shown that dose rates of primordial radionuclides ⁴⁰K, ²²⁶Ra and ²²⁸Ra in the aquatic species were within the dose rate limit of 0.4 mGyhr⁻¹ recommended by NCRP (1991) as reported by Blaylock *et al.* (1993). Similarly, the values of annual committed

effective doses were below 1.0 mSvyr⁻¹ limit recommended by ICRP (2007). Excess lifetime cancer risk values to the consumers were below the recommended limit of 0.29 x 10⁻³ (UNSCEAR, 2000). All the values of radiological parameters obtained showed that there was no significant radiological health risk to the aquatic animals and man who consumes them. In addition, all the results in this research work could serve as a baseline for further research work in the study area.

5.0 References

Akinloye, M. K., Olomo, J. B., & Olubunmi, P. A. (1999). Meat and poultry consumption contribution to the natural radionuclide intake of the inhabitants of the Obafemi Awolowo University, Ile-Ife, Nigeria, *Nuclear Instruments and Methods in Physics Research*, A422, pp. 795-800. https://doi.org/10.1016/S0168-9002(98)00999-1

Blaylock, B. G., Frank, M. L., & O'Neal B. R. (1993). *Methodology for Estimating Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the Environment*, ES/ER/TM-78, Oak Ridge Natl. Lab., Oak Ridge, Tenn.

Fasae, K. P., & Isinkaye, M.O. (2018). Radiological risks assessment of 238U, 232Th and 40K in fish feeds and catfish samples from selected fish farms in Ado-Ekiti, Nigeria. *Journal of Radiation Research and Applied Sciences*, 11, pp 317-322.

https://doi.org/10.1016/j.jrras.2018.05.002

Haridasan, P. P., Paul, A. C., & Desai, M. V. M. (2001). Natural radionuclides in the aquatic environment of a phosphogypsum disposal area, *Journal of Environmental Radioactivity*, 53, pp. 155–165. https://doi.org/10.1016/S0265-931X(00)00121-1

- ICRP (International Commission on Radiological Protection) (2007). Recommendations of the ICRP Publication, 103; Annuals ICRP, *37*, pp. 2–4.
- Jibiri, N. N., & Ajao, A. O. (2005). Natural activities of ⁴⁰K ²³⁸U and ²³²Th in elephant grass (Pennisetum purpureum) in Ibadan metropolis, Nigeria. *Journal of Environmental Radioactivity*, 78, pp. 105-111.
 - https://doi.org/10.1016/j.jenvrad.2004.02.0
- Khan, M. F., Raj, Y. L., Ross, E. M., & Wesley, S. G. (2007). Concentration of natural radionuclides (⁴⁰K ²²⁸Ra and ²²⁶Ra) in seafood and their dose. *International Journal of Low Radiation*, *4*, pp. 217–231. DOI: 10.1504/IJLR.2007.015818
- Linares, V.,Bellés, M., Albina, M. L.,Sirvent, J. J., Sánchez, D. J., & Domingo,J. L. (2006). Assessment of the pro-oxidant activity of uranium in kidney and testis of rats. *Toxicology Letters*, 167, pp. 152-161.
- NCRP (National Council on Radiation Protection and Measurements) (1991). Effects of Ionizing radiation on aquatic organisms, NCRP Report No. 109, Bethesda, Maryland.
- Orosun, M. M., Adisa, A. A., Akinyose, F. C., Amaechi, E. C., Ige, O. S., Ibrahim, B. M., Martins, G., Adebanjo, G. D., Oduh, O. V., & Ademola, O. J. (2018). Measurement of natural radionuclides concentration and radiological impact assessment of fish samples from Dadin Kowa Dam, Gombe State, Nigeria. *African Journal of Medical Physics*, 1, 1, pp 25-35.
- Qureshi, A. A., Tariq, S., Din, K. U., Manzoor, S., Calligaris, C., & Waheed, A. (2014). Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. *Journal of radiation research and applied sciences*, 7, 4, pp. 438-447. https://doi.org/10.1016/j.jrras.2014.07.008

- Salahel Din, K., Ahmed, N. K., Abbady, A., & Abdallah, F. M. (2023). Exposure of aquatic organisms to natural radionuclides in irrigation drains, Qena, Egypt. *Scientific reports*, 13, pp 413. https://doi.org/10.1038/s41598-023-27594-4
- Sowole, O. (2011). Dose rates of natural radionuclides in fishes from Rivers in Sagamu Ogun State Nigeria. *Canadian Journal of Pure and Applied Sciences*, 5, 3, pp. 1729 1732
- Sowole, O., Egunjobi, K. A., & Amodu, F. R.(2019). Determination of annual dose rate of natural radionuclides in Man from fishes in Victoria Island Lagoon, Southwest of Nigeria. *International journal of Oceans and Oceanography*, 13, 1, pp. 57 64. http://www.ripublication.com
- Sowole, O., & Adebambo, A. A. R. (2021).Radiological assessment of primordial radionuclides in Crab species from Igbokoda River southwest of Nigeria. *Communication in Physical Sciences*, 7, 1, pp1–7.

https://journalcps.com/index.php/volumes

- Tawalbeh, A. A., Samat, S. B., Yasir, M. S., & Omar, M. (2012). Radiological impact of drinks intakes of naturally occurring radionuclides on adults of central zone of Malaysia. *The Malaysian Journal of Analytical Sciences*, 16, 2, pp. 187 193. http://mjas.analis.com.my
- Tettey-Larbi, L., Darko E. O., Schandorf C., & Appiah, A. A. (2013) Natural radioactivity levels of some medicinal plants commonly used in Ghana. *Springer Plus*, 2, 1, pp. 1-9
- UNSCEAR (United Nations Scientific Committee on Effects of Atomic Radiation) 2000 Sources and Effects of Ionizing Radiation, Annex B, New York.
- Uzorka, A., Tukahirwa, I., Ouyesiga, L., & Olaniyan, A. O. (2025). Analysis of radionuclide concentrations in fish and radioactivity levels in water from Lake Edward, Rukungiri District, Uganda. *Discover Environment*, 3, pp71. Springer

Nature. https://doi.org/10.1007/s44274-025-00266-y

Declaration: authors declared that the research was their empirical work.

Ethical Approval: ethical clearance was obtained from the Ministry of Environment, Ogun State.

Competing interests: authors declared no competing interest.

Funding: the research was sponsored by TETFund, Nigeria.

Availability of data and materials: the data in this research can be obtained from the corresponding author upon request.

Authors' Contribution: Olusegun Sowole collected the samples, prepared them for analysis in the laboratory, computed the radiological parameters and wrote the manuscript, others compiled the results and edited the manuscript.

