
 Communication in Physical Sciences 2023, 9(4): 870-887 

A Comprehensive Review of Edge Computing Approaches for Secure and Efficient Data 

Processing in IoT Networks 

 

 

Michael Oladipo Akinsanya, Aminath Bolaji Bello* and Oluwafemi Clement Adeusi. 

Received:  03 May 2023/Accepted: 09 September  2023/Published: 19 September 2023 

Abstract: The exponential growth of IoT 

networks brings the related concerns of data 

security, privacy, and regulatory compliance to 

the fore, especially when threats to traditional 

cloud-based processing models include 

latency, cyberattacks, and unauthorized access 

to the data. Edge computing emerged as a 

decentralized solution that brings data 

processing closer to IoT devices to reduce 

single points of failure while enhancing real-

time threat detection. In this paper, we examine 

some of the most important security 

technologies for edge-based IoT environments, 

such as Trusted Execution Environments 

(TEEs) and their use in conjunction with 

homomorphic encryption and federated 

learning, analyzing their strengths and 

weaknesses. It highlights scalability 

challenges, security vulnerabilities, and 

regulatory compliance issues within edge 

computing. Other emerging trends like 

blockchain-integrated edge AI, post-quantum 

cryptography, and self-learning cybersecurity 

models will enable the next generation of 

secure, privacy-preserving IoT ecosystems. By 

adopting hybrid security frameworks and 

adaptive AI-driven security mechanisms, firms 

can guarantee a robust, scalable, and 

compliant edge computing solution for IoT 

networks. 
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1.0 Introduction 

Artificial Intelligence (AI) and Machine 

Learning (ML) have begun transforming 

various interdisciplinary fields by providing 

dependable solutions for data analysis, real-

time decision-making, and autonomous 

navigation with an environmental solutions to 

the problems and to Secure and Efficient Data 

Processing in IoT Networks (Abolade, 2023; 

Ademilua, 2021; Ufomba & Ndibe, 2023; 

Ufomba & Ndibe, 2023).  Ademilua & 

Areghan, 2022). 

The rise in the Internet of Things (IoT) 

networks has changed industries like smart 

cities, healthcare, industrial automation, and 

autonomous vehicles. Millions of IoT devices 

are generating trillions of data points in real-

time, mostly processed in centralized 

environment systems such as cloud (Humayun, 

2020). This introduces a lot of security risks to 

the data because, with the transmission of 

sensitive data to the cloud, such data becomes 

an easy target for cyber-attacks and 

unauthorized access of different users, which 

can even lead to losing data (Chataut et al., 

2023). Centralized systems cannot cope with 

such amounts of data because the volumes are 

becoming bigger every day with the IoT 
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adoption trend; hence, the applications tend 

towards being real-time but have high latencies 

and inefficiencies. 

Cloud-based IoT processing also poses 

challenges in keeping up with national security, 

that is, compliance with laws such as the 

General Data Protection Regulation (GDPR), 

California Consumer Privacy Act (CCPA), and 

the IoTCybersecurity Improvement Act, which 

require organizations to maintain secure 

locations for storing and processing 

information as well as their transfer (Umair et 

al., 2021). 

Kong et al. (2022) established that it is edge 

computing that has proved to be a 

revolutionary option in addressing security 

challenges within IoT by moving data 

processing nearer the source, on IoT devices, 

gateways, or edge servers-rather than 

depending on very remote cloud infrastructure. 

This decentralized processing would reduce 

single points of failure so that if the cloud 

server is compromised, sensitive IoT data is 

still secure at the network edge. Edge 

computing will improve the IoT detection and 

response against threats because real-time 

decision-making is performed at the device 

level, thus preventing cyberattacks from 

happening before they escalate (Nain et al., 

2022). Since local processing takes place, less 

sensitive data is transferred over the networks, 

and therefore less exposed to hacking attempts, 

data interception, and unauthorized 

surveillance. 

The elimination of cloud-latency issues, which 

are critical in time-sensitive applications such 

as autonomous driving, industrial automation, 

and remote healthcare monitoring, is another 

key benefit of edge computing for IoT security 

(Kong et al., 2022). Any amount of hold-up in 

data transmission or processing in these 

environments can result in safety risks, 

operational failures, or inappropriate real-time 

analysis. Edge computing ensures processing 

takes place in real time, allowing instantaneous 

real-time anomaly detection, cybersecurity 

monitoring, and AI-enabled decision-making 

(Ogu et. al., 2021). This is a direct boost to 

sectors of critical infrastructure whose security 

breaches in IoT could result in catastrophic 

infrastructure failures, financial losses, or 

possible life-threatening conditions. 

In addition to better security and performance, 

edge computing improves privacy and 

compliance with regulations because IoT 

devices can process data locally and avoid 

transferring data to cloud data centers 

(Losavio, 2020). For instance, stricter laws like 

GDPR and CCPA prohibit cross-border data 

transfers along with centralized data collection, 

thus necessitating the need for strong data 

protection mechanisms by organizations. 

Keeping sensitive data in local networks allows 

companies to comply with rules regarding 

storing private information without 

compromising users' trust and data integrity. 

Also, secured edge AI models combining 

machine learning and encryption techniques 

for analysis further strengthen privacy-

preserving IoT analytics (Mathew, 2022). 

George, et. al., (2023) contend that edge 

computing's rising relevance in IoT security is 

ending because it has become widely adopted 

across industries. Global edge computing is 

estimated to thrive from $53 billion in 2023 to 

$111 billion by 2028, indicating a strong 

demand for decentralized processing solutions. 

According to Alotaibi (2023), 90% of 

enterprises with IoT security strategies have 

adopted or plan to adopt edge computing in 

their privacy and threat mitigation efforts. Top 

companies in technology have ventured into 

the realm of secure edge AI frameworks; for 

instance, Google has Edge TPU, Amazon has 

AWS Greengrass, and Microsoft has Azure IoT 

Edge (Koul, et. al., 2019). 

As IoT networks continue to grow, edge 

computing will be critical in ensuring data 

processing with the secure, efficient, and 

regulatory compliance needed. This paper 

examines some of the key security technologies 

that enable edge-based IoT protection, such as 
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secure enclaves, homomorphic encryption, and 

federated learning (Parveen & Basit, 2023). 

Furthermore, the work discusses scaling 

challenges that affect edge security: 

performance trade-offs, regulatory 

complexities, and newer cybersecurity threats 

(Achuama, 2023). Finally, the study considers 

future trends in edge-based IoT security, such 

as blockchain integration, quantum-safe 

cryptography, and AI-driven automated threat 

detection. Privacy-preserving edge computing 

strategies will provide organizations with a 

more secure and resilient IoT ecosystem.  

 

2.0 Security Technologies for Edge-Based 

IoT Data Processing 

2.1 Secure Enclaves & Trusted Execution 

Environments (TEEs) 

 

Secure Enclaves and Trusted Execution 

Environments (TEEs) offer a dedicated 

protection mechanism against threat agents for 

data processing going on at the edge (Shepherd, 

2019). TEEs represent a secure area within a 

processor that protects data and computation, 

insulating them from compromise of any 

nature, (Lijoka, 2021; Edoh, et. al., 2023). 

Another way that TEEs differ from standard 

encryption models is that while encryption 

methods look at protecting data in transit or at 

rest, TEEs protect data during computation, 

assuring that sensitive IoT data is processed 

free of exposure to unauthorized entities. For 

edge IoT computing, TEEs give rise to 

confidential computing, which permits IoT 

devices to execute code securely in an enclave, 

putting a lid on malicious software and 

untrusted applications as well as curtailing 

attackers from accessing sensitive information 

(Kurnikov, 2021). 

One of the prominent advantages of the TEEs 

is the prevention of insider attacks and 

guaranteeing hardware-based security. Dave 

(2021) said since IoT devices are deployed in 

places that cannot be trusted, they are 

commonly under the likelihood of being 

tampered with, unauthorized, or attacked by 

malware. TEEs cater to solving these potential 

risks by limiting sensitive computation to well-

defined trusted bounds, ensuring that sensitive 

data can only be properly processed by 

authorized applications (Choi & Butler, 2019). 

Furthermore, remote attestation in TEEs is 

secure, enabling the organization to verify IoT 

device integrity prior to permitting network 

access. The ability to have such assurance 

makes TEEs valuable in sectors where data 

confidentiality and trustworthiness matter, 

such as in financial transactions, smart grids, or 

autonomous vehicles (Lee et al., 2023). 

The above notwithstanding, the major 

limitations for secure enclaves and TEEs relate 

to limited computational resources and side-

channel attack vulnerability. With the TEE's 

operations occurring in a constrained hardware 

environment, it has limitations in processing 

power, which can be detrimental to 

performance in highly complex AI-driven IoT 

applications (Olawale et al., 2020). These side-

channel attacks are obviously outside of, not 

able to target any set protection, whereby the 

methods of trace by means possibility are 

power consumption, through electromagnetic 

signals, and/or through variations in device 

execution time. The side-channel attacks have 

yielded a successful target so far, such as Cache 

attacks and Speculative Execution attacks 

against Intel SGX and ARM TrustZone. Thus, 

requiring a bolstering through continuous 

security updates along with efficient 

countermeasures (Wang et al., 2023). 

TEEs majorly apply to IoT security in an edge-

based context in medical IoT and industrial 

control systems and TEE protects healthcare-

related electronic health records (EHR), remote 

patient monitoring data, and AI diagnostics 

from unauthorized access. Secure enclaves 

help ensure that only authorized medical 

personnel or applications are permitted to act 

on sensitive patient data, which helps mitigate 

risks from data breaches and regulatory 

violations (for instance, HIPAA and GDPR) 
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(Liu et al., 2023). In the context of industrial 

automation, TEEs would protect real-time 

control systems, manufacturing robots, and 

critical infrastructure sensors from 

cyberattacks and sabotage attempts. With 

TEEs, smart factories and energy grids can 

ensure that no external code injection would 

halt or compromise the operations (Kumar et 

al., 2023). 

 

2.2 Homomorphic Encryption for Encrypted 

Edge Processing 

 

Munjal & Bhatia (2023) explain that a 

homomorphic encryption (HE) technique is a 

cryptographic mechanism allowing the 

execution of computations on encrypted data 

without decryption, thus guaranteeing that 

sensitive IoT data remains confidential during 

processing. HE is different from typical 

encryption, in which the data must be 

decrypted for processing, thereby introducing 

security breaches, in that IoT devices and edge 

computing systems operate on mathematical 

computations on data directly in encrypted 

form (Pachghare, 2019). This ability is 

particularly important for privacy-preserving 

edge AI scenarios, which involve the 

processing of vast amounts of personal, 

financial, and operational data by IoT 

networks, the confidentiality of which must be 

preserved, regardless of how compromised 

these devices are or how physical access is 

granted to the attackers (Le & Shetty, 2022). 

HE can assist organizations to perform secure 

machine-learning models and analytics on IoT-

generated data and automation without 

exposing raw data (Olawale et al., 2020).  

End-to-end data privacy security is largely 

guaranteed against any unscrupulous 

environment, and this is a hallmark of 

homomorphic encryption security. The HE 

algorithm will guarantee that even if an edge 

device is hacked into, an attacker will not be 

able to decrypt any encrypted data, even though 

most of the time, IoT devices will be operating 

in a distributed, unsecured environment (Ali et 

al., 2023). Therefore, HE can be applicable for 

sensitive solutions such as financial transaction 

security, healthcare data analysis, and military-

grade communication systems about the IoT. 

Additionally, HE promotes regulatory 

compliance for organizations by enabling them 

to process data pertaining to privacy laws, such 

as GDPR, HIPAA, and PCI DSS, yet without 

divulging sensitive information to any third 

parties.  

However, from the security perspective, the 

biggest challenge with HE is its strong 

performance limitations: computation 

overhead. Fully Homomorphic Encryption 

(FHE) invokes the highest computational 

resources, impacting any working real-time 

application in IOT-such as autonomous 

driving, industrial automation, or smart 

surveillance (Liu & Han, 2019; Nguyen, et. al., 

2022) further FHE is the most resource-hungry 

computation. Up next in high computational 

requirements, causing high latency and energy 

consumption, remain the more efficient 

variants of HE-partially Homomorphic 

Encryption (PHE) and Somewhat 

Homomorphic Encryption (SHE) (Brakerski et 

al., 2023). In such constraint scenarios, HE 

implementation in low-power edge devices is 

nearly impossible, requiring optimized 

hardware accelerators, hybrid cryptographic 

methods, and specific AI models that boost 

efficiency. 

Secure smart grid energy analytic and financial 

IoT transactions secure smart grids that depend 

on IoT sensors to monitor energy consumption 

using HE to process encrypted meter readings 

without revealing personal usage information. 

Thus, blocking cyberattacks on energy 

infrastructure and ensuring grid security and 

privacy (Zhang et al., 2023). Similarly, in 

financial IoT applications such as contactless 

payments, HE promotes secure edge analytics 

and fraud detection while maintaining 

customer data secrecy on blockchain-based 

transaction systems and decentralized finance 
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(DeFi) systems. Integrating HE into IoT 

financial systems allows organizations to 

prevent data leakage, secure transaction 

mechanisms, and comply with mandated 

financial regulations, paving the way for 

privacy-first IoT finance solutions. 
 

2.2 Federated Learning for Privacy-

Preserving Edge AI 
 

The federated learning is a decentralized ML 

approach where the IoT devices may train the 

models locally instead of sharing raw data, 

thereby optimizing privacy and security in any 

edge computing world (Adelusi, et. al., 2023). 

Classical ML models sink in because they 

depend on centralized cloud servers and large-

scale transfers of data from IoT devices into the 

big cloud. This produces risks of cyberattacks, 

potential data breaches, and violations of 

regulations. FL diminishes the risks since every 

IoT device can train its local model and share 

updates to the aggregated one with the central 

coordinator as oppose to sharing the original 

data. The decentralized functioning of FL 

becomes very important for any privacy-

sensitive IoT apps such as healthcare 

wearables, industrial IoT (IIoT), and networks 

of autonomous vehicles in which data privacy 

and compliance with regulations are of utmost 

importance (Aouedi, et. al., 2022).  

The strong key with FL in IoT is that it can 

strengthen data security while satisfying 

regulations, including GDPR, HIPAA, and 

CCPA. With the FL approach, the raw data 

never leaves its local device, thus reducing the 

risk of data interception and unauthorized 

access; hence, confidentiality is warranted in 

distributed IoT ecosystems (Chalamala et al., 

2022). Furthermore, it promotes healthy cross-

institutional collaborations without exposing 

sensitive data, thereby allowing multiple IoT 

networks to train shared AI models complying 

with regional data privacy laws. Such features 

make FL especially enterprising in 

cybersecurity threat detection, where real-time 

insights drawn from several IoT nodes can 

enhance anomaly detection and attack 

prevention across the network (Reddy, 2021; 

Nguyen, et. al., 2022). 

However, FL suffers from scalability issues 

and insecure communications, especially with 

respect to high overhead for communication 

and susceptibility to attacks such as model 

poisoning, wherein malicious actors. They are 

posing themselves as model participants to 

corrupt an FL model. Since FL updates and 

aggregates model parameters on an ongoing 

basis from distributed IoT devices and central 

aggregators, this could produce some latency 

and put some stress on the bandwidth, 

especially for larger IoT deployments 

(Bouacida & Mohapatra, 2021). Model 

poisoning attacks are those whereby 

adversaries masquerade as legitimate nodes 

and submit updates that undermine the learning 

processes. Their target is to bias an FL system 

in such a way that it serves their nefarious aims. 

Such discrimination may exploit these 

weaknesses and bias fraud detection systems, 

corrupt cybersecurity threat models, or dilute 

anomaly detection in critical infrastructure 

(Ode-Martins, 2021). Therefore, secure 

aggregation techniques, differential privacy, 

and robust anomaly detection algorithms for 

filtering out corrupted updates must be put in 

place in every implementation of FL (Uzozie 

et. al., 2023). 

A key use case of federated learning in IoT 

covers, among others, anomaly detection in 

connected vehicles and cybersecurity threat 

prediction. In autonomous vehicle networks, 

FL allows smart cars to work together so as to 

improve AI models in the areas of traffic 

pattern recognition, collision avoidance, and 

predictive maintenance, all while ensuring the 

privacy of individual vehicle data (Yang et al., 

2023). Likewise, in IoT-driven cybersecurity, 

FL enables edge devices to detect malware, 

phishing attempts, and network anomalies in 

real time based on distributed threat 

intelligence from multiple IoT sources (Li et 

al., 2023). This integration means that an FL 

approach could allow organizations to build 
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resilient privacy-preserving AI-driven 

defences for the IoT realm of tomorrow. 
 

3.0 Challenges in Adopting Secure Edge 

Computing for IoT 

3.1 Scalability & Performance Trade-offs 
 

Egwuche et. al., (2021) explained that one 
major challenge in providing secure edge 
computing for IoT is further resource 
constraints of edge devices, which restrict the 
performance of AI-driven threat detection and 

encryption techniques. Unlike cloud-based 
data centers, which provide high computing 
power and storage capability, IoT edge devices 
mostly run on low-power processors that have 
limited memory and energy. Latency issues 
caused by slower response times and power 
consumption are common among these 
constrained devices when running advanced 
AI models, encryption algorithms, and real-
time security analytics (Singh et al., 2022).  

 

Table 1: Security Technologies, Their Properties, and Use Cases 

 

Security 

Technology 

Data 

Privacy 

Computational 

Efficiency 

Regulatory 

Compliance 

Best Use Cases 

Secure Enclaves 

(TEEs) 

High Moderate Strong (FIPS, 

GDPR) 

Medical IoT, smart 

factories 

Homomorphic 

Encryption 

Very 

High 

Low Strong (HIPAA, 

PCI DSS) 

Financial IoT, edge-

based healthcare AI 

Federated 

Learning 

High Moderate Strong (CCPA, 

GDPR) 

Cybersecurity, fraud 

detection 

 

This creates a trade-off between security and 

performance, as more robust encryption 

techniques-such as homomorphic encryption 

and secure enclaves (TEEs)-require significant 

processing power, which many IoT devices 

lack. Consequently, organizations should seek 

mechanisms that harmonize security with 

computational effectiveness in edge computing 

environments (Ofili, Obasuyi & Akano, 2023). 

Optimization on energy-efficient machine 

learning (ML) models runs effectively on 

resource-constrained IoT devices, which is an 

important area of research and development 

against the backdrop of these limitations. These 

techniques include model quantization, edge 

AI accelerators, and lightweight encryption 

algorithms, which can be explored to enhance 

real-time threat detection and anomaly 

identification without rendering device 

resources overburdened (Smith et al., 2023). 

Concerning data training and sharing by 

various edge devices, federated learning (FL) 

provides such an opportunity, as locally trained 

ML models do not have to send raw data to the 

cloud, thereby eliminating network congestion 

and delays due to processing. Conversely, even 

FL cannot eliminate the communication 

overhead since model updates need to be 

synchronized across multiple edge nodes. To 

improve operational efficiency, hardware 

accelerators such as Google Edge TPU and 

NVIDIA Jetson have been integrated into 

organizations, such as those specifically 

engineered for AI inference at the edge (Sun & 

Kist, 2021).  

Challenges also exist in terms of scalability 

despite emerging trends. Scalability will 

become an issue in large-scale IoT networks, in 

which several thousands or even millions of 

devices are interconnected. The bigger the edge 

infrastructure becomes, the more complicated 

security data processing, encryption, and 

citation of workloads based on artificial 

intelligence become over the distributed nodes 

(Brown et al., 2023). In addition, some 

applications might necessitate further edge-to-
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cloud coordination for added data 

synchronization and security management 

burdens. To address these challenges, hybrid 

edge-cloud models for such workloads, 

automated hiring strategies for resources, and 

adaptive AI models matching intelligently 

compute power in accordance with workload 

demands will be vital (Taylor et al., 2023). 

Once such performance trade-offs have been 

addressed, secure edge computing can boost 

privacy, scalability, and real-time security for 

IoT networks. 
 

3.2 Security Threats in Edge-Based IoT 
 

The Trusted Execution Environments (TEEs), 

traditionally catering to the secure enclave for 

sensitive computations, are now vulnerable to 

attacks such as side-channel analysis. Any side 

channels, such as those involving power 

consumption analysis, electromagnetic 

radiation leakage, or cache-based timing 

variations, could allow an attacker to infer 

confidential information (Johnsson & 

Nordling, 2023). This is attested by 

researchers, who demonstrated that the very 

frequently used TEE tech, Intel SGX, could fall 

prey to speculative execution attacks like 

Foreshadow. Under IoT scenario contexts, 

devices are operating in trusted or untrusted 

locations, subjecting them to threats if 

malicious parties extract encryption keys, 

modify firmware, or gain unauthorized access 

to device operations (Valadares et al., 2021). 

Mitigation would call for attacking these 

threats through continuous firmware updates 

utilizing better cryptographic shielding and AI-

enabled attack detection, wherein it would 

report abnormal patterns in hardware 

behaviour. 

Edge-to-cloud communication, in another 

respect, is vulnerable to MITM attacks. Since 

IoT devices transmit data using various 

wireless protocols (Wi-Fi, 5G, LoRaWAN, 

Zigbee, etc.), these communications can be 

intercepted, manipulated, or redirected by 

attackers, leading to data leakage and device 

hijacking or injection of malicious commands 

(Garcia et al., 2023). Edge computing 

subsystems are designed to minimize 

dependence on the cloud by carrying out 

processing locally; however, some tasks, such 

as remote device management, firmware 

updates, or heavy AI model training, may 

depend on the cloud. Should the end-to-end 

communication performed by the edge devices 

rely on an encryption scheme such as TLS 1.3 

or quantum-safe cryptographic protocols 

together with strong authentication 

mechanisms, an attacker could pose as a 

legitimate service, steal some credentials, or 

inject malicious software into the system (Patel 

et al., 2023). Organizations must, therefore, 

adopt a zero-trust security architecture, 

decentralized identity frameworks 

(blockchain-based authentication), and IDSs 

that monitor real-time anomalous behaviour in 

the network to mitigate the above points. 

Adversarial AI attacks on federated learning 

(FL) models represent another blossoming risk 

for secure edge-based IoT environments. FL 

allows machine learning models to be trained 

across distributed IoT devices without sharing 

raw data, thereby ensuring privacy (Ferrag et 

al., 2023). Yet, malicious IoT nodes in FL 

training can inject poisoned data that leads the 

AI models into incorrect predictions for 

applications like autonomous vehicle 

navigation, healthcare diagnostics, or 

cybersecurity threat detection (Nguyen et al., 

2021). Attacks may also target model 

inversion, whereby attackers infer sensitive 

training data from model updates, thus 

breaking privacy. To mitigate these threats, 

organizations should leverage differential 

privacy mechanisms, Byzantine fault tolerance, 

and secure aggregation protocols to filter out 

false model updates and uphold federated 

learning integrity in IoT networks (Olawale et 

al., 2020). 
 

4.0  Regulatory & Compliance Issues 
 

Furthermore, one of the crucial arguments in 

secure edge computing for IoT is ensuring that 

the decentralized data is processed in 
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compliance with data protection regulations 

such as the General Data Protection Regulation 

(GDPR) and the Health Insurance Portability 

and Accountability Act (HIPAA) (Hartmann, 

et. al., 2022). In traditional cloud-based 

models, centralized monitoring and 

enforcement of data privacy rules are 

facilitated, but under edge computing, data 

homeowners process their data locally through 

IoT devices, gateways, or edge servers, making 

it hard to ensure uniform security policies 

through distributed nodes (Politou et al., 2022). 

Regulations concerning GDPR state strict rules 

of personal data control, be it data residency, 

the right to be forgotten, or explicit user 

consent. In most cases, this might be stringent 

yet difficult to achieve in a decentralized edge 

environment. The same applies to healthcare 

IoT applications in which HIPAA specifies that 

patient data must be securely stored, processed, 

and transmitted; however, edge-based medical 

devices and wearables cannot be integrated 

because they usually do not have standard 

encryption or secure access controls, which 

increases the chance of noncompliance and 

legal penalties (Gerlach et al., 2022). 

The above conditions are put forward by 

another major factor to define edge-based IoT 

security concerns: the problem of identity 

authentication and secure sharing of data. For 

example, cloud-based authentication relies 

solely on centralized user verification for any 

authentication. Edge IoT devices, on the other 

hand, require lightweight, decentralized 

authentication mechanisms able to work 

autonomously from the built-in interfaces of 

their systems and with no compromise on their 

safety (Anderson et al., 2023). Traditional 

password authentication is not sufficient for 

edge networks because an IoT device only has 

autonomous functional capabilities for the 

authentication process and there are no 

interfaces for user interaction. In addition to all 

of that, data-sharing agreements between 

heterogeneous IoT ecosystems-such as 

connected vehicles, industrial automation, and 

smart healthcare networks, raise issues of trust 

given who can access sensitive information and 

under what conditions. Implementation of 

blockchain-based decentralized identity (DID) 

frameworks along with zero-trust security 

models could enforce safeguard authentication 

over edge IoT networks, but such solutions 

require collaboration in terms of 

standardization and scalability by industry 

participants (Taylor et al., 2023). 

A critical issue that hampers the momentum in 

the adoption of secure edge computing is the 

lack of standardization in security protocols 

across differing IoT networks. Different 

custom-built security implementations are 

generated by various industry and 

manufacturer-specific, leading to fragmented 

and thus difficult-to-integrate, audit, and 

regulate security structures (Brown et al., 

2023). Universal security frameworks are 

lacking, and this has prevented organizations 

from keeping data encryption, firmware 

updates, and interoperability of the edge 

computing environment secure and consistent. 

Initiatives like ISO/IEC 27001 for IoT security, 

the NIST Cybersecurity Framework, and the 

Edge Computing Consortium (ECC) are 

working to define standardized best practices, 

but these efforts face challenges in widespread 

adoption. To achieve scalable, regulatory-

compliant edge computing, IoT stakeholders 

must collaborate on unified frontiers-security 

standards, automated compliance monitoring, 

and privacy-enhancing technologies (PETs) 

aligned with developing global regulations 

(Smith et al., 2023). 

5.0 Future Trends in Secure Edge 

Computing for IoT 

5. 1 : Blockchain-Integrated Edge AI for IoT 

Security 
 

In the opinion of Aramide (2023), the adoption 

of blockchain and AI-driven security 

mechanisms for decentralized identity 

verification is the most promising advancement 

in secure edge computing for IoT. By making 

central identity providers, the general IoT 
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authentication systems are exposed to being 

hacked, credentials stolen, or attacked from the 

inside. With Blockchain, Decentralized 

Identity (DID) frameworks, IoT devices can 

authenticate without a central authority 

(Badidi, 2022). Upon registering IoT devices, a 

unique cryptographic identity is assigned to 

each device, which is tamper-proofly recorded 

in the blockchain ledger and serves as a think 

pyramid of trust, transparency, and resistance 

to identity-spoofing. This makes the 

application of this method more ideal in critical 

IoT environments such as smart cities, 

autonomous vehicles, and industrial 

automation environments, since verifying 

whether a device is legitimate or not is an 

essential safeguard against unauthorized access 

and other cyber threats (Chukwudebe, et. al., 

2021).  

Another area of ground-breaking 

transformation is where security policies based 

on smart contracts may be used to control IoT 

access control and automated enforcement of 

cybersecurity measures. Unlike the traditional 

role-based or rule-based authentication 

methods, smart contracts could provide self-

executing decentralized mechanisms through 

which only authorized devices, users, or 

applications could use sensitive IoT data 

(Garcia et al., 2023). For health-based 

connected environments, for instance, smart 

contracts can as required open and close access 

to patient records based on regulatory 

compliance and patient consent, thus ensuring 

minimal unauthorized data exposure. 

Similarly, in industrial IoT networks, smart 

contracts may put in place automatically 

enforced security rules that could prevent 

malicious devices from accessing essential 

infrastructure (Patel et al., 2023). Integrating 

blockchain with Edge AI, therefore, enables 

organizations to develop self-governing IoT 

ecosystems that exhibit maximum resilience 

against cyber threats, besides being 

transparent, auditable and compliant with 

regulations. 

5.2 Quantum-Safe Cryptography for Edge-

Based IoT Security 
 

Chawla and Mehra (2023) argue that with the 

advancement of quantum computing, the 

traditional cryptographic techniques used in the 

security domain of IoT could become 

irrelevant, making quantum-resistant 

encryption imperative for protecting edge-

based IoT networks. Although current 

encryption approaches like RSA and ECC rely 

on those very mathematical problems that 

could be broken by quantum computers 

through algorithms such as Shor’s (Erondu, et. 

al., 2022), lattice-based cryptography is being 

researched for quantum-safe encryption against 

classical and quantum attacks. By 

implementing lattice-based encryption within 

edge computing frameworks, IoT devices can 

continue to safeguard sensitive 

communications, provide user authentication, 

or secure decentralized data processing in a 

post-quantum world (Ukwuoma, et. al., 2022). 

This holds particular importance for 

autonomous vehicles, industrial control 

systems, and military IoT networks, where the 

long-term availability of data security is of 

utmost importance.  

Another important advancement impacting 

quantum-safe IoT security is the post-quantum 

secure machine-learning models for real-time 

cybersecurity threat detection at the edge. 

Moreover, if quantum computing advances to 

enable more challenging adversarial attacks or 

faster model inversion, traditional AI-driven 

anomaly detection and intrusion prevention 

systems could be compromised (Hassan, et. al., 

2021). By designing quantum-resistant AI 

models that leverage lattice-based signatures 

and hash-based cryptography, edge devices can 

maintain robust threat detection and response 

capabilities against both conventional and 

quantum-enabled cyber threats (Taylor et al., 

2023). Adopting post-quantum cryptographic 

standards in edge-based IoT security 

architectures will, therefore, be paramount to 

guaranteeing long-term cybersecurity 
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resilience, regulatory compliance, and trust in 

next-generation IoT ecosystems. 
 

5.1 AI-Driven Automated Security at the Edge 
 

AI making security at the edge reactive and 

auto-piloting will be the last bastion, since 

threats towards IoT networks are becoming 

very advanced (Yaseen, 2023). The 

conventional security solutions are based on 

static rules and are unable to keep pace with 

evolving attack patterns. In contrast, self-

learning AI models can independently analyze 

real-time threat intelligence for detecting 

anomalies and acting against cyberattacks 

(Tanikonda et al., 2022). These models use ML 

and deep learning techniques to identify 

malware, intrusion attempts, and zero-day 

vulnerabilities at the edge while minimizing 

human intervention. Through the deployment 

of AI-powered cybersecurity frameworks in 

edge computing, IoT devices can carry out 

localized threat mitigation and reduce 

dependency on cloud security mechanisms, 

which unwarrantedly increase latency and 

bandwidth constraints (Butun, et. al., 2019).  

To further enhance edge-based IoT security, 

researchers are working on adaptive federated 

learning techniques, which give AI models 

access to learn from many IoT devices without 

exchanging raw data. In contrast with 

centralized ML training, federated learning 

(FL) would permit decentralized sharing of 

threat intelligence to aid devices in improving 

AI security models cooperatively while 

preserving the privacy of their data (Yaseen, 

2023). Asynchronous FL training continuously 

advances IoT security by updating ML models 

to identify new attack vectors, while also 

ensuring compliance with regulations (e.g., 

GDPR, HIPAA) (Olowononi, Rawat & Liu, 

2020). This is especially useful in critical 

industrial sectors such as healthcare, 

autonomous vehicles, and industrial 

automation, under which the response to 

security attacks must be immediate. The 

synergy of self-learning AI models and 

federated learning may evolve edge computing 

into a proactive and intelligent cybersecurity 

defence system with capabilities of predicting 

and neutralizing emerging threats before they 

develop into damaging attacks (Butun, et. al., 

2019). 
 

6.0 Conclusion  
 

Edge computing is a completely revolutionary 

option to improve the security of the IoT 

systems, bringing in a decentralized approach 

that gamifies the traditional relaying-on-cloud 

architectures, reduces latency issues, and 

primarily, strengthens privacy protection. 

Because it allows instantaneous data processes 

at the network's edge, it can offset the 

likelihood of cyber threats emerging through 

vulnerabilities in a centralized cloud 

framework. Realistically speaking, a hybrid 

approach is needed to provide the security 

needed in such environments, particularly in 

edge-based IoT systems that should be 

included in TEEs federated learning and 

encryption techniques for balanced and 

effective privacy security performance. Future 

guaranteed safe edge computing will be 

intertwined with threat detection powered by 

artificial intelligence, identity assurance 

utilizing blockchain technology, and post-

quantum cryptography, ensuring resilience 

against new-age cyber risks to IoT ecosystems. 

To be noted in the future, there is a demand for 

such hybrid security frameworks combining 

TEEs, homomorphic encryption and federated 

learning, ensuring fine-grained privacy-

preserving yet efficient AI processing at the 

edge. To further round out the future vision, 

AI-driven compliance automation can be 

considered to keep organizations up to date 

with real-time regulation observance and to 

preclude data privacy violations in edge-based 

IoT systems. Micro-research is recommended 

to optimize lightweight cryptographic 

techniques for IoT edge devices of low power. 

These should be scalable and energy-efficient 

security measures, ensuring strong encryption 

and authentication protocols. 
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