# Health Risk Assessment of Heavy Metals and Radiation Exposure in Locally Produced Cosmetic Powders used in Benue State

Audu Moses Owoichoa\*, Tsaviv Julius Nyiayem, Agada Inikpi Ojochenemi, Achu Aondohemba Paschal and Eneji Ishaq Shaibu

Received: 22 May 2025/Accepted 09 September 2025/Published online: 16 September 2025

https://dx.doi.org/10.4314/cps.v12i6.15

Abstract: This study evaluates the health risks of heavy metals (HMs) and naturally occurring radionuclides (NRs) in fourteen locally produced cosmetic powders from Benue State, using Atomic Absorption Spectrophotometry (AAS) and a NaI(Tl) detector. concentrations of HMs were Cd (0.104  $\pm$  0.002 ppm), Co (0.022  $\pm$  0.002 ppm), Cr (0.006  $\pm$ 0.001 ppm), Ni  $(0.236 \pm 0.002 \text{ ppm})$ , and Pb  $(0.785 \pm 0.002 \text{ ppm})$ , all below WHO limits (0.30, 1.0, 5.0, 0.60, and 10.0 ppm, respectively). Only Cd in one sample (1.24 ppm) exceeded its limit, yielding a 7.1% exceedance rate. Carcinogenic risk (10<sup>-6</sup>–  $10^{-7}$ ), hazard index (<0.1), and hazard quotient values confirm negligible non-carcinogenic or risk. carcinogenic Mean activity concentrations of <sup>232</sup>Th (22.5  $\pm$  1.3 Bq/kg), <sup>238</sup>U  $(18.9 \pm 1.1 \ Bg/kg)$ , and  $^{40}K$   $(312.6 \pm 5.7 \ Bg/kg)$ , together with absorbed dose (0.11 mSv/yr), radium equivalent (46.3 Bg/kg), and hazard indices ( $\leq 0.23$ ), are all below IAEA/UNSCEAR safety thresholds. These results suggest that the no significant 1. cosmetic powders pose toxicological or radiological health risks, supporting safe patronage and the growth of micro, small, and medium enterprises (MSMEs) in the region.

**Keywords**: Natural radionuclides, Cosmetic powder, Health Risk Assessment, Heavy metal, Safe limit

## Audu, Moses Owoicho\*

Department of Physics, Joseph Sarwuan Tarka University, Makurdi, Benue State, Nigeria.

Email: <a href="mailto:audu.moses@uam.edu.ng">audu.moses@uam.edu.ng</a>
Orcid id: 0000-0003-1869- 5974

### Julius, Tsaviv Nyiayem

Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi, Nigeria.

Email: <u>tsaviv.julius@uam.edu.ng</u> Orcid id: 0009-0009-5194-9594

## Agada, Inikpi Ojochenemi

Department of Physics, Joseph Sarwuan Tarka

University, Makurdi, Nigeria

Email: <u>agadainikpi020@gmail.co</u>m Orcid id: 0009-0002-4712-2331

#### Aondohemba, Achu Paschal

B.Sc., Laboratory Technology, Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi, Nigeria.

Email: paschalachu3@gmail.com Orcid id: 0009-0006-7407-1401

#### Eneji, Ishaq Shaibu

Joseph Sarwuan Tarka University, Makurdi, Nigeria

Email: <u>i.s.eneji@uam.edu.ng</u>, Orcid id: 0000-0001-6135-3617

### 1.0 Introduction

The growing use of radiation in all sectors of human endeavour, especially in medical diagnosis and therapy, has contributed greatly to humans' exposure to radiation (Eddy et al., 2025a; Gerba et al., 2019). Radionuclides have adverse effects on human health depending on the type, dosage, and exposure time (Eddy et 2025b; Mgbemere al., al., et2021). Consequently, assessing the health implications of the public to radiation exposure from locally produced cosmetic products is very important. Natural and synthetic materials are used in the production of cosmetic products (Osabuohien et al., 2021). Common ingredients used are: emollients (e.g. oils,

butter, and glycerin), surfactants (e.g. sodium lauryl sulfate and sodium laureth sulfate), preservatives parabens (e.g. and phenoxyethanol), colorants (e.g. iron oxides, titanium dioxide, ultramarines), fragrances (e.g. perfume), thickeners (e.g. gums and polysaccharides), sunscreen agents (e.g. zinc oxide and titanium oxide), and antioxidants (e.g. vitamin C and vitamin E). Therefore, the ingredients used in the formulation of cosmetic products can be potentially harmful to human's health (Osabuohien, 2019; Pratibha et al., 2018). Although these ingredients enhance the appearance and functionality of cosmetics, many of them may contain or introduce trace levels of heavy metals (HMs) and radioactive materials (RMs) that can be harmful to health (Pratibha et al., 2018).

Cosmetic products are widely used as lipstick, perfume, nail polish, eye shadow, powders, creams, and lotions, and they also serve medicinal purposes such as in skin treatment, hair care, facial care, and dental applications (Sharma et al., 2018; Hani et al., 2021). According to Hani et al. (2021), cosmetic ingredients should ideally exhibit minimal or no toxicity. However, even at trace levels, exposure to RMs and HMs such as lead (Pb), cadmium (Cd), chromium (Cr), and nickel (Ni) can result in adverse health effects. As cosmetics are consumed largely by vulnerable groups such as children, young adults, and the elderly, product safety is essential. Although regulations prohibit the incorporation of certain HMs and RMs into cosmetics, lack of compliance by some producers remains a major concern.

In Nigeria, many locally produced cosmetic powders are manufactured in informal settings rather than certified factories, limiting effective monitoring by agencies such as the Standard Organisation of Nigeria (SON). Furthermore, claims of safety and health benefits by producers are rarely supported by scientific evidence, and the concentrations of harmful substances in these products are often undisclosed. This creates a potential risk for consumers, particularly because economic hardship and poverty drive many people to patronize cheaper, uncertified products. Hence, systematic assessment of heavy metals and natural radionuclides (NRs) in these products is necessary to safeguard public health.

Over the years, the Nigerian government has encouraged the growth of micro, small, and medium enterprises (MSMEs), including the cosmetics industry, because production often requires minimal capital. This has led to the proliferation of locally made powders, creams, perfumes, and soaps. However, the rapid increase in the number of these products underscores the need for continuous safety assessments, as unregulated items may expose users to harmful substances.

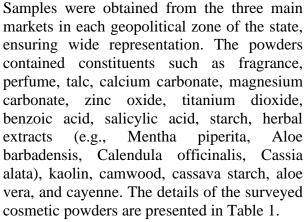
Several researches have been carried out to assess HMs in cosmetic products (Kumar et al., Al-zahrani and Fakeha, 2017: 2016; Abdulrahman and Sani, 2018; Vaphiades et al., 2019; Arshad et al., 2020). Arshad et al. (2020) evaluated HMs in cosmetic products using an Atomic Absorption Spectrophotometer (AAS). They reported that the concentrations of HMs differed based on the brand of cosmetic products. Working on HMs concentrations in fifty-six (56) talcum powders used in southeast Nigeria, Nnorom (2011) observed mean concentrations of 5.0±1.0, 2.1±0.3, 0.7±0.1, and 0.2±0.1 mgkg-1 for Pb, Cd, Co, and Cr respectively. Similarly, Sani (2016)investigated HMs (Mn, Ni, Cu, Cd, Cr, and Pb) in ten (10) face powders used in Kano. Surajo et al. (2021) studied HMs (Pb, Cd, Ni, and Cr) in nine (9) face powders used in Katsina. Olavinka et al.investigated (2020)concentrations of HMs (Cd, Pb, Cr, and Ni) in cosmetic products used in Ado-Ekiti. Idris et al. (2019) reported 1.46, 103.07, 27.581, and 39.455 for Cd, Pb, Cr, and Ni in talcum



powders used in Keffi, Nasarawa State.

Despite these studies on HMs content in cosmetics both within and outside the country (Sani et al., 2016; Goulart et al., 2018; Chatzimichael et al., 2019), most of these studies are not current. Nnorom (2011) and Sani et al. (2016), who investigated HMs in locally produced cosmetics in Nigeria, among others, are, however, not recent and are in a different region. This depicts the need for recent studies, since new products are always available in the market. Furthermore, there are few or no recent studies on NRs in cosmetic powder (Almugren et al., 2023). This research will, therefore, help producer of these products to make informed decisions during production that will improve the quality of their products based on safety standards. It will also help regulatory agencies such as SON in monitoring and regulating these locally made beauty powders.

## 2,0 Materials and Methods


This study employed systematic procedures for sample collection, preparation, analysis, and health risk assessment of radionuclides (NRs) and heavy metals (HMs) in selected cosmetic powders.

#### 2.1 Washing of Glassware and Accessories

All glassware and analytical accessories were thoroughly washed with detergent, rinsed with distilled water, and finally treated with 10% nitric acid to prevent contamination of the collected samples and ensure accuracy of results.

#### 2.2 Sample Collection

A total of fourteen (14) cosmetic powder samples were randomly selected. These included commonly used powders for babies, children, youths, and adults, which were recently introduced into the Nigerian market. Approximately 90% of the newly available products at the time of this research were sampled.



## 2.3 Preparation of Sample

The collected samples were weighed, and about 320 g were sealed in plastic containers for radionuclide analysis. Similarly, about 10 g of each sample was digested and packaged in sample bottles for HMs analysis.

Radiological analysis was performed to determine the activity concentration of radionuclides at the National Institute of Radiation Protection and Research (NIRPR), University of Ibadan, using NaI(TI) detector crystal. The activity concentration of radionuclide (C) measured in each sample was computed using the expression:

$$C(Bqkg^{-1}) = \frac{c_a}{\varepsilon \times M_s \times I_{eff}}$$
 (1)

where  $C_a$  = net gamma counting rate,  $\varepsilon$  = detected efficiency of the gamma-ray,  $I_{eff}$  = intensity of the gamma line in the radionuclides, and  $M_s$  = mass of powder samples (in kilogram).

## 2.5 Heavy Metal Analysis

The digested samples were used for HM analysis at Federal University, Wukari. An Atomic Absorption Spectrophotometer (AAS) was used to determine the concentrations of Cd, Co, Cr, Ni, and Pb in each of the samples following standard procedures.



Table 1: Surveyed Cosmetic Powders used in this Study

| S/No. | Samples                                     | Code | Producer                          | Place of<br>Production          | Production<br>Date | Expiry<br>Date | Weight |
|-------|---------------------------------------------|------|-----------------------------------|---------------------------------|--------------------|----------------|--------|
| 1     | Cacatin<br>Mentholated<br>Dusting<br>Powder | P01  | Layus<br>Investment<br>Ltd        | Ipaja,<br>Lagos State           | 03-2022            | 03-2025        | 100 g  |
| 2     | Jumi<br>Mentholated<br>Dusting<br>Powder    | P02  | Jumi-Dap<br>Ltd                   | Olaogun,<br>Ogun State          | 03-2024            | 03-2027        | 80 g   |
| 3     | Herbal Aloe<br>Vera<br>Dusting<br>Powder    | P03  | Jim<br>Products<br>Ltd            | Sango-<br>Otta, Ogun<br>State   | 04-2024            | 04-2026        | 100 g  |
| 4     | Tinu Red<br>Moju<br>Powder                  | P04  | Tinu<br>Commercial<br>Enterprises | Ibadan,<br>Oyo State            | 01-2021            | 01-2023        | 40 g   |
| 5     | Harmaderm<br>Anti-<br>bacterial             | P05  | Copaci<br>FRN                     | Okota-<br>Isolo,<br>Lagos State | 05-2024            | 05-2027        | 90 g   |
| 6     | Skin<br>Clinique                            | P06  | Imperio<br>Int'l Ltd              | Ikeja,<br>Lagos State           | 02-2023            | 02-2026        | 250 g  |
| 7     | Baby & Me<br>Baby<br>Powder                 | P07  | Imperio<br>Int'l Ltd              | Ikeja,<br>Lagos State           | 04-2024            | 04-2027        | 450 g  |
| 8     | Nursing<br>Nurse Baby<br>Powder             | P08  | Rejoice<br>Joice<br>Ventures      | Nkpor,<br>Anambra<br>State      | 02-2022            | 02-2025        | 250 g  |
| 9     | mp3 Cool<br>Refreshing<br>Talcum<br>Powder  | P09  | Imperio<br>Int'l Ltd              | Ikeja,<br>Lagos State           | 02-2023            | 02-2026        | 250 g  |
| 10    | Passion<br>Talcum<br>Powder                 | P10  | Cybele<br>Cosmetics<br>Ltd        | Mushin,<br>Lagos State          | 08-2023            | 07-2026        | 200 g  |
| 11    | Rising<br>Raving<br>Baby<br>Powder          | P11  | Rising<br>Ventures                | Benin, Edo<br>State             | 05-2024            | 04-2028        | 100 g  |



| 12 | Everyone<br>Herbal<br>Dusting<br>Powder | P12 | Fana<br>Labresults<br>Nig. Ltd             | Ketu,<br>Lagos State     | 03-2024 | 03-2027 | 100 g |
|----|-----------------------------------------|-----|--------------------------------------------|--------------------------|---------|---------|-------|
| 13 | Eklass Moju<br>Baby<br>Powder           | P13 | Andy King<br>Integrated<br>Services<br>Ltd | Isashi,<br>Lagos State   | 01-2024 | 11-2027 | 120 g |
| 14 | Get Me Oil<br>Control<br>Talc           | P14 | Prestige<br>Cosmetics<br>Ltd               | Kirikiri,<br>Lagos State | 06-2022 | 06-2025 | 450   |

## 2.6 Health Risk Assessment of HMs and NRs

Empirical models presented in equations 2 to 16were employed to assess the health risk of consumers due to exposure to the HMs and NRs in the sampled beauty powders (Avwiri *et al.*, 2014; Olanrewaju and Avwiri, 2017; Ojelabi *et al.*, 2018; Arshad *et al.*, 2020; SCCS, 2021; Onjefu *et al.*, 2022).

From equations 2 - 16,  $C_u$ ,  $C_{Th}$ , and  $C_k$  are concentrations of U-238, Th-232, and K-40, DL is the average life span (i.e. 70 years), RF is the Risk Factor (0.05 Sv<sup>-1</sup>), UF is uncertainty factor (1.0), MF is modifying factor (100), RFD is reference doses (mg/kg/day) for Cd (1  $\times$  10<sup>-3</sup>), Cr (3 × 10<sup>-3</sup>), Pb (4 × 10<sup>-3</sup>), Co (3 ×  $10^{-4}$ ), and Ni (2 ×  $10^{-2}$ ), Cs is HMs concentration, SSA is skin surface area onto which the face powder is applied (563 cm<sup>2</sup>), AA is the daily amount of face powder used (0.51), RF is retention factor (1.0), F is the frequency of daily use of the face powder (2.0), BF is a bio-accessibility factor, BW is body weight (i.e. 60 kg for adult and 16 kg for children), and SF slope factor (mg/kg/d) with values 0.0085, 0.5, 0.91, and 6.7 for Pb, Cr, Ni, and Cd respectively (Idris et al., 2019; Surajo et al., 2021).

To evaluate the radiological and non-radiological health risks associated with natural and anthropogenic sources of radioactivity and heavy metals, several standard dose and risk assessment models were applied. The absorbed dose rate (Eq. 1) provides the basis for estimating external gamma radiation exposure from terrestrial radionuclides, while the annual effective dose equivalent (Eqs. 3 and 5) quantifies the potential radiation burden to individuals. Additional indices such as the radium equivalent activity (Eq. 4), radioactivity level index (Eq. 6), annual gonadal dose equivalent (Eq. 7), external and internal hazard indices (Eqs. 8 and 9), and excess lifetime cancer risk (Eq. 10) were employed to assess radiological safety in relation to international limits. Furthermore, chemical toxicity risk was evaluated using toxicological parameters, including the margin of safety (Eq. 11), no observed adverse effect level (NOAEL) (Eq. 12), systematic exposure dosage (Eq. 13), hazard quotient (Eq. 14), hazard index (Eq. 15), and carcinogenic risk (Eq. 16). Collectively, these models provide a comprehensive framework for assessing potential hazards and risks to human health arising from environmental exposure.

Absorbed Dose Rate, 
$$D = 0.462C_u + 0.604C_{Th} + 0.0417C_K$$
 (1)

$$AEDE_{out} = D(nGyh^{-1}) \times 24hr \times 365.25d \times 0.2 \times 0.7 SvGy^{-1} \times 10^{-6}$$
(3)

$$Radium \ Equivalent, Raeq = C_U + 1.43C_{Th} + 0.077C_K$$
 (4)



Annual Effective Dose Equivalent, 
$$AEDE = 3.09C_u + 4.18C_{Th} + 0.314C_K$$
 (5)

Radioactivity level index, 
$$I_r = \frac{c_u}{150} + \frac{c_{Th}}{100} + \frac{c_K}{1500}$$
 (6)

Annual Gonadal Equivalent Dose, 
$$AGED = 3.09C_u + 4.18C_{Th} + 0.314C_K$$
 (7)

External hazard index, 
$$ext = \frac{C_u}{370} + \frac{C_{Th}}{259} + \frac{C_K}{4810}$$
 (8)

Internal hazard index, 
$$H_{int} = \frac{c_u}{185} + \frac{c_{Th}}{259} + \frac{c_K}{4810}$$
 (9)

Excess Lifetime Cancer Risk, 
$$ELCR = AEDE_{out} \times DL \times RF$$
 (10)

$$Margin of \ safety, MoS = \frac{NOAEL}{SED}$$
 (11)

$$NOAEL = RFD x UF x MF$$
 (12)

Systematic exposure Dosages, 
$$SED = \frac{C_S \times AA \times SSA \times F \times RF \times BE \times 10^{-3}}{BW}$$
 (13)

$$Hazard\ Quotient, HQ = \frac{SED}{RfD}$$
 (14)

$$Hazardous\ Index, HI = \sum HQ = HQ_{Cd} + HQ_{Cr} + HQ_{Ni} + HQ_{Co} + HQ_{Pb}$$
 (15)

$$Carcinogenic\ risk = SED\ x\ SF \tag{16}$$

## 3.0 Results and Discussion

## 3.1 Activity Concentrations of NRs and Radiological Health Risk Parameters

Table 2 presents the activity concentrations of naturally occurring radionuclides (NRs), namely  $^{232}$ Th,  $^{238}$ U, and  $^{40}$ K, in the sampled cosmetic powders. The concentrations ranged from  $7.60 \pm 0.43$  to  $49.70 \pm 2.75$  Bq/kg for  $^{232}$ Th,  $2.55 \pm 0.25$  to  $43.24 \pm 4.19$  Bq/kg for  $^{238}$ U, and  $54.92 \pm 2.99$  to  $237.26 \pm 12.86$  Bq/kg for  $^{40}$ K. In samples P05 and P09,  $^{238}$ U was below detectable limits (BDL), highlighting possible variability in raw materials or differences in the mineral composition of talc and other excipients used in cosmetic formulations.

When compared with international data, the concentrations reported in this study are higher than those of Almugren et al. (2023), who found very low levels of <sup>232</sup>Th (0.317–0.556 mBq/kg), <sup>238</sup>U (0.174–0.623 mBq/kg), and <sup>40</sup>K (0.610–0.742 mBq/kg) in talcum powders from

Malaysia. However, the mean activity concentrations obtained here—25.30  $\pm$  1.31 Bq/kg ( $^{232}$ Th), 11.36  $\pm$  1.00 Bq/kg ( $^{238}$ U), and 131.53  $\pm$  7.09 Bq/kg ( $^{40}$ K)—remain well below the recommended safety limits of 50 Bq/kg for both  $^{232}$ Th and  $^{238}$ U and 500 Bq/kg for  $^{40}$ K (Medhat et al., 2015).

Comparatively, Medhat et al. (2015) reported higher average activity concentrations ( $40 \pm 18$  Bq/kg for  $^{226}$ Ra,  $35 \pm 10$  Bq/kg for  $^{232}$ Th, and  $739 \pm 19$  Bq/kg for  $^{40}$ K) in cosmetics, suggesting that the powders examined in the present study are radiologically safer. Such disparities may be attributed to geological variations in the source of raw materials, differences in processing technology, or improved regulatory control in cosmetic production.

The absorbed dose rate (D) calculated for the samples ranged from 8.06 to 42.56 nGy/h, significantly below the global average limit of 59 nGy/h for soils and consumer products (UNSCEAR, 2000). Similarly, other



radiological health risk parameters were within safe thresholds: AEDE (0.01–0.052 mSv/y), Raeq (17.65–91.66 Bq/kg), H\_ex (0.05–0.25), H\_in (0.05–0.36), Iγ (0.13–0.66), AGED (56.89–295.82  $\mu$ Sv/y), and ELCR (0.03 × 10<sup>-3</sup> – 0.16 × 10<sup>-3</sup>). These findings confirm that the surveyed powders do not pose radiological health hazards to consumers, aligning with international recommendations for radiological safety in consumer products.

## 3.2 Mean Concentration of HMs in the Surveyed Cosmetic Powders

The atomic absorption spectrophotometer (AAS) working conditions adopted for heavy metal (HM) determination (Table 3) were consistent with previous studies (Sani et al., 2016; Surajo et al., 2021). Results revealed the presence of Cd, Cr, Ni, Co, and Pb in varying concentrations across all powders (Table 4). The concentration ranges were 0.0128–1.2418 ppm (Cd), 0.001-0.010 ppm (Cr), 0.100-0.400 ppm (Ni), 0.007–0.030 ppm (Co), and 0.247– 1.852 ppm (Pb). Pb recorded the highest concentration, while Cr showed the lowest. This order (Pb > Ni > Cd > Co > Cr) is consistent with reports by Nnorom (2011) and Surajo et al. (2021), highlighting Pb as a recurring dominant contaminant in cosmetic powders.

The maximum concentrations were found in specific powders: Cd in P08, Cr in P10, Ni in P04, Co in P01, and Pb in P13. Such variability reflects differences in formulation or potential contamination from raw materials and processing environments. Importantly, except for Cd in P08, the concentrations of Pb, Cd, and Ni were below WHO permissible limits of 10, 0.3, and 0.6 mg/kg, respectively, suggesting minimal immediate health risks. However, given the cumulative nature of heavy metals in biological systems, long-term use could result in bioaccumulation and toxicity.

Comparative evaluation with earlier studies showed declining trends in HM concentrations. Omenka and Adeyi (2016) reported higher levels of Cd, Pb, and Ni in powders such as mp3, Passion, and Rising Raving, all produced by the same companies as in this study. This suggests improvements in raw material sourcing and regulatory compliance over time. The difference may also be linked to changes in production dates, with earlier powders (2014–2018) containing higher HMs compared to those analyzed here (2023-2028). Such progress reflects positive impacts of consumer safety awareness, regulatory oversight, and alignment with global best practices in the cosmetics industry.

When compared with international data, the concentrations of Cd were lower than those reported for local Nigerian powders (Nnorom, 2011; Idris et al., 2019) but comparable to foreign powders (Sani et al., 2016; Ullah et al., 2017). Cr concentrations were generally lower than in most local and foreign powders, while Ni and Co were lower than values reported in Pakistan and other regions (Ullah et al., 2017; Manu et al., 2023). Pb levels were comparable to those observed globally, confirming Pb as a universal concern in cosmetic formulations. The relatively lower concentrations in this study indicate steady progress in product safety and quality in Nigeria's cosmetic industry.

The observed Pb concentrations were below the WHO and U.S. FDA maximum permissible level of 10 ppm but still raise concern due to Pb's cumulative toxicity (Table 5).. Compared with earlier findings by Omenka and Adeyi (2016), where Pb levels in some powders reached 468 ppm, the present study recorded a dramatic decline (≤ 1.852 ppm). Similarly, Cd, Ni, and Co levels were lower than those reported by Nnorom (2011) and Idris et al. (2019), suggesting that product safety has improved over the years, likely due to better manufacturing oversight. Globally, our results



were comparable to those of Ullah et al. (2017) in Pakistan but significantly safer than some products reported in South Asia (Manu et al., 2023).

## 3.3 Systematic Exposure Dosage (SED) for Adults and Children

The calculated SED values for adults and children under 50 % and 100 % bioaccessibility scenarios are displayed in Fig. 1. As expected, children consistently showed higher SED values than adults because of their lower body weights and higher skin surface area-to-body weight ratios. Doubling the bioaccessibility assumption from 50 % to 100 % led to a proportional increase in exposure, simulating a worst-case scenario.

### 3.3.1 Vulnerability of children

The results confirm findings by Oyekunle et al. (2021), who demonstrated that children are more vulnerable to heavy metal exposure from cosmetics and personal care products. Although SED values fell within acceptable toxicological thresholds, the elevated exposure levels in children warrant precautionary regulation and consumer advisories.

## 3.4 Margin of Safety (MoS)

MoS values, shown in Table 6b, provide an integrated measure of consumer safety. For most metals, MoS values were ≥ 100, indicating adequate safety margins. However, Pb and Cd breached safety margins in selected powders. Pb values were unsafe in P01, P02, P04, P05, P07, P10, P11, and P12 at 50 % bioaccessibility and in P01 and P02 at 100 % bioaccessibility. Cd in P08 also registered an unsafe MoS.

## 3.4.1 Public health implications

These findings suggest that prolonged exposure, particularly among children, could lead to toxicological effects despite compliance with regulatory limits. The MoS results

therefore, support the argument that cumulative and chronic exposure scenarios should be incorporated into cosmetic risk assessments.

## 3.4 Margin of Safety (MoS)

MoS analysis demonstrated that Cd, Co, Cr, and Ni were within safe margins (MoS  $\geq$  100) in most powders, except for Cd in P08. Pb exceeded safe MoS values in some powders (P01, P02, P04, P05, P07, P10, P11, and P12 at 50 %; P01 and P02 at 100 %), indicating Pb as a key contaminant of concern. Among children, MoS values revealed even higher risks, with 37–40 % of powders falling below safe thresholds at different bioaccessibility levels. This underscores children's greater vulnerability to Pb toxicity.

3.5 Hazard Quotient (HQ), Hazard Index (HI), and Carcinogenic Risk

HQ and HI values for all HMs were below suggesting no immediate noncarcinogenic risks under typical exposure conditions. However, carcinogenic assessments revealed concerns: Cd exceeded safe limits in some powders (P03 and P08 for adults at 50 % bioaccessibility, and additional powders at 100 %), while Ni posed moderate risks in both adults and children. Children were again found to be at higher risk, particularly for Cd exposure.

For Cr and Pb, the values are within the safe limit for adults and children at both 50 % and 100 % bio-accessibility. This implies no carcinogenic risk for Cr and Pb in the sampled powders; however, the carcinogenic risk for Cd and Ni varied. This indicates that the surveyed cosmetic powders pose no radiological risk, while carcinogenic risk from HMs varies with 50% and 100% bio-accessibility.

Our observation generally suggests improvement in the quality of the cosmetic powders, which could promote the growth of micro, small, and medium enterprises (MSME) and patronage of locally made cosmetic powders.



## 3.5 Hazard Quotient (HQ), Hazard Index (HI), and Carcinogenic Risk

The HQ and HI values were below unity across all samples, implying that non-carcinogenic risks are minimal. However, carcinogenic risks (Tables 7a and 7b) were elevated for Cd and Ni under certain exposure scenarios, particularly in children. For instance, Cd exceeded carcinogenic risk thresholds in P03 and P08 at both 50 % and 100 % bioaccessibility. Ni contributed additional moderate carcinogenic disproportionately risks, again affecting children. Pb, despite its presence, had relatively lower carcinogenic contributions but remains a critical toxicant of concern.

3.6 Regulatory and Public Health Perspectives The results underscore significant progress in cosmetic powder safety compared with earlier Nigerian studies, particularly concerning Pb and Cd concentrations. This improvement likely reflects enhanced quality control and regulatory enforcement. However, the persistence of Pb in nearly all samples highlights the need for stricter manufacturing oversight.

Regulatory authorities such as NAFDAC in Nigeria and international bodies like the WHO and FDA should consider periodic heavy metal monitoring and enforce stricter import and local production standards.

From a public health standpoint, the results stress the vulnerability of children to both radiological and heavy metal exposure. Educational campaigns to raise consumer awareness about the risks of low-quality powders essential. Additionally, are should manufacturers adopt safer raw materials, implement cleaner production and conduct regular quality processes, assurance testing.

3.6 Statistical Analysis of Experimental Data

To further validate the experimental observations, statistical analyses were performed to examine relationships among

variables, compare elemental concentrations, and evaluate compliance with international safety thresholds. The results are presented in Tables 8–11.

Table 8 presents the regression analysis of absorbed dose rate (D) as a function of activity concentrations of <sup>232</sup>Th, <sup>238</sup>U, and <sup>40</sup>K. The regression model returned coefficients ( $\beta_1$  = 0.604,  $\beta_2 = 0.462$ ,  $\beta_3 = 0.042$ ) that closely reproduce the theoretical dose conversion factors, with an R<sup>2</sup> value approaching unity (0.99999997).This nearly perfect demonstrates experimentally that the determined absorbed dose rates are strongly governed by the concentrations of the measured radionuclides. Technically, this confirms the robustness of the absorbed dose equation in predicting dose rates from radionuclide activity concentrations, thereby reinforcing its reliability in radiological risk assessment. Table 9 summarizes the results of a one-way ANOVA performed across heavy metal concentrations (Cd, Cr, Ni, Co, Pb). The analysis revealed significant differences among the group means (F = 24.84).

Tukey's post-hoc comparisons showed that Pb concentrations were statistically higher than those of Cd, Cr, Ni, and Co (p < 0.001), while Ni was significantly higher than Cd and Co. These findings confirm that Pb is the dominant heavy metal in the powders, consistent with the order Pb > Ni > Cd > Co > Cr observed in the descriptive analysis.



Table 2: Activity Concentrations of NRs and Radiological Health Risk Parameters

| Code    | <sup>232</sup> Th<br>(Bq/Kg) | <sup>238</sup> U<br>(Bq/Kg) | <sup>40</sup> K<br>(Bq/Kg) | D<br>nGyh <sup>-1</sup> | AEDE<br>mSvy <sup>-1</sup> | Ra <sub>eq</sub><br>BqKg <sup>-1</sup> | H <sub>ex</sub> | H <sub>in</sub> | Iy   | AGED<br>mSvy <sup>-1</sup> | ELCR<br>x 10 <sup>-3</sup> |
|---------|------------------------------|-----------------------------|----------------------------|-------------------------|----------------------------|----------------------------------------|-----------------|-----------------|------|----------------------------|----------------------------|
| P01     | 25.26                        | 9.22                        | 94.39                      | 23.45                   | 0.029                      | 52.61                                  | 0.14            | 0.17            | 0.38 | 163.72                     | 0.09                       |
| P02     | 20.20                        | 4.60                        | 99.04                      | 18.46                   | 0.023                      | 41.11                                  | 0.11            | 0.12            | 0.30 | 129.75                     | 0.07                       |
| P03     | 7.60                         | 2.55                        | 54.92                      | 8.06                    | 0.010                      | 17.65                                  | 0.05            | 0.05            | 0.13 | 56.89                      | 0.03                       |
| P04     | 26.28                        | 6.84                        | 68.52                      | 21.89                   | 0.027                      | 49.70                                  | 0.13            | 0.15            | 0.35 | 152.50                     | 0.08                       |
| P05     | 18.45                        | BDL                         | 237.26                     | -                       | -                          | -                                      | -               | -               | -    |                            | -                          |
| P06     | 9.61                         | 10.05                       | 225.14                     | 19.84                   | 0.024                      | 41.13                                  | 0.11            | 0.14            | 0.31 | 141.92                     | 0.07                       |
| P07     | 45.83                        | 10.93                       | 59.23                      | 35.20                   | 0.043                      | 81.03                                  | 0.22            | 0.25            | 0.57 | 243.94                     | 0.13                       |
| P08     | 37.14                        | 7.30                        | 106.99                     | 30.27                   | 0.037                      | 68.65                                  | 0.19            | 0.21            | 0.49 | 211.40                     | 0.11                       |
| P09     | 40.56                        | BDL                         | 231.7                      | -                       | -                          | -                                      | -               | -               | -    |                            | -                          |
| P10     | 14.74                        | 22.01                       | 100.73                     | 23.27                   | 0.029                      | 50.84                                  | 0.14            | 0.20            | 0.36 | 161.25                     | 0.09                       |
| P11     | 8.88                         | 13.50                       | 66.17                      | 14.36                   | 0.018                      | 31.29                                  | 0.08            | 0.12            | 0.22 | 99.61                      | 0.05                       |
| P12     | 28.56                        | 2.85                        | 54.67                      | 20.85                   | 0.026                      | 47.90                                  | 0.13            | 0.14            | 0.34 | 145.35                     | 0.08                       |
| P13     | 21.34                        | 43.24                       | 232.5                      | 42.56                   | 0.052                      | 91.66                                  | 0.25            | 0.36            | 0.66 | 295.82                     | 0.16                       |
| P14     | 49.7                         | 3.21                        | 210.2                      | 40.27                   | 0.049                      | 90.47                                  | 0.24            | 0.25            | 0.66 | 283.67                     | 0.15                       |
| UNSCEAR | 50                           | 50                          | 500                        | 59                      | -                          | -                                      | -               | -               | -    | -                          | -                          |

<sup>\*\*</sup>BDL=below detectable limit, UNSCEAR = United Nations Scientific Committee on the Effects of Atomic Radiation
Table 3: Working conditions for HMs determination using AAS

| HM | Wavelength (nm) | Slit Width (nm) | Detection Limit<br>(mg/L) | Lamp Current (mA) | Linear Range<br>(mg/L) | Flame Type<br>(Colour) |
|----|-----------------|-----------------|---------------------------|-------------------|------------------------|------------------------|
| Cd | 228.9           | 0.7             | 0.01                      | 10                | 2.00                   | A–A, Lean/Blue         |
| Cr | 240.7           | 0.2             | 0.05                      | 20                | 5.00                   | A-A, Lean/Blue         |
| Ni | 357.9           | 0.7             | 0.04                      | 20                | 5.00                   | A-A, Lean/Blue         |
| Co | 232.0           | 0.2             | 0.05                      | 20                | 4.00                   | A-A, Lean/Blue         |
| Pb | 217.0           | 0.7             | 0.04                      | 15                | 10.00                  | A-A, Lean/Blue         |



Table 4: Mean concentration of HMs in the surveyed cosmetic powders

| Code            | Cd (ppm)           | Cr (ppm)          | Ni (ppm)          | Co (ppm)          | Pb (ppm)          |
|-----------------|--------------------|-------------------|-------------------|-------------------|-------------------|
| P01             | $0.0128 \pm 0.002$ | 0.004±0.001       | 0.300±0.002       | 0.030±0.002       | 0.247±0.001       |
| P02             | $0.0220 \pm 0.002$ | $0.007 \pm 0.002$ | $0.300 \pm 0.002$ | $0.017 \pm 0.002$ | $0.309\pm0.001$   |
| P03             | $0.0550 \pm 0.002$ | $0.004 \pm 0.001$ | $0.200 \pm 0.001$ | $0.026 \pm 0.002$ | $1.111\pm0.002$   |
| P04             | $0.0164 \pm 0.002$ | $0.007 \pm 0.002$ | $0.400 \pm 0.002$ | $0.024 \pm 0.002$ | $0.494 \pm 0.001$ |
| P05             | $0.0147 \pm 0.002$ | $0.008 \pm 0.002$ | $0.300 \pm 0.001$ | $0.009 \pm 0.001$ | $0.432 \pm 0.001$ |
| P06             | $0.0128 \pm 0.002$ | $0.007 \pm 0.002$ | $0.200 \pm 0.001$ | $0.023 \pm 0.002$ | $1.173 \pm 0.002$ |
| P07             | $0.0220 \pm 0.002$ | $0.001 \pm 0.001$ | $0.200 \pm 0.001$ | $0.017 \pm 0.002$ | $0.617 \pm 0.002$ |
| P08             | $1.2418 \pm 0.002$ | $0.004 \pm 0.001$ | $0.300 \pm 0.002$ | $0.029 \pm 0.002$ | $1.852 \pm 0.002$ |
| P09             | $0.0073 \pm 0.001$ | $0.005 \pm 0.002$ | $0.100\pm0.001$   | $0.007 \pm 0.001$ | $1.111\pm0.002$   |
| P10             | $0.0037 \pm 0.001$ | $0.010\pm0.002$   | $0.200 \pm 0.002$ | $0.014 \pm 0.002$ | $0.617 \pm 0.002$ |
| P11             | $0.0183 \pm 0.002$ | $0.001 \pm 0.001$ | $0.200 \pm 0.001$ | $0.019 \pm 0.002$ | $0.617 \pm 0.002$ |
| P12             | $0.0128 \pm 0.002$ | $0.008 \pm 0.002$ | $0.100\pm0.001$   | $0.027 \pm 0.002$ | $0.679\pm0.002$   |
| P13             | $0.0073 \pm 0.001$ | $0.007 \pm 0.002$ | 0.200±0.001       | $0.030 \pm 0.002$ | $0.864 \pm 0.002$ |
| P14             | $0.0110 \pm 0.002$ | $0.004\pm0.001$   | $0.300 \pm 0.002$ | $0.029 \pm 0.002$ | $0.864 \pm 0.002$ |
| WHO/<br>U.S FDA | 0.300              | 5.00              | 0.600             | 1.0               | 10.00             |

WHO = World health Organisation, U.S FDA = U.S. Food and Drug Administration



Table 5a. Comparison of HMs Concentration (ppm or mg/kg) Observed with Omenka and Adeyi (2016) for Same Powders and Manufacturer

| Sample Name                | Code | Cd (ppm)           | Pb (ppm)          | Ni (ppm)          | Production | Expiry  | Reference             |
|----------------------------|------|--------------------|-------------------|-------------------|------------|---------|-----------------------|
|                            |      |                    |                   |                   | Date       | Date    |                       |
| mp3 Cool Refreshing Talcum | P09  | $0.0073 \pm$       | 1.111 ±           | $0.100 \pm$       | 02-2023    | 02-2026 | Present study         |
| Powder                     |      | 0.001              | 0.002             | 0.001             |            |         |                       |
|                            | 003P | $0.25\pm0.0$       | $3.75\pm1.8$      | $2.75 \pm 0.4$    | 05-2014    | 05-2017 | Omenka & Adeyi (2016) |
| Passion Talcum Powder      | P10  | $0.0037 \pm 0.001$ | $0.014 \pm 0.002$ | $0.200 \pm 0.002$ | 08-2023    | 07-2026 | Present study         |
|                            | 01PP | $0.13 \pm 0.2$     | $6.25\pm1.8$      | $4.63 \pm 2.7$    | 05-2014    | 05-2017 | Omenka & Adeyi (2016) |
| Rising Raving Baby Powder  | P11  | $0.0183 \pm 0.002$ | $0.617 \pm 0.002$ | $0.200 \pm 0.001$ | 05-2024    | 04-2028 | Present study         |
|                            | 07PP | ND                 | 468               | 5.75              | 04-2014    | 03-2018 | Omenka & Adeyi (2016) |

Table 5b. Comparison of Concentrations of HMs (mg/kg, ppm, or  $\mu g/g$ ) Observed with Previous Results for Local and

Foreign Powders Used in Nigeria

|         | 1 owders osed m iv   | U                     |                       |                       |                     |                      |
|---------|----------------------|-----------------------|-----------------------|-----------------------|---------------------|----------------------|
| Origin  | Cd (mg/kg) / (ppm /  | Cr (mg/kg)            | Ni (mg/kg)            | Co (mg/kg)            | Pb (mg/kg)          | Reference            |
|         | $\mu g/g)$           |                       |                       |                       |                     |                      |
| Local   | $0.0128 \pm 0.002 -$ | $0.001 \pm 0.001$ $-$ | $0.100 \pm 0.002$ $-$ | $0.007 \pm 0.001$ $-$ | $0.247 \pm 0.002 -$ | Present study        |
|         | $1.2418 \pm 0.002$   | $0.010 \pm 0.002$     | $0.400 \pm 0.001$     | $0.030 \pm 0.002$     | $1.852 \pm 0.002$   |                      |
| Local   | $2.10 \pm 0.30$      | $0.20 \pm 0.10$       | _                     | $0.70 \pm 0.10$       | $5.00 \pm 1.00$     | Nnorom (2011)        |
| Local   | ND - 36.3            | _                     | 0.13 - 107            | _                     | ND-468              | Omenka & Adeyi       |
|         |                      |                       |                       |                       |                     | (2016)               |
| Local   | $0.139 \pm 0.063$    | $0.183 \pm 0.119$     | _                     | _                     | $0.043 \pm 0.027$   | Olayinka et al.      |
|         |                      |                       |                       |                       |                     | (2020)               |
| Local   | 1.46                 | 27.581                | 39.455                | _                     | 27.581              | Idris et al. (2019)  |
| Foreign | 0.520                | 0.725                 | 1.825                 | _                     | 0.061               | Manu et al. (2023)   |
| Foreign | 0.07 - 1.74          | 0 - 0.03              | 3.68 - 11.03          | _                     | 0.08 - 0.33         | Sani et al. (2016)   |
| Foreign | $0.007 \pm 0.003$    | $0.205 \pm 0.089$     | $0.042 \pm 0.008$     | _                     | $0.624 \pm 1.508$   | Surajo et al. (2021) |
| Foreign | 0.258 - 0.360        | ND - 0.262            | 0.720 - 1.425         | 0.660 - 1.225         | 2.325 - 3.975       | Ullah et al. (2017)  |

**Note:** ND = Not Detectable.



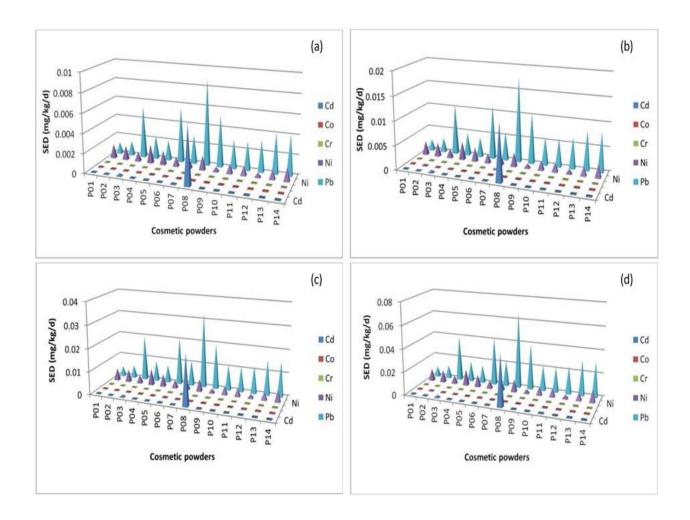



Fig. 1: SED at (a) 50 % (b) 100 % for adults and (c) 50 % and (d) 100 % bio-accessibilty levels for children for the surveyed cosmetic powders



Table 6b: Margin of Safety (MoS) for Heavy Metals (HMs) in the surveyed cosmetic powders upon usage by children

| Code |         | 50% bio-acces | sibility fact | or     |       | 100    | 0% bio-accessib | ility facto | or     |       |
|------|---------|---------------|---------------|--------|-------|--------|-----------------|-------------|--------|-------|
|      | Cd      | Cr            | Ni            | Co     | Pb    | Cd     | Cr              | Ni          | Co     | Pb    |
| P01  | 435.34  | 4179.29       | 371.49        | 55.72  | 90.24 | 217.67 | 2089.65         | 185.75      | 27.86  | 45.12 |
| P02  | 253.29  | 2388.17       | 371.49        | 98.34  | 72.13 | 126.65 | 1194.08         | 185.75      | 49.17  | 36.07 |
| P03  | 101.32  | 4179.29       | 557.24        | 64.30  | 20.06 | 50.66  | 2089.65         | 278.62      | 32.15  | 10.03 |
| P04  | 339.78  | 2388.17       | 278.62        | 69.65  | 45.12 | 169.89 | 1194.08         | 139.31      | 34.83  | 22.56 |
| P05  | 379.07  | 2089.65       | 371.49        | 185.75 | 51.60 | 189.54 | 1044.82         | 185.75      | 92.87  | 25.80 |
| P06  | 435.34  | 2388.17       | 557.24        | 72.68  | 19.00 | 217.67 | 1194.08         | 278.62      | 36.34  | 9.50  |
| P07  | 253.29  | 16717.17      | 557.24        | 98.34  | 36.13 | 126.65 | 8358.58         | 278.62      | 49.17  | 18.06 |
| P08  | 4.49    | 4179.29       | 371.49        | 57.65  | 12.04 | 2.24   | 2089.65         | 185.75      | 28.82  | 6.02  |
| P09  | 763.34  | 3343.43       | 1114.48       | 238.82 | 20.06 | 381.67 | 1671.72         | 557.24      | 119.41 | 10.03 |
| P10  | 1506.05 | 1671.72       | 557.24        | 119.41 | 36.13 | 753.03 | 835.86          | 278.62      | 59.70  | 18.06 |
| P11  | 304.50  | 16717.17      | 557.24        | 87.99  | 36.13 | 152.25 | 8358.58         | 278.62      | 43.99  | 18.06 |
| P12  | 435.34  | 2089.65       | 1114.48       | 61.92  | 32.83 | 217.67 | 1044.82         | 557.24      | 30.96  | 16.41 |
| P13  | 763.34  | 2388.17       | 557.24        | 55.72  | 25.80 | 381.67 | 1194.08         | 278.62      | 27.86  | 12.90 |
| P14  | 506.58  | 4179.29       | 371.49        | 57.65  | 25.80 | 253.29 | 2089.65         | 185.75      | 28.82  | 12.90 |

**Table 7a: Carcinogenic risk in adults** 

| Code |          | 50% bio-acces | ssibility factor | r        | 100% bio-accessibility factor |          |          |          |  |
|------|----------|---------------|------------------|----------|-------------------------------|----------|----------|----------|--|
|      | Cd       | Cr            | Ni               | Pb       | Cd                            | Cr       | Ni       | Pb       |  |
| P01  | 4.10E-04 | 9.57E-06      | 1.31E-03         | 1.00E-05 | 8.21E-04                      | 1.91E-05 | 2.61E-03 | 2.01E-05 |  |
| P02  | 7.05E-04 | 1.67E-05      | 1.31E-03         | 1.26E-05 | 1.41E-03                      | 3.35E-05 | 2.61E-03 | 2.51E-05 |  |
| P03  | 1.76E-03 | 9.57E-06      | 8.71E-04         | 4.52E-05 | 3.53E-03                      | 1.91E-05 | 1.74E-03 | 9.04E-05 |  |
| P04  | 5.26E-04 | 1.67E-05      | 1.74E-03         | 2.01E-05 | 1.05E-03                      | 3.35E-05 | 3.48E-03 | 4.02E-05 |  |
| P05  | 4.71E-04 | 1.91E-05      | 1.31E-03         | 1.76E-05 | 9.43E-04                      | 3.83E-05 | 2.61E-03 | 3.51E-05 |  |
| P06  | 4.10E-04 | 1.67E-05      | 8.71E-04         | 4.77E-05 | 8.21E-04                      | 3.35E-05 | 1.74E-03 | 9.54E-05 |  |
| P07  | 7.05E-04 | 2.39E-06      | 8.71E-04         | 2.51E-05 | 1.41E-03                      | 4.79E-06 | 1.74E-03 | 5.02E-05 |  |



| P08 | 3.98E-02 | 9.57E-06 | 1.31E-03 | 7.53E-05 | 7.96E-02 | 1.91E-05 | 2.61E-03 | 1.51E-04 |
|-----|----------|----------|----------|----------|----------|----------|----------|----------|
| P09 | 2.34E-04 | 1.20E-05 | 4.35E-04 | 4.52E-05 | 4.68E-04 | 2.39E-05 | 8.71E-04 | 9.04E-05 |
| P10 | 1.19E-04 | 2.39E-05 | 8.71E-04 | 2.51E-05 | 2.37E-04 | 4.79E-05 | 1.74E-03 | 5.02E-05 |
| P11 | 5.87E-04 | 2.39E-06 | 8.71E-04 | 2.51E-05 | 1.17E-03 | 4.79E-06 | 1.74E-03 | 5.02E-05 |
| P12 | 4.10E-04 | 1.91E-05 | 4.35E-04 | 2.76E-05 | 8.21E-04 | 3.83E-05 | 8.71E-04 | 5.52E-05 |
| P13 | 2.34E-04 | 1.67E-05 | 8.71E-04 | 3.51E-05 | 4.68E-04 | 3.35E-05 | 1.74E-03 | 7.03E-05 |
| P14 | 3.53E-04 | 9.57E-06 | 1.31E-03 | 3.51E-05 | 7.05E-04 | 1.91E-05 | 2.61E-03 | 7.03E-05 |

.Table 7b: Carcinogenic risk for children

| Code       | 50 % bio-a | ccessibility fa | ctor     |          | 100 % bio | accessibility | factor   |          |
|------------|------------|-----------------|----------|----------|-----------|---------------|----------|----------|
|            | Cd         | Cr              | Ni       | Pb       | Cd        | Cr            | Ni       | Pb       |
| P01        | 1.54E-03   | 3.59E-05        | 4.90E-03 | 3.77E-05 | 3.08E-03  | 7.18E-05      | 9.80E-03 | 7.54E-05 |
| P02        | 2.65E-03   | 6.28E-05        | 4.90E-03 | 4.71E-05 | 5.29E-03  | 1.26E-04      | 9.80E-03 | 9.43E-05 |
| P03        | 6.61E-03   | 3.59E-05        | 3.27E-03 | 1.69E-04 | 1.32E-02  | 7.18E-05      | 6.53E-03 | 3.39E-04 |
| P04        | 1.97E-03   | 6.28E-05        | 6.53E-03 | 7.54E-05 | 3.94E-03  | 1.26E-04      | 1.31E-02 | 1.51E-04 |
| P05        | 1.77E-03   | 7.18E-05        | 4.90E-03 | 6.59E-05 | 3.53E-03  | 1.44E-04      | 9.80E-03 | 1.32E-04 |
| P06        | 1.54E-03   | 6.28E-05        | 3.27E-03 | 1.79E-04 | 3.08E-03  | 1.26E-04      | 6.53E-03 | 3.58E-04 |
| <b>P07</b> | 2.65E-03   | 8.97E-06        | 3.27E-03 | 9.41E-05 | 5.29E-03  | 1.79E-05      | 6.53E-03 | 1.88E-04 |
| P08        | 1.49E-01   | 3.59E-05        | 4.90E-03 | 2.83E-04 | 2.99E-01  | 7.18E-05      | 9.80E-03 | 5.65E-04 |
| P09        | 8.78E-04   | 4.49E-05        | 1.63E-03 | 1.69E-04 | 1.76E-03  | 8.97E-05      | 3.27E-03 | 3.39E-04 |
| P10        | 4.45E-04   | 8.97E-05        | 3.27E-03 | 9.41E-05 | 8.90E-04  | 1.79E-04      | 6.53E-03 | 1.88E-04 |
| P11        | 2.20E-03   | 8.97E-06        | 3.27E-03 | 9.41E-05 | 4.40E-03  | 1.79E-05      | 6.53E-03 | 1.88E-04 |
| P12        | 1.54E-03   | 7.18E-05        | 1.63E-03 | 1.04E-04 | 3.08E-03  | 1.44E-04      | 3.27E-03 | 2.07E-04 |
| P13        | 8.78E-04   | 6.28E-05        | 3.27E-03 | 1.32E-04 | 1.76E-03  | 1.26E-04      | 6.53E-03 | 2.64E-04 |
| P14        | 1.32E-03   | 3.59E-05        | 4.90E-03 | 1.32E-04 | 2.65E-03  | 7.18E-05      | 9.80E-03 | 2.64E-04 |



The implication of this result is that Pb, although within acceptable safety limits, accounts for the largest contribution to the overall heavy metal burden and thus represents the primary target for continued regulatory surveillance.

Table 8: Regression: absorbed dose D vs Th, U, K40

| Coefficient           | Estimate    |
|-----------------------|-------------|
| const                 | 0.001236    |
| Th $(\beta_1)$        | 0.603974    |
| $U(\beta_2)$          | 0.461816    |
| K40 (β <sub>3</sub> ) | 0.041722    |
| R <sup>2</sup>        | ~0.99999997 |

Table 10: ANOVA (one-way) across metals & Tukey post-hoc

| Source | Sum           | df | F      | p-    |
|--------|---------------|----|--------|-------|
|        | of_<br>square |    |        | value |
| Metal  | 5.8455        | 4  | 24.839 | 1.66E |
|        |               |    | 6      | -12   |
| Residu | 3.8241        | 6  |        |       |
| al     |               | 5  |        |       |

Table 11 presents the contamination factors (CF) and enrichment factors (EF) for the heavy metals, providing a normalized measure of relative risk. The CF values for all metals were <1, indicating concentrations below WHO limits on average. However, the EF analysis revealed a striking anomaly for Cd, where one sample (P08) showed enrichment far above the dataset median (mean EF  $\approx$  24). This highlights that while the general contamination risk is low, localized enrichment can occur in specific powders, potentially due to raw material inconsistencies or production practices.

The results from the analyses provide converging evidence that radionuclide activity concentrations in the cosmetic powders are well within international radiological safety limits, while heavy metals—particularly Pb

and Cd—remain critical factors for toxicological and regulatory assessment. The combined experimental and statistical evaluation confirms product safety in most cases but emphasizes the need for sustained monitoring and stricter quality assurance protocols to eliminate anomalous exceedances.

Table 11: Compliance/exceedance vs WHO limits (empirical)

| Metal | # samples > WHO   | %          |
|-------|-------------------|------------|
|       | limit (out of 14) | exceedance |
| Cd    | 1                 | 7.14%      |
| Cr    | 0                 | 0%         |
| Ni    | 0                 | 0%         |
| Co    | 0                 | 0%         |
| Pb    | 0                 | 0%         |

## 4.0 Conclusion

The mean activity concentrations of ^232Th  $(25.30 \pm 1.31 \text{ Bq kg}^{-1}), ^238U (11.36 \pm 1.00)$ Bq kg<sup>-1</sup>), and  $^40$ K (131.53  $\pm$  7.09 Bq kg<sup>-1</sup>) were all far below the recommended safe limits of 50, 50, and 500 Bq kg<sup>-1</sup>, respectively. This indicates that exposure to the surveyed cosmetic powders poses no radiological health risk. Heavy metals were detected in the order Pb > Ni > Cd > Co > Cr, with Pb recording the highest and Cr the lowest concentration. The levels of Pb, Cd, and Ni in all the samples, except Cd in sample P08, were below the acceptable limits of 10, 0.3, and 0.6 mg kg<sup>-1</sup>, respectively, for cosmetic products as set by WHO. Overall, the results suggest a significant decline in heavy metal concentrations compared with earlier reports, reflecting improvement in the quality of locally produced cosmetic powders. However, Margin of Safety (MoS) values reveal that prolonged exposure could pose health risks at both 50 % and 100 % bio-accessibility, particularly in children.

The study confirms that the cosmetic powders analyzed are radiologically safe, but the presence of trace heavy metals—though



largely within permissible limits—warrants caution. The findings highlight progress in product safety compared with earlier studies, yet potential risks remain under conditions of long-term exposure and higher bioaccessibility.

Continuous monitoring and enforcement of safety standards are recommended to ensure consistent product safety. Manufacturers should maintain stringent quality control to further minimize heavy metal contamination, while regulatory agencies should intensify routine checks. Public awareness programs are also needed to inform consumers about potential risks from prolonged use, especially for children. Future studies should investigate bio-accessibility and long-term exposure effects to provide a more comprehensive risk assessment.

## Acknowledgements

The authors are grateful to the Tertiary Education Trust Fund (TETFund) for funding this research through Institution Based Research (IBR) fund. The authors also appreciate Prof. Yakubu, O. E. and his team at the Central Laboratory and Research Centre, Federal University Wukari Taraba State for their wonderful works. Also, Dr Owoade Latifat and Mr Adeyemo Kunle with their wonder team at the National Institute of Radiation Protection and Research (NIRPR), University of Ibadan, for their good work.

#### 3.0 References

- Abdulrahman, F. F., & Sani, A. (2018). Heavy metal contamination of locally produced cosmetics in Nigeria. *Environmental Monitoring and Assessment*, 190, 2, pp. 81–90.
- Al-zahrani, J. H., & Fakeha, A. A. (2017). Concentration of 225Ra, 232Th and 40K radionuclide in natural products commonly used as cosmetics materials in Saudi

- Arabia. Journal of Material Science and Engineering, 2169-0022.
- Almugren, K. S., Abdul Sani, S. F., Azim, M. K. M., Ismail, N. N., Khandaker, M. U., Alsufyani, S. J., Alkallas, F. H., Almajid, H. F., Bradley, D. A., & Naseer, K. A. (2023). The presence of NORMs and toxic heavy metals in talcum baby powder. *Journal of Radiation Research and Applied Sciences*, 16, pp. 100660. https://doi.org/10.1016/j.jrras.2023.100660
- Arshad, H., Mehmood, M. Z., Shah, M. H., & Abbasi, A. M. (2020). Evaluation of heavy metals in cosmetic products and their health risk assessment. *Saudi Pharmaceutical Journal*, 28, pp. 779–790. https://doi.org/10.1016/j.jsps.2020.05.006
- Avwiri, G. O., Ononugbo, C. P., & Nwokeoji, I. E. (2014). Radiation hazard indices and excess lifetime cancer risk in soil, sediment and water around Mini-Okoro/Oginigba Creek, Port Harcourt, Rivers State, Nigeria. *Comprehensive Journal of Environment and Earth Sciences*, 3, 1, pp. 38-50.
- Chatzimichael, E., Kouras, A., Stavroulakis, G., Ainabkoi, L., & Vidakis, N. (2019). Assessment of heavy metal content in cosmetics in Greece. *Fresenius Environmental Bulletin*, 28, 6, pp. 97–108.
- Eddy, N. O., Eze, I. S., Garg, R., Akpomie, K., Udoekpote, G., Timothy, C. L., Ucheana, I. A., & Paktin, H. (2025a). Exploration of health effects, economic impacts, and regulatory challenges for ionizing radiation: A case study in Nigeria. *Discover Applied Sciences*. <a href="https://doi.org/10.1007/s42452-025-07069-z">https://doi.org/10.1007/s42452-025-07069-z</a>.
- Eddy, N. O., Igwe, O., Eze, I. S., Garg, R., Akpomie, K., Timothy, C., Udeokpote, G., Ucheana, I., & Paktin, H. (2025b). Environmental and public health risk management, remediation and rehabilitation options for impacts of



- radionuclide mining. *Discover Sustainability* 6, 209, https://doi.org/10.1007/s43621-025-01047-6.
- Gerba, C. P., Brusseau, M. L., & Ian, L. P. (2019). Environmental and pollution science. *Science Direct*, pp. 617-633.
- Goulart, M. O. F., de Oliveira, M. L., Costa, P. M. B., Gouvêa, P. F. S., Silva, A. L. O., Mársico, E. T., & Santos, F. A. R. (2018). Heavy metals in cosmetic products sold in Brazil. *Regulatory Toxicology and Pharmacology*, 92, pp. 129-133.
- Hani, Z., Hashim, S., Hassan, H., Yusof, N. N., & Bradley, D. A. (2021). Radioactive material in cosmetic and healthcare products: Regulatory controls. *Radiation Physics and Chemistry*, 188, pp. 109673.
- Idris, M. M., Ibrahim, U., Maryam, M. D., Yusuf, S. D., & Ubana, M. A. (2019). Health risk assessment of some cosmetics sold in Keffi market, Nasarawa State Nigeria. *Dutse Journal of Pure and Applied Science*, 5, 2, pp. 120-128.
- Kumar, A., Singh, R., & Yadav, S. (2016). Assessment of heavy metals in cosmetic products. *International Journal of Toxicological and Pharmacological Research*, 8, 5, pp. 315–324.
- Manu, J. M., Norah, S., Vincent, F., & Francis, S. (2023). Levels of Cd, Cr, Cu, Ni, Zn, As and Pb in Some Cosmetic Products in Jimeta—Yola Modern Market, Adamawa State, Nigeria. *Journal of Applied Sciences and Environmental Management*, 27, 8, pp. 1739-1743.

#### https://doi.org/10.4314/jasem.v27i8.18

- Medhat, M. E., Singh, V. P., & Shirmardi, S. P. (2015). Determination of Lead and radioactivity in cosmetics products: hazard assessment. *Nuclear Technology and Radiation Protection*, 30, 3, pp. 219-224.
- Mgbemere, C. J., & Ononugbo, C. P. (2021). Assessment of Radionuclides in some fruits

- from Niger Delta and it Risks. Asian Journal of Research and Reviews in Physics, 2584-5992.
- Nnorom, I. C. (2011). Trace metals in cosmetic facial talcum powders marketed in Nigeria. *Toxicological and Environmental Chemistry*, 93, 6, pp. 1135–1148. <a href="https://doi.org/10.1080/02772248.20">https://doi.org/10.1080/02772248.20</a> 11.577075.
- Osabuohien, F. O. (2019). Green Analytical Methods for Monitoring APIs and Metabolites in Nigerian Wastewater: A Pilot Environmental Risk Study. *Communication in Physical Sciences*, 4(2), 174-186.
- Osabuohien, F. O., Omotara, B. S., & Watti, O. I. (2021). Mitigating Antimicrobial Resistance through Pharmaceutical Effluent Control: Adopted Chemical and Biological Methods and Their Global Environmental Chemistry Implications. *Journal of Frontiers in Multidisciplinary Research*, 2(1), 236-253. https://doi.org/10.54660/.JFMR.2021.2.1.236-253
- Ojelabi, A. H., Lateef, M. I., & Lawal, B. H. (2018). Determination and comparative analyses of radionuclide concentration levels of some imported and local bathing soaps used in Nigeria. *International Journal of Research*, 5, 23, pp. 1012–1023.
- Omenka, S. S., & Adeyi, A. A. (2016). Heavy metal content of selected personal care products (PCPs) available in Ibadan, Nigeria and their toxic effects. *Toxicology Reports*, 3, pp. 628–635. <a href="https://doi.org/10.1016/j.toxrep.2016.07.0">https://doi.org/10.1016/j.toxrep.2016.07.0</a>
- Onjefu, S. A., Johannes, N. N., Abah, J., Onjefu, L. A., & Mwiya, S. (2022). Natural radioactivity levels and evaluation of radiological hazards in Usakos marble, Erongo region, Namibia. *International Journal of Radiation Research*, 20, 2, pp.

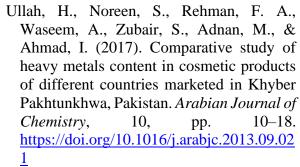


403-409.

https://doi.org/10.52547/ijrr.20.2.22

Olanrewaju, A. I., & Avwiri, G. O. (2017). Quantification of Activity Concentrations and Radiation Hazard Indices in the Solid Minerals Exploration Fields of Benue State, Nigeria with Multivariate Statistical Approach. *Advances in Research*, 10, 1, pp. 1–13.

Olayinka, A. I., Samuel, O. A., Samuel, S. A., Iseoluwa, J. O., Adeolu, J. A., Olugbenga, K. P., Mayowa, A. A., Abiodun, F. A., & Rauf, A. O. (2020). Assessment of Toxic Metals in Some Selected Cosmetic Products in Nigeria and their Health Risks. *Revista de Chimie*, 71, 9, pp. 39-46. https://doi.org/10.37358/RC.20.9.8315


Pratibha, S., Vinod, K., Rama, C., & Narendra, K. (2018). Heavy metals in cosmetics: An overview. *Journal of Cosmetic Dermatology*, 17, 3, pp. 125–136.

Sani, A., Gaya, M. B., & Abubakar, F. A. (2016). Determination of some heavy metals in selected cosmetic products sold in Kano Metropolis, Nigeria. *Toxicology Reports*, 3, pp. 866–869.

Sharma, K. G., Gadiya, J., & Dhanawat, M. (2018). *Textbook on cosmetic formulation*. Kbuuk Publications.

Surajo, I. T., Haruna, A., Kusharki, H. M., Ruma, M. M., & Salisu, A. (2021). Assessment of Some Heavy Metalsin Selected Cosmetics Commonly Sold in Katsina Marketsand Their Human Health Risk. *International Journal for Research in Applied Sciences and Biotechnology*, 8, 3, pp. 118–123. https://doi.org/10.31033/ijrasb.8.3.16

SCCS. (2021). The Scientific Committee on Consumer Safety: note of Guidance for the testing of cosmetic ingredients and their safety evaluation – 11th Revision, SCCS/1628/21.



Vaphiades, M., Roumelioti, I., Angelopoulou, N., & Tsatsakis, A. (2019). Heavy metals in cosmetic products: A systematic review. *Toxics*, 7, 3, pp. 36-42.

#### **Declaration**

## **Consent for publication**

Not Applicable

## Availability of data and materials

The publisher has the right to make the data public

## **Ethical Considerations**

The ethical considerations for this study centered on ensuring transparency, safety, and integrity in research. All cosmetic powder samples were purchased openly from the market, with no human or animal subjects involved, thus minimizing ethical concerns. Laboratory procedures were conducted in compliance with standard safety protocols to environmental contamination avoid researcher exposure. Data were analyzed and reported honestly, without manipulation, and findings were presented objectively to guide policy and consumer safety. Confidentiality of manufacturers was also respected.

## **Competing interest**

The authors report no conflict or competing interest

### **Funding**

The work wasfunded by Tertiary Education Trust Fund of Nigeria

## **Contribution of Authors**

AMO conceived and designed the study, supervised the research, coordinated radiological analyses, and contributed to



drafting and final editing of the manuscript. TJN carried out the heavy metal analysis using AAS, interpreted HM data, and assisted in writing the methodology and results. AIO helped with study design, validated analytical

procedures, and contributed to the discussion. AAP assisted with sample collection, preparation, and data organization, while EIS provided guidance, critically reviewed, and approved the final manuscript.

