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Abstract: A new symmetric bimodal extension 

of the Ailamujia distribution (SBEOAD) has 

been introduced in this study. pdf, cdf, survival 

function, hazard rate function, moments, 

absolute moments, mean residual life function, 

and quantile function were among the 

statistical characteristics of the distribution 

that were studied extensively. The maximum 

likelihood and method of moments approaches 

to estimating the SBEOAD's parameters were 

considered. The consistency property of the 

maximum likelihood estimates of the 

parameters has been empirically illustrated 

through a simulation investigation. The fits of 

the SBEOAD, the Laplace, Normal, and double 

Lindley distributions to two time series data 

were achieved using the maximum likelihood 

technique. When judged from the standpoint of 

the minimum AIC and BIC values, the 

SBEOAD provides the best fit to each of the 

data compared to the other three distributions 

fitted to the data. 
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1.0 Introduction 
 

 The choice of a probability distribution is often 

a critical issue in statistical modelling 

(Shanker, 2015; Okereke, 2019; Awodutire, 

2022). It is obvious that the structural 

properties of data, namely, symmetry, tail 

behaviour, modality, and central density, 

determine which distribution to fit to the data 

(Semary et al., 2025). Several distributions 

may have different structural properties, 

making them suitable for certain kinds of data. 

For example, the Ailamujia distribution of Lv 

et al.(2002) is unimodal, positively skewed and 

possesses the increasing hazard rate function. 

Interestingly, it is useful in modelling skewed 

data pertaining to reliability engineering. 

Though the distribution has tractable 

properties, it still suffers some setbacks. First, 

owing to its unimodal shape, it is not suitable 

for modelling multi modal data. Second, the 

possession of a single parameter by the 

distribution limits the flexibility and 

adaptability of the distribution in modelling 

data across different domains. Third, the 

distribution is applicable to continuous data 

comprising nonnegative values only. 

Quite a number of studies in the literature deal 

with the extensions of the Ailamujia 

distribution. Specifically, the area biased 

weighted Ailamujia distribution was 

introduced by Jayakumar and Elangovan 

(2019). Jan et al. (2020) examined the 

statistical properties and real-world 
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applications of the power Lindley Ailmujia 

distribution. Rather et al. (2022) proposed the 

exponentiated Ailamujia distribution, 

illustrating the superiority of the model to 

several comparable distributions when fitted to 

medical data. The theoretical framework and 

applications of the power Ailamujia 

distribution were explored by Jamal et al. 

(2021). Other extensions of the distribution 

include the Alpha power Ailamujia distribution 

(Gomaa et al., 2023) and type II half-logistic 

Ailamujia (Ragab and Elgarhy 2025).  

 From the foregoing, there is no work on the 

symmetric extension of the Ailamujia 

distribution. Despite wide applicability of 

unimodal symmetric distributions such as the 

Gaussian and Laplace models due to their 

analytical convenience, they fall short in 

situations where the data exhibit bimodal 

behaviour, sharp changes near the center, or 

non-zero likelihoods of extreme deviations. For 

such data, a more nuanced distributional form 

is required, which retains symmetry, 

tractability and introduces features like zero 

density at the mean and moderate kurtosis. This 

paper aims at introducing a symmetric bimodal 

extension of the Ailamujia distribution 

(SBEOAD). The remaining components of this 

article are arranged as follows. In Section 2, the 

pdf and other properties of the distribution are 

considerably determined. Section 3 deal with 

the approaches to estimating the parameters of 

the distribution. Simulation results are 

presented in Section 4 so as to enable 

investigate the consistency properties of the 

distribution. We demonstrate the applicability 

of the distribution in Section 5. This work is 

concluded in Section 6.   

2.0 Derivation and Basic Properties of 

SBEOAD 
 

This section is predicated on the derivation of 

the pdf of SBEOAD from Ailamujia 

distribution using the reflection method. 

Consequently, properties, namely, cumulative 

distribution function (cdf), moments, moment 

generating, characteristic function (mgf) and 

others are also determined in this section. 

Consider the Ailamujia distribution with pdf 

𝑔(𝑥) = 4𝜃2 𝑥𝑒−2𝜃𝑥, 𝑥 > 0, 𝜃 > 0.                  (1) 

A crucial aspect of the derivation of the new distribution has to do with the determination of value 

k for which (2.1) is a valid pdf.  

𝑓 ∗ (𝑥) = 𝑘𝑔 (|𝑥|), −∞ < 𝑥 < ∞,                  (2) 

where k is a normalizing constant. To find k, we proceed as follows 

𝑘 ∫ 𝑔|𝑥|

∞

−∞

𝑑𝑥 = 4𝑘𝜃2 ∫ |𝑥|𝑒−2𝜃|𝑥|𝑑𝑥 = 1

∞

−∞

 

4𝑘𝜃2  [1 − ∫ 𝑥

0

−∞

𝑒2𝜃𝑥𝑑𝑥 + ∫ 𝑥

∞

0

𝑒−2𝜃𝑥𝑑𝑥 ] = 1 

 

 4𝑘𝜃2  [
1

4𝜃2 +
1

4𝜃2] = 1 

2𝑘 = 1 

∴ 𝐾 = 1
2⁄  

From the foregoing,  

𝑓 ∗ (𝑥) = 2𝜃2|𝑥|𝑒−2𝜃|𝑥| , −∞ < ∞, 𝜃 > 0        (3) 

The distribution whose pdf is defined in (2.3) can be addressed as the double Ailamujia 

distribution. If we do the substitution 1 = in (2.3), the resulting distribution becomes the standard 
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Double Ailamujia distribution (SDAD). Introducing the location parameter ( )  and scale 

parameter ( )  into the pdf of the SDAD leads the (SBEOA) distribution with pdf  

 ( )
2

2

2
e , , , 0.

x

f x x x


  


− −

= − −    −                  (4) 

In Fig. 1, we that the pdf of the SBEOAD is M shaped, indicating that it is symmetric bimodal. 

  

 
Fig.1:pdf plot of the SBEOAD with 0.5 =  and 0.5 =  

We present and prove Theorem 2.1 for the sake of establishing theoretically that the distribution 

is arguably bimodal. 

Theorem 2.1:  The SBEOAD is bimodal with two symmetric modes at .
2

x


=   

Proof: To provide a formal proof of Theorem 2.1, let y x = −  in (2.4). When 0y  ,   we have 

the derivative 

0.0

0.2

0.4

0.6

-4 -2 0 2 4

x

f(
x
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 ( )
2

2

2 2
' e 1 .

y
y

f y 

 

−  
= − 

 
 

If ( )' 0f y = , then 
2

1 0
y


− = . 

That is 
2

y


= . 

Consequently,  

 ( )
2 2

2

2 2 2 2
'' e 1 e .

y y
y

f y  

   

− −  
= − − −  

  
 

It follows that  

 1

3

4
'' e

2
f





− 
= − 

 
, 

Which is less than zero provided that 0.  Hence, 
2

x


= +  is one of the modes of the 

distribution. 

Similarly, if 0y  , then 

 ( )
2

2

2 2
' e 1 .

y
y

f y 

 

 
= − + 

 
 

As a consequence, ( )' 0f y = indicates that 
2

y


= −  and 
2

x


= − . 

Also, ( )
2

3

8
'' 1 e .

y
y

f y 

 

 
= − + 

 
  

If 
2

y


= − , we obtain  

1

3

4
'' e

2
f





− 
− = − 
 

, 

detailing that 
2

x


= −  is another mode of the distribution. 

In summary, we have established that the distribution is symmetric bimodal with the modes 

2
x


= +  and 

2
x


= − . 

To determine the associated cumulative distribution function (cdf), we refer to two cases, which 

are x   and x  .  If x  , then the cdf is  

( ) ( )
( )2

2

2
( ) e .

tx x

F x f t dt t dt






−
−

− −

= = −   

Let ( )2 t
s





−
= . Then 

2

s
t


= −  and .

2
dt ds


= −  

Hence,  
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 ( )
( )2

1
e .

2

s

x

F x s ds






−

−

=   

Applying the concept of integration by parts leads to  

 ( )
( ) ( )21

exp .
2

x x
F x

 

 

   − −
= + −  
   

 

When x  ,  

 ( ) ( ) ( ) ( )

x x

F x f t dt f t dt f t dt



− −

= = +    

 

 ( )
( )

( )
( ) ( ) ( )2 2

2

22 1
e e 1 exp .

2

t t x x
t dt t dt

 

 



 
 

  

− −
− −

−

     − −
= − + − = − + −    

      
   

It follows that the cdf of the SBEOA Distribution is  

 ( )

( ) ( )

( ) ( )

21
exp ,if

2

21
1 exp ,if .

2

x x
x

F x
x x

x

 


 

 


 

   − −
+ −    

   
= 

   − −
− + −   
   

    (5) 

The cdf of the SBEOAD is graphed in Figure 2.2. 

 
Fig..2: cdf plot of the SBEOAD with 0.5 =  and 0.5 =  
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2.2 Moments of the SBEOAD 
 

Moments of a distribution are important because they can be used to find notable properties of the 

distribution, among which are mean, variance, skewness and kurtosis. The SBEOAD is a 

continuous distribution. Hence, its rth raw moment has the form 

 ( )r rE ( ) .X x f x dx



−

=   

For simplicity, we evaluate the moments of Y and employ the relationship between the two 

variables to derive the moments of X . Now, the rth raw moment of Y is  

 ( )
2

r r

2

2
E e , , 0.

y

Y y y dy y 



−

−

= −      

For the effective evaluation of the moments, two cases are worthy of consideration. These are 

when r is an odd number say 2k+1 and when it is even, say 2k. For odd-order moments, we have  

 ( ) ( )
02 2 2

2k+1 2k+1 2k+1 2k+2

2 2

0

2 2
E e e e .

y y y

Y y y dy y y dy y dy  

 

 
− −

− −

 
= = − + 

 
    

Let 
2y

m


= − . 
2

m
y


= − and 

2
dy dm


= − . Let 

2y
v


= . 

2

v
y


=  and .

2
dy dv


=  

Hence, 

 ( )
2 3 2 3

2k+1 2k+2 2k+2

2

0 0

2
E e e

2 2

k k

m vY m dm v dv
 



+ + 

− −
    

= − +    
     

   

  ( ) ( )
2 3 2 3

2

2
2 3 2 3 0.

2 2

k k

k k
 



+ +    
= −  + +  + =    

     

 

For even-order raw moments, we have   

 ( )
2 2 2 2

2k 2k+1 2k+1

2

0 0

2
E e e

2 2

k k

m vY m dm v dv
 



+ + 

− −
    

= +    
     

   

  ( ) ( )
2 2 2

2

4
2 2 2 1 !.

2 2

k k

k k
 



+    
=  + = +    

     

 

Thus, the r central moment of X is  

 ( )( )
( )

r r

0, if r is odd

E , if r is even.
r 1 !

2

X  




− =  
+ 

 

      (6) 

From (2.5), it is clear that ( )( )E 0X − = , implying that ( )E 0X = = . Also,  

( ) ( )( )
2 2

2 3
var =E 3!

2 2
X X

 


 
− = = 

 
, 

( )( )3
E 0X − =  

and 
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( )( )
4 4

4 15
E 5! .

2 2
X

 


 
− = = 

 
 

Since ( )( )3
E 0X − = , the coefficient of skewness for distribution is zero. As a consequence, it 

is a symmetric distribution. The coefficient of kurtosis for the distribution is given by 

 
( )( )
( )( )

4

2
2

E
K= .

E

X

X





−

 −
  

         (7) 

Substituting ( )( )
2

2 3
E

2
X


− =  and  ( )( )

4
4 15

E
2

X


− = into (2.6) yields 
1

K=3 .
3

 

2.3 Moment Generating Function and 

Characteristic Function of the SBEOAD 

The moment generating function (mgf) and 

characteristic function (cf) are useful in 

generating moments of random variables. Each 

of them uniquely determines a distribution. 

Again, the mgf does not exist for some random 

variables. However, the characteristic function 

exists for all distributions. It is worthy of note 

that when both functions exist, it is possible to 

obtain the cf of a distribution from the 

corresponding mgf. The mgf of the SBEOA 

distribution is  

( ) ( )M E e e ( ) .tX tX

X t f x dx



−

= =   

In order to simplify the derivation of the mgf of 

the distribution, we first determine that of the 

random variable Y . Thereafter, we use the 

relationship between X and Y to derive the 

requisite mgf and the accompanying cf. For the 

mgf of Y , we have  

 ( )
2 22

2 2

0 0

2 2
M e e ye ye

t y t yy
ty

Y t y dy dy dy 

 

     
+ − −−    

   

−

 
= = + 

  
    

  
( )

( )

2 2
2 2

2 2

22
2 2

4 42 2
, .

4
t t

t
t

t
 



 

− −
   

+ + −   
   

+
 = = 
   −

 

Since x y= + , the mgf of X  is  

 ( ) ( )
( )

( )

2 2

2
2 2

4e 4 2
M e M , .

4

t

t

X Y

t
t t t

t








+
= = 

−
 

The related characteristic function has the form 

 ( ) ( )
( )

( )

2 2

2
2 2

4e 4
E e .

4

it

itX

X

t
t

t

 




−
= =

+
 

 

2.4 Quantile Function for SBEOAD 
 

The quantile function is well known for its 

applications in statistical science. It is being 

used to generate random numbers from a 

distribution. Other uses of this function include 

quantile regression, nonparametric hypothesis 

testing, data visualization and determination of  

risk measures like value at risk (VaR) and  
 

income inequality measures. Let ( )0,1q . 

Here, the quantile function 
qx for the 

distribution is obtained by finding the solution 

of the equation 

 ( )qF x q= . 



Communication in Physical Sciences, 2025, 12(6):1823-1839 1830 
 

 
 

If x  , we consider the equation 

 
( ) ( )21

exp .
2

q qx x
q

 

 

   − −
  + − =
     

      (8) 

Solving for 
qx  in (2.7) yields 

 ( )1

11 2 e .
2

qx W q


 −

−
 = + + −
 

 

Similarly, when x  , the quantile function satisfies the equation 

 
( ) ( )21

1 exp .
2

q qx x
q

 

 

   − −
  − + − =
     

      (9) 

We solve for 
qx  in (2.8) to obtain 

 ( )1

11 2(1 )e .
2

qx W q


 −

−
 = − + − −
 

 

From the foregoing, the quantile function for the SBEOAD is  

 

( )

( )

1

1

1

1

1
1 2 e ,0

2 2

1
1 2(1 )e , 1,

2 2

q

W q q

x

W q q







−

−

−

−

  + + −    
= 
  − + − −  

 

     (10) 

where ( )1 .W−  is the negative branch of the Lambert W function. 

2.3 Absolute moments 

Given that ( )~ SBEOA ,X    and  𝑟 ≥ 1, the rth absolute moment of X −  is 

 
2

r

2

2
r e .

x

x


 



− −

−

= −  

The evaluation of the integral above is made simple by utilizing the distribution of .Z X = −  

Proposition 2.2 deals with this distribution. 

Proposition 2.2: Suppose that ( )~ SBEOA ,X   . Then Z X = −  is gamma distributed with 

shape parameter 2 and scale parameter 
2


. That is 

2
~ 2,Z G



 
 
 

. 

Proof: Let ( )W z represent the cdf of Z . Consequently, 

 ( ) ( )( ) P PW z Z z X z=  = −   

               ( ) ( ) ( )P z X z F z F z   = −   + = + − − . 

  Applying (2.5) when x   leads to  

( )
1 2

1 exp
2

z z
F z

 

   
+ = − + −  

   
. 

Similarly, if we apply (2.5) based on x  , we obtain 

 ( )
1 2

exp
2

z z
F z

 

   
− = + −  

   
. 
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It follows that  

1 2
( ) 1 2 exp .

2

z z
W z

 

   
= − + −  

   
 

Differentiating ( )W z with respect to z yields the pdf of Z  

 
2

4 2
( ) exp , 0,

z z
w z z

 

 
= −  

 
 

indicating that 
2

~ 2,Z G


 
 
 

. 

Now, we return to the problem of finding the absolute moments. In terms of Z , the requisite rth 

absolute moment is  

 ( )
( )r2

r r+1

r 2 r

r 1 !4
e .

2

z

E Z z dz






−

−

+
= = =  

In particular, the mean absolute deviation about the mean of the distribution is  

 ( )1 .E Z = =  

2.4 Reliability Concepts 
 

In view of the importance of probability distributions in reliability analysis, we deem it fit to derive 

expressions for reliability concepts pertaining to the distribution, especially the survival function, 

hazard rate function and mean residual life function. The survival function ( )S x of the SBEOAD 

is  

 ( )( ) 1S x F x= − . 

 ( )

( ) ( )

( ) ( )

21
1 exp ,if

2

21
exp ,if .

2

x x
x

S x
x x

x

 


 

 


 

    − −
− + −    

    
= 

   − −
+ −   

   

                                                                (11a) 

Again, the hazard rate function (hrf) of the SBEOAD is 

 

( )
( )

( ) ( )

( )
( )

( ) ( )

2

2

2

2

2 e
,if

21
1 exp

2
( )

2 e
,if .

21
exp

2

x

x

x
x

x x

h x

x
x

x x










 


 




 


 

− −

− −


−

     − −
 − + −         

= 


− 
    − −

+ −   
    

                 (11b) 

The graphical representation of the hrf of SBEOAD in Fig. 2 is an indication that the function is 

unimodal when x   and increasing provided x  . 
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Fig. 2: hrf plot of the SBEOAD with 0.5 =  and 0.5 =  

The mean residual life function (MRL) is 

 
1

( ) ( ) .
( )

x

m x S t dt
S x



=   

When x  ,  the requisite MRL is  

 
( ) ( )21

( ) exp .
2

x x

t t
S t dt dt

 

 

     − −
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   
          (12) 

Let 
( )2 t

w




−
= . Then (2.11) becomes  

 ( )
( )2

1
( ) exp .

2 2 2
xx

w
S t dt w dt






 

−

 
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exp .
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
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= −  
   

 

In the light of the above,  
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21
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2
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  



 
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−  
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      (14) 

When x  ,  the  MRL is  
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

−
= . Then  
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2
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t
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 


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
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

                (15) 

Changing the lower limit of the integral in (2.13) to  , we obtain 

 
( ) ( )21

exp .
2 2

t t
dt



  

 

    − −
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   
         (16) 

Combining (2.15) and (2.16) leads to  
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The related MRL is  
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.        (17) 

Using (2.14) and (2.17), the MRL for the SBEOAD is found to be   
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      (18) 

 

3.0 Estimation The two point estimation procedures that are of 

considerable interest in the article include the 
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method of moments and maximum likelihood 

method. 

3.1 Method of Moments  

Given a random sample 
1 2, ,..., nX X X from 

SBEOA( ,  ). The method of moments of   

and  are obtained by equating the theoretical 

mean and variance to their sample counterparts 

to obtain (19) and (20) respectively.  

 

n

i

i 1

n

X

X == =


  (19) 

 

( )
n

2 i

i 13

2 n

X 
 =

−

=


  (20) 

Let the method of  ̂ and ̂  denote the method 

moments estimators of   and   respectively. 

Solving (19) and (20) simultaneously, we have  

 ˆ .X =     

     

 (21) 

 

( )
n

i

i 1

2

ˆ .
3n

X X

 =

−

=


  (22) 

Though the estimators obtained above may be 

as good as the associated maximum likelihood 

estimators, the corresponding estimates can be 

useful in obtaining the maximum likelihood 

estimates of the parameters of the distribution 

through a numerical approach.  

3.2 Maximum Likelihood Estimation 

Let 𝑋1, 𝑋2, , . . , 𝑋𝑛,   denote a random sample of size n from SBEOA( ,  ).  The related likelihood 

function is 

 

n
n n

i i i2i 1 i 1

2 2
( ) expL f x x x 

 = =

   
=  =  − − −   

   
     (23)    

Taking natural log on both sides yields the log-likelihood function. 

 
n n

i i

i 1 i 1

2
ln n ln 2 2n ln ln .L x x  

= =

= − + − − −       (24) 

The partial derivative of the log-likelihood function with respect to each of the parameters is given 

below: 
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Equating each partial derivative to zero results in (25) and (26).  
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Let ̂ and ̂ be the maximum likelihood estimates of   and  respectively.  

Using (25), we obtain 
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i i

i 1 i 1i

1 2
sgn 0, .x x
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From (26), 
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1
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=
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Notably, (25) is a nonlinear equation and implicit in   . Hence, ̂ can be estimated numerically 

using the Newton -Raphson approach. Since  ̂  depends on ̂ , an iterative procedure is essential. 

4.0 Simulation 

In this section, a Monte Carlo simulation 

experiment is carried out the investigate the 

consistency property of the maximum 

likelihood estimators of the parameters of the 

SBEOAD. In each of N=1000 replications of 

the experiment, the quantile function of the 

SBEOAD is used to generate data from the 

distribution based on the sample sizes 

n=20,50,100,500 and the three sets of 

parameter values 

( ) ( ) ( ) ( )μ,σ 0.5,2 , 2,0.5 , 2,3= . For each 

simulated data, the maximum likelihood 

estimate of each of the parameters µ and   is 

obtained. Let jµ̂  and 
jσ̂ , respectively,  denote 

the maximum likelihood estimates of µ and 
that correspond to the jth replication of the 

Monte Carlo simulation experiment. We 

compute the average estimate (AE), average 

bias (AB) and mean squared error (MSE) for 

each sample size and a set of parameter values. 

Symbolically, 

 ( )
1000

j

j=1

1
ˆ ˆAE µ = µ

1000
 ; 

 ( ) ( )
1000

j

j=1

1
ˆ ˆAB µ = µ μ

1000
− ; 

 ( ) ( )
1000

2

j

j=1

1
ˆ ˆMSE µ = µ μ ;

1000
−  

 ( )
1000

j

j=1

1
ˆ ˆAE =

1000
  ; 

 ( ) ( )
1000

j

j=1

1
ˆ ˆAB =

1000
  − ; 

 ( ) ( )
21000

j

j=1

1
ˆ ˆMSE = .

1000
  −  

The requite simulation results are enshrined in 

Table 4.1. The results indicate that the MSE of 

each of the maximum likelihood estimators 

decreases as the sample size increases, 

detailing that the estimators are consistent. It is 

also noteworthy that the average bias tends to 

zero as the sample size increases.  

 

Table 4.1:

N µ σ  µ̂  B(µ̂ ) MSE(

µ̂ ) 

σ̂  B( σ̂ ) MSE( σ̂

) 

20 0.5 2 0.5429 0.0429 0.1061 0.8822 -1.1178 1.2537 

50 0.5 2 0.5557 0.0557 0.0918 0.9099 -1.0901 1.1912 

100 0.5 2 0.5408 0.0408 0.0639 0.9163 -1.0837 1.1768 

500 0.5 2 0.5095 0.0095 0.0153 0.9181 -1.0819 1.1712 

20 2 0.5 1.8885 -0.1115 0.0601 0.2914 -0.2086 0.0490 

50 2 0.5 1.9050 -0.0950 0.0648 0.2986 -2014 0.0444 

100 2 0.5 1.8873 -0.1127 0.0663 0.2991 -0.2009 0.0436 

500 2 0.5 1.8926 -0.1074 0.0690 0.2980 -0.2021 0.0434 

20 2 3 1.9863 -0.0137 0.3812 1.3246 -1.6754 2.8184 

50 2 3 2.0190 0.0190 0.3030 1.3624 -1.6376 2.6903 

100 2 3 2.0364 0.0364 0.3145 1.3937 -1.6063 2.5962 

500 2 3 1.9459 -0.0541 0.1981 1.4026 -1.5974 2.5681 

 

 5.0 Application 
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This section is dedicated to the illustration of 

the applicability of the SBEOD. As a 

consequence, we fit the model to two time 

series data and compare its fits to the data with 

the fits of the normal distribution, Laplace 

distribution and two-parameter Lindley 

distribution.  The first data (Data I) refers to the 

annual maximum rainfall in Jakarta in the last 

20 years: The data are reported as (Kurniawan 

et al., 2019) 

147.2,94.8,82.2,168.5,199.7,129.3,124.1,72.0,234.7,192.7,122.5,93.0,119.2,105.2,193.4,147.9,27

7.5,124.5, 179.7,104. The autocorrelation function (ACF) and partial autocorrelation function 

(PACF) graphed in Figure 4.1. 

 
Figure 4.1: ACF and PACF plots for Data 1. 

The second data (Data II) constitute the monthly actual tax revenue Egypt from January 2006 to 

November 2010. The actual taxes revenue data (in 1000 million Egyptian pounds) are (Owoloko 

et al., 2015)  

5.9, 20.4, 14.9, 16.2, 17.2,7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1,6.7, 17, 8.6, 9.7, 39.2, 

35.7, 15.7, 9.7, 10, 4.1,36, 8.5, 8, 9.2, 26.2, 21.9,16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 

7.7, 18.1, 16.5, 11.9, 7,8.6,12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8. 

Figure 4.2 comprises the sample correlogram and sample partial correlogram for Data II. 

 

 

Fig.  4.2: ACF and PACF plots for Data II. 
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 From Figures 4.1 and 4.2, it is easy to deduce that both data are purely random. Next, we present 

Table 4.3 which contains descriptive statistics for the data.  
 

Table 4.3: Descriptive statistics for Data I and II 
 

Data Mean Standard 

Deviation 

Median Skewness Kurtosis 

Data I 145.61 53.81 126.9 0.86 3.36 

Data II 13.49 8.05 10.6 1.65 5.57 
 

Obviously, the data are slightly positively skewed. However, the justification for fitting the 

SBEOAD to the data as well as the normal distribution, Laplace distribution and two-parameter 

double Lindley distribution is the closeness of the coefficients to the theoretical coefficients of 

kurtosis of the distributions being considered.  Let ( )1f x  and ( )2f x , respectively, represent the 

pdfs of Laplace distribution and two-parameter double Lindley distribution. Then          

                ( )1

1 1
exp μ , , μ ,σ 0

2σ σ
f x x x

 
= − − −    −     

 
 

and 

 

( ) ( )
2

2

θ
1 μ exp θ μ , , μ ,σ 0

2(1 θ)
f x x x x = + − − − −    −     +

. 

For effective comparison of the fits of the 

distributions to the data, we consider the Akaike 

information criterion (AIC) and Bayesian 

information criterion (BIC). Accordingly, the 

distribution that corresponds to the smallest AIC 

and BIC values provides the best to the data. 

Table 4.4 consists of the maximum likelihood 

estimates of the parameters of the 

abovementioned distributions and the 

accompanying results based on Data I and II. On 

the basis of the results in Table 4.4, the 

SBEOAD outperforms the three other 

distributions. 

 
 

Table 4.4: Maximum Likelihood estimates of the parameters of the distributions fitted to 

Data I and II and the associated results. 

 

DATA DISTRIBUTION ESTIMATE LOGLIKEHOOD AIC BIC 

 

 

 

 

Data I 

LAPLACE µ̂ =128.4 

σ̂=41.5                  

-108.3551 220.7102 222.7017 

SBEOA µ̂ =139.5 

σ̂=42.5 

-106.7077 217.4155 219.4069 

TWO-

PARAMETER 

DOUBLE 

LINDLEY 

µ̂ =139.6 

σ̂=0.1 

-106.7955 217.5911 219.5826 

NORMAL µ̂ =145.6 

σ̂=52.5 

-107.5745 219.1490 221.1405 

 

 

LAPLACE µ̂ =10.6 

σ̂=5.6                  

-201.1088 406.2176 410.3726 
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Data II 

SBEOA µ̂ =13.7 

σ̂=6.1 

-200.2568 404.5137 408.6688 

TWO-

PARAMETER 

DOUBLE 

LINDLEY 

µ̂ =13.0 

σ̂=0.3 

-201.4667 406.9333 411.0884 

NORMAL µ̂ =13.5 

σ̂=8.0 

-206.2787 416.5574 420.7125 

 

6.0 Conclusion 

A two two-parameter distribution called the 

symmetric bimodal extension of Ailamujia 

distribution (SBEOAD) is developed in this 

scholarly work via the introduction of location 

and scale parameters in the standard double 

Ailamujia distribution (SDAD). Several 

properties of the distribution, among which are 

its pdf, cdf, moments, absolute moments, 

moment generating function, characteristic 

function, modes, survival function, hazard rate 

function and mean residual life function are 

determined. The proposed distribution is 

symmetric and bimodal. Its coefficient of 

skewness is 0 while the corresponding 

coefficient of kurtosis is 
1

3
3

, making it 

applicable to symmetric bimodal data that is 

slightly leptokurtic. Though the mean and 

median of this symmetric distribution are equal, 

they are never equal to the mode of the 

distribution. The distribution of the absolute 

deviation of the mean of the SBEOAD from a 

random variable that follows the SBEOAD is 

found to be a gamma distribution with shape 

parameter 2 and scale parameter 
2


. Simulation 

results based on maximum likelihood approach 

to estimating the parameters of the SBEOAD 

reveal the consistency of the concerned 

maximum likelihood estimates. We have 

established the capability of the SBEOAD to 

outperform the normal, Laplace and two-

parameter double Lindley distributions by 

comparing the fits of the four distributions to 

two time series data based on minimum AIC and 

BIC values. 

7.0 References 

Awodutire, P. O. (2022). Statistical Properties 

and Applications of the Exponentiated 

Chen-G Family of Distributions: 

Exponential Distribution as a Baseline 

Distribution. Austrian Journal of Statistics 

AJS January 2022, Volume 51, 57--90. 

Gomaa, R. S, Hebeshy, E.A, El Genidy, M. M 

& El-Desouky, B.S. (2023).  Alpha-power 

of the power Ailamujia distribution: 

Properties   and   applications. Journal   of 

Statistics Applications and Probability, 12, 

2, pp. 701–723. 

Jan, R, Jan, T.R, Ahmad, P.B & Bashir, R. 

(2020). A new generalization of Ailamujia 

distribution  with  real  life  applications. In 

8th International Conference on Reliability,    

Infocom    Technologies    and Optimization 

(Trends and Future Directions)  (ICRITO),  

AmityUniversity, Noida, India (pp. 237–

242). IEEE. 

Jamal, F,  Chesneau, C,  Aidi, K. & Ali, A. 

(2021).   Theory   and   application   of   the 

power  Ailamujia  distribution. Journal  of 

Mathematical Modeling, 9, 3, pp. 391–413. 

Kurniawan, V. (2019).  Distribution fitting on 

rainfall data in Jakarta. IOP Conference 

Series: Materials Science and Engineering, 

650 012060. 

Lone,  S.A,  Ramzan, Q. &  Al-Essa,  L. A. 

(2024).    The    exponentiated Ailamujia 

distribution:   Properties   and   application. 

Alexandria    Engineering    Journal, 108, 

pp.1–15. 



Communication in Physical Sciences, 2025, 12(6):1823-1839 1839 
 

 
 

Lv,  H. Q.,  Gao,  L. H. &  Chen, C.L.  (2002). 

Ailamujia distribution and its application in 

supportability   data   analysis. Journal   of 

Armored  Force  Engineering  Institute,16, 

pp.48–52. 

Okereke, E. W. (2019). Exponentiated 

transmuted lindley distribution with 

applications. Open Journal of mathematical 

Analysis, 3, 2,  pp. 1-18. 

Owoloko, E. A, Oguntunde, P.E & Adejumo, 

A.O. (2015). Performance rating of the 

transmuted exponential distribution: an 

analytical approach. Springerplus. 24, 4, 

818. doi: 10.1186/s40064-015-1590-6. 

Rather, A. A., Subramanian, C., Al-Omari, 

A. I &  Alanzi,     A.     R.     A.     (2022). 

Exponentiated  Ailamujia  distribution  with 

statistical   inference   and   applications   of 

medical   data. Journal   of   Statistics   and 

Management   Systems. https://doi.org/10. 

1080/09720510.2021.1966206. 

Ragab,  I. E. & Elgarhy,  M.  (2025). Type  II 

half-logistic Ailamujia   distribution   with 

numerical   illustrations   to   medical   data. 

Computational  Journal  of  Mathematical 

and Statistical Sciences, 4, 2, pp. 379–406. 

Shanker, R. (2015). Akash distribution and its 

applications. International Journal of 

Probability and Statistics, 4, 3, pp. 65 75. 

Semary, H. E, Okereke, E.W, Sapoka, L. P, Al-

Moisheer, A. S, Yousef, A. M, Hussam, E & 

Gemeay, A. M. (2025). Inverse unit 

compound Rayleigh distribution: statistical 

properties with applications in different 

fields. Scientific Reports, 15, 29055. 

https://doi.org/10.1038/s41598-025-07915-

5. 

Declaration 

Consent for publication  

Not Applicable  

Availability of data and materials  

The publisher has the right to make the data 

public  

Ethical Considerations  

The authors declare that all research and 

development described in this manuscript were 

conducted with the highest standards of 

integrity. The project was carried out as a 

collaborative effort, and all authors involved in 

the physical construction were voluntary 

participants who have been appropriately 

acknowledged. 

Competing interest  

The authors declared no conflict of interest.  

This work was sole collaboration among all the 

authors  

Funding  

There is no source of external funding  

Authors Contributions 

Each of the authors contributed meaningfully 

the same from the theoretical framework to the 

analytical framework.  

 

 

  

  

  

 

 

 

  

 
  

https://doi.org/10.%201080/09720510.2021.1966206
https://doi.org/10.%201080/09720510.2021.1966206
https://doi.org/10.1038/s41598-025-07915-5
https://doi.org/10.1038/s41598-025-07915-5

