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Abstract: Climate change is one of the most 

significant problems facing the coastal regions 

throughout the entire world, exposing 

communities, infrastructure, and ecosystems to 

the risks of erosion, storm surges, floods, and 

sea level rise. Traditional risk assessment of 

coastal hazards using statistics-based 

techniques and deterministic models has been 

found useful, but is typically insufficient to 

capture a non-stationary climate regime and 

compound events. The paper establishes a 

coherent system to apply predictive analytics 

and new technologies to evaluate the risks 

associated with climate-induced events in the 

United States' coastal communities. 

Probability hazard maps from sea level rise, 

regional climate model, socioeconomics, and 

environmental features are developed using 

GIS and Random Forest, Extreme Gradient 

Boosting, and K-Nearest Neighbour. Due to the 

development of early warning systems, digital 

twins, the Internet of Things, next-generation 

monitoring satellite systems, and big data 

analytics, coastal management can become 

more proactive.  In addition to providing a 

decision-making tool for resource distribution, 

treatment prioritization, and long-term 

adaptation planning, the resulting projection 

was more accurate with the system. In bringing 

together machine learning, geospatial 

analysis, and technology advances, the study 

provides a compelling window for resilience-

building, adaptive management, and 

sustainable coastal risk management under 

accelerated climate change. 
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1.0 Introduction 

Coastal areas are dynamic ecosystems of great 

importance in human livelihood, economic 

development, and ecological sustainability. 

Currently, more than 600 million people are 

living in low-lying coastal areas, and the 

number is expected to increase substantially by 
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2050 (Neumann et al., 2015). However, these 

areas are increasingly threatened by the adverse 

effects of climate change, such as sea-level rise, 

more intense storm surges, frequent flooding, 

loss of shorelines, and saline intrusion 

(Nicholls & Cazenave, 2010; Oppenheimer et 

al., 2019). Global mean sea level has 

accelerated from 1980 to 2010 at a rate of 3.3 

mm yr⁻¹ as a result of thermal expansion and 

melting of glaciers and ice sheets (Nerem et al., 

2018). This sea-level rise, in addition to 

extreme weather events, dramatically increases 

the frequency of coastal flooding events and 

thus poses considerable risks to infrastructure, 

ecosystems, and human lives (Sweet et al., 

2022). 

The United States is especially susceptible to 

these climate-related coastal hazards because 

of its long shorelines on the Atlantic, Pacific, 

and Gulf coasts. Coastal flooding already 

causes billions of dollars of damage annually, 

and the figure is expected to rise if mitigation 

and adaptation efforts are not exponentially 

strengthened (Hauer et al., 2016; Tebaldi et al., 

2012). Moreover, the effects of compound 

flooding—when several drivers coincide, such 

as storm surge, heavy rainfall, and river 

overflow—are projected to become more 

pronounced due to climate change and related 

multidimensional risk scenarios in which 

people reside along coastlines (Wahl et al., 

2015).  

The nature of these risks has created the need 

to invest in highly developed predictive 

modelling and decision support systems that 

use in-situ socio-environmental data in 

combination with climate forecasts. Traditional 

risk appraisal methods rely largely on 

deterministic or statistical approaches that are 

useful but limited, as they cannot fully capture 

the non-linear and multi-dimensional 

interactions among coastal risk factors 

(Vousdoukas et al., 2018). For example, 

conventional regression-based models often 

assume linearity, which reduces their ability to 

represent thresholds, feedback loops, or 

cascading failures in coastal systems. 

Recent advances in artificial intelligence (AI), 

machine learning (ML), and geospatial 

technologies have opened up opportunities for 

more accurate and spatially explicit hazard 

forecasting. A variety of ML algorithms—

including Random Forest (RF), XGBoost, and 

K-Nearest Neighbour (KNN)—have been 

applied to coastal hazard mapping, showing 

promise in handling complex interactions 

among climatic, geomorphological, and socio-

economic variables (Mosavi et al., 2020). 

These algorithms can also be integrated with 

Geographic Information Systems (GIS) and 

Remote Sensing (RS) data, providing powerful 

platforms for vulnerability mapping and flood-

prone zone prediction (Shirzabi et al., 2019; 

Khosrowi et al., 2018; Ademola et al., 2021). 

In addition, hybrid approaches that combine 

physical process-based models with data-

driven ML systems are gaining attention for 

their ability to balance physical interpretability 

with predictive accuracy. 

Despite these advancements, current predictive 

frameworks still face limitations. First, most 

studies emphasize physical hazard projections 

while giving insufficient attention to the 

integration of socio-economic exposure and 

adaptive capacity. Second, cross-comparisons 

of different ML algorithms for coastal flood 

risk are relatively scarce, making it difficult to 

establish best practices for model selection. 

Finally, the incorporation of explainable AI 

(XAI) techniques into predictive models 

remains underexplored, raising concerns about 

model transparency and stakeholder trust. 

It is against this background that the current 

study seeks to develop a unified construct that 

integrates predictive models and emerging 

geospatial technologies to assess and mitigate 

climate change-induced coastal hazards in the 

United States. These models will combine sea-

level rise projections, regional circulation 

patterns, geospatial environmental variables, 

and socio-economic datasets to estimate human 
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vulnerability and exposure. The hazard maps 

produced through this approach will employ 

ML algorithms such as RF, XGBoost, and 

KNN, integrated with GIS, to support 

evidence-based ranking of at-risk areas and 

guide the prioritization of adaptive 

interventions. 

The aim of this study is to evaluate and refine 

general predictive modelling frameworks that 

combine machine learning algorithms, 

geospatial tools, and socio-environmental 

datasets for coastal hazard assessment. 

Specifically, the study examines how 

integrated modelling approaches can enhance 

forecasting accuracy, capture non-linear 

interactions, and improve transparency in 

decision-making. 

The significance of the study lies in its potential 

to contribute to resilience planning by 

providing stakeholders with reliable, 

transparent, and spatially explicit hazard maps. 

Such outputs can support coastal managers, 

urban planners, and policymakers in 

prioritizing adaptation strategies, allocating 

resources effectively, and safeguarding 

vulnerable populations. By integrating both 

physical and socio-economic dimensions, the 

study also advances the discourse on climate 

adaptation, bridging the gap between 

environmental modelling and human-centered 

resilience frameworks. 
 

2.0 Traditional Approaches to Coastal 

Hazard Risk Assessment 

2.1 Overview of Conventional Statistical and 

Deterministic Models 
 

The primary tools in conventional assessment 

of the risks of coastal hazards have been 

historical observations and deterministic or 

process-based models used to evaluate the 

dynamics and probabilities of hazard 

occurrence. Statistical models rely on long-

term records of tides, storm surge databases, 

and precipitation or storm frequency data to 

derive predictive relationships. To estimate the 

likelihood and magnitude of rare events, 

extreme value theory (EVT) is commonly 

applied (Coles, 2001). Two widely used EVT 

methods include the Generalized Extreme 

Value (GEV) distribution, often applied to 

annual maxima of sea levels, and the peaks-

over-threshold (POT) approach, which is 

useful in modeling occurrences that exceed 

defined thresholds of interest (Arns et al., 

2013; Wahl et al., 2017). These models remain 

important for establishing design parameters, 

such as return-period flood levels, for seawalls, 

dikes, and port facilities (Menendez & 

Woodworth, 2010). 

Deterministic or process-based models, on the 

other hand, simulate the physical processes that 

generate coastal hazards (Chukwudi & 

Oladunjoye, 2023; Baba Aminu et al., 2025). 

Tide- and surge-based hydrodynamic models 

compute water-level evolution due to tides, 

waves, and meteorological drivers by solving 

the governing fluid dynamics equations. 

Examples include the Advanced Circulation 

(ADCIRC) model, widely used for storm surge, 

tidal waves, and nearshore currents (Luettich et 

al., 1992), and the Delft3D modelling suite, 

which simulates nearshore hydrodynamics and 

sediment transport (Deltares, 2014). 

Morphological changes associated with 

extreme storms, such as dune erosion and 

overwash, have also been represented with 

models like XBeach (Roelvink et al., 2009). 

These deterministic models are especially 

advantageous in scenario-based studies, where 

process-level descriptions are needed to assess 

localized impacts and guide engineering 

design. 

Together, statistical and deterministic 

approaches provided the foundation of coastal 

hazard assessment in the late 20th century and 

continue to inform present-day engineering and 

policy. They offer probabilistic hazard 

estimates and physics-based forecasts that 

remain indispensable for infrastructure design, 

floodplain mapping, and disaster preparedness. 

For instance, FEMA in the United States and 

similar agencies globally continue to rely on 
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these methods for regulatory flood risk 

mapping and long-term adaptation planning. 
 

2.2 Strengths and Limitations in Capturing 

Complex Climate Hazard Interactions 
 

Statistical methods provide significant benefits 

due to their simplicity and computational 

efficiency. EVT-based methods are especially 

appealing because they can express risk in 

probabilistic terms (e.g., 1-in-100-year or 1-in-

500-year floods), making them directly 

applicable to planning frameworks (Coles, 

2001; Menendez & Woodworth, 2010). Such 

models have been particularly successful in 

data-rich regions with long tide-gauge records, 

such as Europe and North America (Haigh et 

al., 2014). 

Deterministic models, by contrast, generate 

physically realistic simulations of storm surge 

and wave dynamics, with high spatial and 

temporal resolution. These outputs can be 

coupled with land-surface and floodplain 

models to assess inundation risk. For example, 

the ADCIRC model is routinely employed by 

NOAA and FEMA in real-time operational 

storm surge forecasting (Dietrich et al., 2011). 

Delft3D and XBeach provide valuable insights 

into morphodynamic change during extreme 

events, including dune erosion, barrier island 

breaching, and overwash processes, which are 

crucial for coastal management and emergency 

planning (Splinter et al., 2014; Roelvink et al., 

2018). Such physically based models are also 

valuable for assessing adaptation options, 

including the design performance of levees, 

breakwaters, and natural defenses like dunes 

and wetlands. 

Despite these strengths, both statistical and 

deterministic models face critical limitations 

under non-stationary climate conditions. 

Statistical models generally assume 

stationarity—that the probability distribution 

of past hazards will remain valid in the future 

(Milly et al., 2008). This assumption is 

increasingly invalid as sea levels rise and storm 

patterns change, leading to systematic 

underestimation of future risks (Wahl et al., 

2015). Moreover, the availability and 

continuity of long-term observations are often 

insufficient to characterize low-frequency, 

high-impact events such as compound flooding 

from storm surge and intense precipitation 

(Bevacqua et al., 2019). 

Deterministic models, though physically 

grounded, are computationally demanding and 

require extensive calibration and validation 

against observed data (Resio & Westerink, 

2008). Their process-specific design also 

makes them limited in capturing multi-hazard 

interactions. For example, while storm surge 

models can simulate surge dynamics, they 

often do not account for simultaneous rainfall-

induced flooding or river discharge effects 

unless explicitly coupled with hydrological 

models. As a result, compound and cascading 

events—such as the simultaneous occurrence 

of high tides, extreme rainfall, and strong 

surges—remain difficult to capture 

(Moftakhari et al., 2017). These compounding 

effects are increasingly recognized as the 

hallmark of climate-driven risk (Zscheischler 

et al., 2018). 

Generally, traditional approaches remain 

indispensable for engineering and policy, but 

they are constrained by assumptions of 

stationarity, single-hazard representation, and 

computational intensity. This creates a growing 

need for next-generation modelling 

frameworks that integrate statistical, process-

based, and data-driven methods, while also 

accounting for uncertainty and multi-hazard 

interactions. 
 

3.0 Predictive Modeling Techniques under 

Climate Change Scenarios 

3.1 Machine Learning and AI-Based 

Approaches 
 

Machine Learning (ML) and Artificial 

Intelligence (AI) have emerged as 

transformative tools across disciplines, 

offering robust solutions for data interpretation, 

real-time decision-making, self-navigation, 

and coastal hazard risk assessment (Akinsanya 

et al., 2022; 2023; Ufomba & Ndibe, 2023; 
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Ademilua & Areghan, 2025a; 2025b; Ndibe & 

Ufomba, 2024; Adjei, 2025a; 2025b; 2025c; 

Abolade, 2023; Okolo, 2023; Ademilua & 

Areghan, 2022; Dada et al., 2024; Abolade & 

Zhao, 2024; Utomi et al., 2024; Ndibe, 2025a; 

2025b; Okolo et al., 2025; Umoren et al., 2025; 

Areghan, 2025; Adeusi et al., 2024). Unlike 

traditional statistical or deterministic models, 

which are often constrained by assumptions of 

linearity or computational intensity, ML-based 

approaches can process vast, heterogeneous 

datasets and uncover complex nonlinear 

interactions among hazard drivers. 

One of the central advantages of ML is its 

ability to integrate diverse geospatial, climatic, 

and socio-environmental variables (e.g., 

elevation, land use, precipitation, soil type, 

distance from the coastline, population density) 

into predictive frameworks. This integration 

allows the creation of hazard susceptibility 

maps and vulnerability indices with high 

predictive accuracy, which are essential for 

planning under climate uncertainty. Recent 

studies have demonstrated that ML models are 

particularly effective in handling incomplete, 

noisy, or multi-scale datasets, a common 

challenge in coastal hazard research (Rolnick et 

al., 2019; Mosavi et al., 2020; Ololade et al., 

2025). 

Several ML algorithms have been applied in 

hydrological and flood forecasting. For 

example, Hadi and Tombul (2018) employed 

Support Vector Machines (SVM), Genetic 

Programming (GP), and Artificial Neural 

Networks (ANN) to predict runoff in Iran, with 

SVM outperforming both GP and ANN. 

Similarly, Zhao et al. (2024) reported that tree-

based ensemble models such as Random Forest 

(RF), Gradient Boosting Decision Trees 

(GBDT), and Extreme Gradient Boosting 

(XGBoost) outperformed kernel-based 

algorithms in hydrological predictions. They 

also noted that the performance of these models 

varies depending on geographic and 

hydrological conditions, highlighting the need 

for site-specific calibration. This observation 

underscores a critical point: while ML models 

are powerful, their generalizability across 

different coastal regions may be limited 

without proper adaptation and retraining. 

Recent developments further highlight the 

potential of ML for real-time flood forecasting. 

Dey et al. (2024) designed a machine learning 

framework capable of simulating flood risks in 

near real-time, enabling early warning systems 

that can reduce damage and save lives. Other 

studies have applied deep learning models, 

such as Long Short-Term Memory (LSTM) 

networks and Convolutional Neural Networks 

(CNNs), to capture temporal and spatial 

dependencies in flood dynamics, improving 

lead-time forecasts and enhancing disaster 

preparedness (Zhang et al., 2023). 

Beyond predictive accuracy, ML models are 

increasingly being paired with Explainable 

Artificial Intelligence (XAI) techniques such as 

SHAP (SHapley Additive Explanations) and 

LIME (Local Interpretable Model-agnostic 

Explanations). This integration ensures that 

predictions are not “black-box” outputs but are 

transparent and interpretable to policymakers, 

engineers, and communities. Such 

transparency is vital for building stakeholder 

trust and facilitating the adoption of ML-driven 

hazard assessments in real-world decision-

making. 

Despite their promise, ML and AI approaches 

face challenges. They require large, high-

quality datasets, which may be scarce in many 

coastal regions of the Global South. In 

addition, model interpretability, computational 

requirements for training deep models, and the 

potential for overfitting remain barriers to 

widespread operationalization. Furthermore, 

while ML models excel in capturing 

correlations, they may struggle to embed 

physical causality unless explicitly combined 

with process-based models. 

Therefore, the future of ML in coastal hazard 

risk assessment likely lies in hybrid 

frameworks that integrate process-based 

simulations with data-driven models, ensuring 
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both physical interpretability and predictive 

accuracy. Such integration will enable more 

resilient forecasting systems capable of 

addressing the non-stationarity and complexity 

of climate change impacts. 

Tampa Bay, Florida, based on historical history 

of damages and 16 predictors. They compared 

five ML models (Random Forest and 

XGBoost) and made a detailed risk map with 

low altitude, close to water, and large 

infrastructure as the most significant risk 

groups (Fig 1).  

Fig. 1 provides a clear, side-by-side 

comparison of the flood risk predictions from 

the Random Forest and XGBoost models. Both 

models show similar overall patterns, with 

higher-risk areas (orange and red) concentrated 

along the coastlines and within low-lying 

inland areas, which are likely river estuaries 

and floodplains. However, a closer look reveals 

subtle yet significant differences. The 

XGBoost model appears to show a more 

concentrated and slightly more extensive area 

of high and very high risk (the orange and red 

areas) compared to the Random Forest model. 

This difference is particularly noticeable in the 

zoomed-in sections (a) and (b), where the 

XGBoost map (b) seems to delineate the high-

risk zones with greater precision and a slightly 

wider spread, especially in the intricate coastal 

waterways. This might indicate that the 

XGBoost model is better at capturing the 

complex, non-linear relationships between 

various predictors, such as elevation, land use, 

and proximity to water, which are crucial for 

accurate flood risk mapping. The paper's text 

notes that XGBoost often outperforms other 

models in hydrological predictions, and this 

figure visually supports that claim. 

The figure also reinforces the study's core 

argument that machine learning models offer a 

significant advantage over traditional, 

stationarity-based methods. By processing a 

large number of predictors and identifying 

complex interactions, these models can 

produce detailed and accurate risk assessments. 

The maps provide a granular view of hazard 

susceptibility, allowing for targeted and 

evidence-based decision-making. For example, 

local planners could use these maps to identify 

specific neighborhoods or critical 

infrastructure (e.g., roads, hospitals, power 

plants) at the highest risk and prioritize 

mitigation efforts, such as building seawalls or 

elevating structures. The ability to generate 

such a detailed risk map is a key contribution 

to resilience planning and resource allocation. 

The visual differences between the two models 

also underscore the importance of model 

selection and cross-comparison, a point the 

paper emphasizes as a current gap in research. 

While both models are effective, their outputs 

are not identical, highlighting that the choice of 

algorithm can impact the final risk assessment 

and, consequently, the planning and policy 

decisions that follow. This approach is also 

useful in generating non-linear relationships to 

present a scaling assessment tool, and will 

become the tool that will prove useful to 

policymakers once they start undertaking 

specific flood mitigation and planning 

measures. Moreover, RF is combined with GIS 

to evaluate multi-hazard vulnerable areas in 

coastal areas where Yu et al. (2024) have 

already shown RF to be able not only to attain 

a better predictive power but also to provide an 

interpretable variable importance ranking. This 

will be particularly helpful in the decision 

making of coastal risk management where all 

the environmental driver contribution is 

required. Although these have been 

successfully achieved, scalability, 

environmental datasets interpretability, and 

integration still remain a challenge, and one 

gap in this regard is hybrid frameworks that can 

combine ML with real-world models and 

spatial models. 
 

3.2 Simulation and Scenario-Based Modeling 
 

Alongside data-driven techniques such as ML, 

simulation and scenario-based modeling 

remain indispensable in predictive coastal 

hazard assessments. Physics-based numerical 
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models such as ADCIRC (Luettich et al., 1992) 

and Delft3D (Deltares, 2014), illustrated in Fig. 

2, are widely adopted for simulating storm 

surges, tidal dynamics, and inundation patterns 

under variable boundary conditions.  

These models allow researchers to reconstruct 

past extreme events and to explore “what-if” 

scenarios, such as the projected impacts of sea-

level rise on coastal flooding, estuarine 

hydrodynamics, or barrier island erosion 

(Dietrich et al., 2011; Roelvink et al., 2009). 

When combined with Geographic Information  

Systems (GIS), simulation outputs can be 

spatially integrated to enhance hazard 

visualization and vulnerability mapping, 

thereby improving risk communication and 

planning strategies. GIS-based flood modeling 

has been particularly useful for delineating 

flood-prone areas in coastal cities and 

identifying hotspots of socio-economic and 

infrastructural exposure (Wahl et al., 2015). 
 

 
Fig 1: A modeled flood risk distribution in Tampa Bay (Adapted from Dey et al., 2024). 
 

Scenario-based approaches also provide a 

flexible framework for adaptive planning. By 

testing alternative adaptation strategies—such 

as flood defense structures, wetland 

restoration, or land-use zoning—under 

multiple climate futures, planners can better 

evaluate trade-offs and design robust 

interventions. This ability to simulate a range 

of plausible outcomes is crucial in the context 

of uncertainty associated with climate change, 

where deterministic predictions are often 

insufficient for policy-making. 

Despite their strengths, hydrodynamic and 

scenario-based models present notable 

challenges. They are computationally 

intensive, often requiring high-performance 

computing resources for large-scale  
 

simulations, and rely on significant 

simplifications to make problems tractable 

(Resio & Westerink, 2008). Such 

simplifications may limit their capacity to 

accurately capture nonlinear feedbacks and 

compound events (e.g., simultaneous storm 

surge and heavy rainfall). Moreover, these 

models are sensitive to input quality, boundary 

conditions, and parameterization choices, 

which can propagate uncertainty into the final 

outputs. 
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As a result, recent research emphasizes 

coupling scenario-based models with data-

driven methods, including machine learning 

and data assimilation techniques, to enhance 

predictive accuracy while reducing 

computational demands. This hybridization not 

only improves real-time forecasting 

capabilities but also provides greater 

transparency and adaptability for decision 

support in coastal risk management. 

 
Fig 2: A Workflow for Coastal Hazard Assessment Using Hydrodynamic Models 
 

3.3 Integration of Climate Projections into 

Predictive Hazard Models 
 

In recent years, there has been growing 

emphasis on integrating climate projections 

into predictive hazard models to enable 

forward-looking risk assessments that account 

for the non-stationarity of hazard regimes. 

Global Climate Models (GCMs) and Regional 

Climate Models (RCMs) provide scenario-

based projections of future climate conditions 

under Representative Concentration Pathways 

(RCPs) and Shared Socioeconomic Pathways 

(SSPs). These outputs can be downscaled and 

incorporated into hydrodynamic, machine 

learning, or hybrid models to evaluate long-

term shifts in flood frequency, storm intensity, 

and spatial hazard distribution (Hinkel et al., 

2014). By linking climate scenarios with 

predictive modeling, it becomes possible to 

explore how sea-level rise, precipitation 

variability, and changing storm regimes will 

alter coastal risk profiles over time. 

Applications of this approach are increasingly 

evident. For example, Asadollah et al. (2022) 

demonstrated that downscaling precipitation 

using Artificial Neural Networks (ANN), 

Adaptive Neuro-Fuzzy Inference Systems 

(ANFIS), and K-Nearest Neighbors (KNN) 
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provided effective results for local-scale hazard 

modeling in Iran. Similarly, Yu et al. (2024) 

showed that integrating ML-GIS frameworks 

with sea-level rise and precipitation projections 

significantly improves multi-hazard 

susceptibility mapping, offering more 

comprehensive insights into compound coastal 

risks. 

However, the incorporation of climate 

projections into hazard modeling is not without 

challenges. Uncertainties arise from multiple 

sources, including the spread of GCM outputs, 

the downscaling methods applied, and the 

aggregation of inter-model errors (Hawkins & 

Sutton, 2009). These uncertainties complicate 

the task of translating climate projections into 

actionable information for coastal planners and 

policymakers. Nevertheless, the combined use 

of climate projections with machine learning 

and hydrodynamic tools represents one of the 

most promising pathways toward anticipatory, 

adaptive risk assessment frameworks that are 

aligned with resilience planning and long-term 

coastal management strategies. 

Table 1 presents an overview of predictive 

models and emerging technologies currently 

applied in coastal hazard assessments, 

highlighting their strengths, limitations, and 

application contexts. The Table summarizes 

the major predictive modeling approaches and 

emerging technologies currently applied in 

coastal hazard assessment, with a focus on their 

relative strengths, limitations, and application 

contexts. The comparison reveals that no single 

modeling approach is universally sufficient; 

rather, each offers unique contributions that are 

most effective when combined within an 

integrated risk assessment framework. 
 

Table 1: Predictive Models and Emerging Technologies for Coastal Hazard Assessment 
 

Model / 

Technology 

Description Strengths Limitations Example 

Applications 

References 

Statistical 

Models 

Use historical 

hazard/climate 

data to predict 

the probability 

of future events 

(e.g., regression, 

time-series). 

Simple, 

transparent, 

effective for 

short-term 

trends. 

Limited in 

capturing 

nonlinear and 

complex 

climate–hazard 

feedbacks. 

Flood 

frequency 

analysis for 

coastal cities. 

Wahl et al., 

2017; 

Vousdoukas 

et al., 2018 

Deterministic / 

Process-Based 

Models 

Physics-based 

models 

simulating 

ocean–

atmosphere–

land interactions 

(e.g., 

hydrodynamic, 

wave and 

erosion models). 

High 

accuracy, 

can model 

physical 

processes 

and extreme 

scenarios. 

Data-intensive, 

computationally 

expensive, 

requires 

calibration. 

Delft3D for 

storm surge 

and coastal 

flooding in 

Europe. 

Nicholls et 

al., 2007; 

Lowe et al., 

2009 

Machine 

Learning 

Models 

Use AI/ML 

algorithms (e.g., 

Random Forest, 

Neural 

Networks) to 

capture 

Can learn 

complex 

interactions, 

adaptive 

with more 

data. 

Require large 

datasets, risk of 

overfitting, lack 

of 

interpretability. 

Predicting 

coastal flood 

susceptibility 

and shoreline 

change. 

Dey et al., 

2024 
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nonlinear 

hazard–climate 

relationships. 

Bayesian 

Networks 

Probabilistic 

graphical 

models linking 

climate drivers 

and hazards 

with uncertainty 

quantification. 

Incorporates 

uncertainty, 

suitable for 

risk 

assessment 

with 

incomplete 

data. 

Requires expert 

input, results can 

be sensitive to 

prior 

assumptions. 

Risk 

assessment of 

storm surges 

and flooding 

in deltas. 

Oliver et al., 

2019 

Remote Sensing 

& GIS 

Satellite/drone-

based data 

integrated with 

GIS for 

mapping 

hazards and 

exposure. 

Wide spatial 

coverage, 

real-time 

monitoring, 

cost-

effective. 

Limited temporal 

resolution for 

some hazards, 

requires ground-

truthing. 

Shoreline 

erosion 

mapping, 

flood extent 

monitoring. 

Luijendijk et 

al., 2018; 

Chukwudi, 

2025 

Climate–

Hydrodynamic 

Coupled Models 

Combine 

global/regional 

climate models 

with coastal 

hydrodynamics. 

Captures 

future 

climate-

driven 

hazard 

projections, 

including 

sea-level 

rise. 

Computationally 

demanding, 

uncertainties 

from climate 

models. 

Sea-level rise 

and coastal 

flood risk 

projections 

for small 

islands. 

Vousdoukas 

et al., 2017 

Internet of 

Things (IoT) & 

Sensor 

Networks 

Deploy sensors 

for real-time 

monitoring of 

tides, waves, 

and erosion. 

High-

frequency, 

local-scale 

hazard 

monitoring, 

supports 

early 

warning. 

Limited 

coverage, 

maintenance and 

connectivity 

issues. 

Real-time 

tide and flood 

monitoring in 

urban coasts. 

Cemiloglu 

et al., 2025 

Big Data & 

Cloud 

Computing 

Platforms 

Integrate large-

scale hazard 

datasets with 

scalable 

computing for 

prediction. 

Handles 

massive 

datasets, 

supports 

decision-

making 

platforms. 

Requires 

infrastructure, 

technical 

expertise, and 

data governance. 

Coastal risk 

dashboards 

and early 

warning 

systems. 

Balica et al., 

2012; Muis 

et al., 2016 

4. 0 Emerging Technological Approaches 

in Coastal Risk Assessment 
 
 

Coastal environments are highly dynamic and 

at risk to hazards like flooding, storm surge, 

erosion, and sea level rise. Traditional 
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monitoring techniques, though valuable, do not 

often have the resolution, frequency of 

observation, and integration inherent in timely 

and accurate risk assessment. Recent 

technological developments in remote sensing, 

drones, IoT, digital twins, geospatial platforms, 

and big data analytics cloud-based platforms  

(Fig. 3) have opened up new possibilities for 

integrated and real-time coastal hazard 

monitoring and forecasting. The section 

focuses on these emerging approaches and how 

they interact in constructing a sound coastal 

hazard risk management system.  

 

 

 
Fig 3: Emerging Technological Approaches in Coastal Risk Assessment 

 

4.1 Remote Sensing, Drones (UAVs), and IoT 

for Data Collection 

Remote sensing provides large-scale, 

repeatable, synoptic-based observations of 

coastlines as required for the detection of 

shoreline retreat, sediment transport, and post-

disaster quantification (Klemas, 2015). For 

example, shoreline products derived from 

satellites can provide long-term trend data, 

whereas radar (e.g., Sentinel-1) and optical 

(e.g., Landsat, Sentinel-2) imagery enable 

monitoring of intertidal areas and mangrove 

degradation (Gorelick et al., 2017). Unmanned 

Aerial Vehicles (UAVs) or drones make 

possible high-resolution site-specific 

monitoring, which far exceeds the spatial detail 

of satellite-derived data (Table 2). UAV 

photogrammetry can be used to create digital 

elevation model (DEM) and orthomosaic data 

with centimeter accuracy to support dune 

monitoring, floodplain mapping, and 

embankment inspection (James & Robson, 

2014; Klemas, 2015). IoT sensor networks 

support these aerial and satellite systems by 

recording the actual conditions of the 

hydrological, meteorological, and 

oceanographic parameters in situ. 

Oceanographic wave buoys, water level 

loggers and weather nodes have been employed 

to supply continuous data series for model 

calibration and validation of remotely sensed 

data (Hart & Martinez, 2006; Gubbi et al., 

2013). Recently, these data streams are usually 

sent through low-power networks such as 
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LoRaWAN, and hence large-scale, distributed 

deployments are possible in the coastal 

catchment (Zakaria et al., 2023). 

 

 

Table 2: Comparison of Remote Sensing, UAVs, and IoT in Coastal Risk Assessment 
 

Technology Spatial 

Coverage 

Temporal 

Frequency 

Resolution Main Applications Limitations References 

Remote 

Sensing 

(satellite) 

Regional to 

global 

Days to 

weeks 

(depending 

on sensor) 

10–30 m 

typical 

(Sentinel/La

ndsat) 

Shoreline change, 

mangrove 

monitoring, land 

cover mapping 

Cloud cover, 

coarse 

resolution 

Klemas 

(2015); 

Gorelick 

et al. 

(2017) 

UAVs 

(drones) 

Local to 

site-

specific 

On-demand 

(hours to 

days) 

Centimeter-

scale 

DEM creation, 

dune monitoring, 

embankment 

inspection 

Weather-

dependent, 

limited 

endurance 

James & 

Robson 

(2014); 

Klemas 

(2015) 

IoT Sensors Point to 

catchment 

scale 

Continuous

, real-time 

High-

frequency 

(seconds–

minutes) 

Flood monitoring, 

water level, storm 

surge detection 

Sensor 

maintenance

, 

communicat

ion 

Hart & 

Martinez 

(2006); 

Zakaria et 

al. (2023) 

4.2 Digital Twins and Geospatial Platforms 
 

A digital twin (DT) is defined as a virtual 

representation of the real-world system that 

brings together real-time data, simulation 

models, and analytics to forecast future states 

(Tzachor et al., 2023). DTs can be applied to 

coastal processes, storm surge, shoreline 

change, sea level rise scenarios, and 

infrastructure vulnerability (Table 3). For 

example, Yu et al. (2024a) have developed a 

Coastal Zone Information Model (CZIM) that 

uses data, models, and expert knowledge in a 

digital twin to support adaptive management. 

Data across vast areas can be processed using 

geospatial tools, such as Google Earth Engine 

(GEE) and GIS-based systems as DT enablers, 

and interactive hazard maps created for 

planners and decision makers (Gorelick et al., 

2017). Lagap & Ghaffarian (2024) highlighted 

that DTs are used as a tool to improve the post-

disaster recovery planning by providing 

predictive scenario testing. planning by 

offering predictive scenario testing. 

4.3 Synthesis and Integrated Framework 

These technological advances are additive 

rather than independently stand-alone 

solutions. Remote sensing and UAVs provide 

spatial context, IoT provides temporal 

continuity, digital twins and GIS platforms 

provide simulation and visualization, and 

cloud/big data infrastructures provide 

scalability, speed, and integration. Together, 

they present a complete framework for 

anticipatory coastal risk assessment and rapid 

response (Tzachor et al., 2023; Yu et al., 

2024b; Basher, 2006). The main point is that 

the assessment of coastal hazard risk is shifting 

from reactive evaluation after the event, to 

proactive and continuous, and predictive 

management. The combination of these 

technologies has the potential to deliver not 

only scientific progress but also improved 

community resilience - systems should be co-

designed with stakeholders to make sure 

outputs are actionable. 
ore 

5.0 Challenges and Future Directions 
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Uncertainty is one of the most significant 

obstacles to integrating predictive modeling 

and new technological approaches to coastal 

hazard risk assessment. Uncertainty has several 

sources, including incomplete information, 

model assumptions, and the intrinsic variability 

of coastal processes influenced by climate 

change (Hedden-Nicely, 2022). For example, 

projections of sea-level rise are highly sensitive 

to global greenhouse gas emission scenarios 

and the dynamics of the ice sheets, and long-

term projections are therefore less specific 

(Oppenheimer et al., 2019). This uncertainty 

can erode trust in model estimates by 

stakeholders, which can limit their usefulness 

in informing decisions. 
 

Table 3. Applications of Digital Twins in Coastal Risk Management 
 

Application Example Use Case Benefits References 

Flood Simulation Virtual flood models 

of estuarine cities 

Early warning, 

evacuation planning 

Yu et al. (2024b) 

Shoreline Change 

Monitoring 

Coastal erosion 

management in sandy 

beaches 

Predictive shoreline 

evolution 

Tzachor et al. (2023) 

Infrastructure 

Resilience 

Protection of ports 

and embankments 

Identify 

vulnerabilities under 

climate scenarios 

Lagap & Ghaffarian 

(2024) 

Ecosystem Service 

Mapping 

Mangrove and reef 

protection DTs 

Incorporates 

ecological feedbacks 

into hazard models 

Yu et al. (2024b) 

Data quality and availability: Data from 

terrestrial, aerial, and spaceborne remote 

sensing, as well as IoT sensors, provide ample 

data, but these are usually fragmented, 

inconsistent, or limited by spatial and temporal 

resolution (Wahl et al., 2017). For example, 

high-resolution satellite data may not always be 

available due to financial constraints, and a 

sensor network may experience calibration or 

maintenance issues in a hostile coastal 

environment (Wahl et al., 2017). Incomplete or 

low-quality data can result in biased training of 

models and reduced accuracy of predictions. 

Scalability: This is also difficult. While pilot 

studies and site-specific digital twin 

implementations have demonstrated their 

value, such models are computationally 

expensive and require synthesis of 

heterogeneous datasets if they are to be 

extended spatially across the coast (Gorelick et 

al., 2017). For example, the deployment of 

digital twins at a national or continental scale 

requires the integration of massive volumes of 

satellite data, IoT feeds, and simulation models 

simultaneously, which necessitates powerful 

cloud infrastructure and substantial financial 

investment. 
 

5.1 Operational AI for Forecasting, 

Explainability, and Uncertainty 

Quantification 
 

Artificial intelligence is a powerful tool in 

coastal hazard prediction, but moving from 

research experiments to operational forecasting 

systems is still a significant challenge 

(McGlade et al., 2025). Predictive models are 

trained on historical data, or physics-informed 

machine learning frameworks can generate 

rapid forecasts of storm surge, coastal flooding, 

or shoreline change. However, emergency 

managers and local planners are often hesitant 

to rely on AI if they cannot understand why a 

model gives a particular prediction. This is 

where explainable AI (XAI) comes in as 

techniques such as feature attribution, 

surrogate interpretation models, and 

visualization tools allow forecasters to trace 
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which factors (e.g., wind speed, tidal stage, or 

sea-level anomalies) most influenced the 

output.  

Another crucial frontier is uncertainty 

quantification (UQ). Unlike deterministic 

models that produce a single “best guess,” AI-

driven systems must also communicate the 

confidence level of their predictions. For 

example, a forecast that coastal flooding has a 

70% probability of exceeding a certain 

threshold provides decision-makers with much 

richer information than a binary “flood/no 

flood” output. The challenge is that uncertainty 

itself is complex: it can stem from data gaps, 

model assumptions, or unpredictable climate 

drivers. Translating that uncertainty into 

formats usable by non-technical stakeholders 

remains one of the biggest obstacles. 

Model interpretability: Most of the leading 

prediction models, particularly those based on 

machine learning and deep learning, are 'black 

boxes' that are difficult for stakeholders who 

are not technically minded to understand 

(Rudin, 2019).  Also, when the predictive 

systems are described without transparency, 

this may be a reason for domestic ill will, as it 

may detract from confidence in a predictive 

system when policymakers and local 

populations desire actionable input as opposed 

to black box statistical output. 

Equity and social justice considerations: 

Many models insufficiently incorporate 

measures of social vulnerability, such as 

income, race, or community capacity, which 

results in resilience strategies that may 

inadvertently privilege well-resourced 

populations. Marginalized groups in coastal 

zones often face disproportionate exposure and 

limited adaptive capacity, underscoring the 

need for predictive assessments that explicitly 

embed equity indicators (Michel et al., 2024; 

Johnson et al., 2023; Okamoto & Doyon, 

2024). 

Interdisciplinary integration remains 

underdeveloped: While predictive modeling 

has advanced rapidly in the domains of 

machine learning, climate science, and 

geospatial technologies, the incorporation of 

insights from the social sciences, economics, 

law, and local knowledge systems is 

comparatively limited (Niamir & Pachauri, 

2023). This creates a disconnect between 

highly technical models and their human-

centered applicability for decision-making. 
 

5.2 Future Directions 
 

Despite these challenges, there will continue to 

be opportunities to develop risk assessments 

for coastal hazards in the future—one 

suggestion that looks promising is the 

integration of adaptive management and 

predictive modelling.  According to Marchau et 

al. (2019), adaptive management (AM) is an 

iterative decision-making process in which, 

after initial decisions, policies and management 

practices are adjusted based on new data and 

model output results.  Unlike deterministic 

systems, a combination of predictive models 

and adaptive organizational design may allow 

coastal managers to adapt to uncertainties and 

to adjust resilience strategies on the fly as they 

encounter new or greater effects.  These 

opportunities also serve as an implementation 

activity for resilience-based measures.  As also 

for nature-based solutions, predictive models 

could be applied to determine vulnerability and 

resilience functions, as well as disaster 

prediction (e.g. mangrove restoration, dune 

stabilization; Temmerman et al, 2013). By 

simulating the different adaptation scenarios, 

digital twins and big data platforms will 

facilitate the delivery of insights into long-term 

sustainability that consider engineering versus 

ecosystem-based adaptation trade-offs.  Big 

data analytics coupled with cloud computing 

will also enable the ability to process larger and 

increasingly complex datasets.  To increase 

accuracy and reliability, novel systems will 

combine the outcomes of global climate 

models with information streams from Internet 

of Things sensors and crowdsourced data 

collected by citizens to a single platform 

(Gorelick et al., 2017).  Such integrated 
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platforms would enable better institutionalised 

mechanisms to react more effectively, 

facilitating better anticipation and early 

warning at every level of government.  

Traditionally, coastal hazard models often 

focus on a single event driver. In recent times, 

coastal hazards have frequently been 

acknowledged to occur together. For instance, 

a hurricane can trigger river flooding, storm 

surge, and rainfall. These compound events are 

more damaging than single hazards yet 

challenging to model as they require linking 

multiple systems (Xu et al., 2022; Sun et al., 

2024). The impacts also extend beyond 

flooding and, in some cases, Industrial spills, 

mold growth, wildfire smoke, and debris 

burning can all degrade air quality in the 

aftermath. Future work should integrate coastal 

hazard and air quality models to capture these 

cascading risks and their health implications. 

Advances in hybrid explainable models 

represent another frontier. By coupling 

process-based simulations with interpretable 

machine learning (XAI), it will be possible to 

maintain scientific rigor while enhancing 

stakeholder trust in predictive outputs (Slater, 

2022; Camps-Valls et al., 2025). Equally 

important is the expansion of nature-based and 

hybrid adaptation modeling. By explicitly 

incorporating the protective functions of 

ecosystems such as mangroves, coral reefs, 

dunes, and wetlands, predictive frameworks 

can evaluate trade-offs between engineered and 

ecological adaptation strategies (Lakku et al., 

2024; Mao et al., 2025; Adeli et al., 2025). 

Finally, reasoning via explainable artificial 

intelligence (XAI) paves a pathway to 

confidence for greater adoption of prediction 

models.  While the knowledge, data quality, 

scalability, and interpretability of these systems 

are up for debate, the three concepts of 

resilience planning, adaptive management, and 

Cloud-based data infrastructure linked to 

explainable AI do provide a framework in 

which predictive models can be both robust and 

future-proof.  This evolution will not only 

enhance resource resilience in risk assessment, 

but it will also build resilience within coastal 

communities. 
 

6.0 Conclusion 
 

This review explored new technical approaches 

and prediction modeling tools for estimating 

risk of coastal hazards under climate change. 

Statistical and deterministic models were 

among classical tools that have proved useful 

in shedding light upon the aspects of flood 

frequency and storm surge yet have failed to 

provide the data regarding non-stationary 

climates and compound events to explain why 

more adaptive tools are required. Combined 

with remote sensing, GIS, IoT, and digital 

twins, new methods such as machine learning, 

Bayesian networks, climate-hydrodynamic 

coupled models offer a new ability to capture 

nonlinear interactions, process heterogeneous 

data sets, and provide spatially explicit, real-

time risk assessments. Nevertheless, the 

challenges related to uncertainty in climate 

prediction, data quality, scalability, and 

interpretability of models persist. Cooperation 

of adaptive management systems, explainable 

artificial intelligence (XAI), and resilience-

driven systems integrating engineering 

solutions with nature-based interventions will 

be needed to overcome these limitations. The 

trend away from reactive, event-based coastal 

hazard management towards continuous, 

integrated, and proactive management to 

improve preparation, reduce vulnerabilities, 

and increase adaptive capacity in response to 

changing climate change is influencing our 

future practices of coastal hazard risk 

management. 
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