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Abstract

A mathematical model of fluid dynamics in the Cochlea was formulated and solved using the potential flow theory. The
obtained solutions of the model representing the flow in the Cochlea shows that the flow looks chaotic, but in reality, it is
so because of the multi-dimensional nature of the variables associated with noise. Also determined is the nature of the flow
ar both chambers of the cochlea where we saw that the magnitudes of the velocity potentials are the same with only a
difference in sign denoting their positions in relation to the basilar membrane. We observed that the velocity potential in
the horizontal axis increases with distance from the base of the basilar membrane when the flexural rigidity varies as the
distance increases. Other analyses were also carried out to confirm the experimental evidences about the effect of noise in

the ear.
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1. Introduction:

This paper presents a mathematical model on the
mechanism of transmission of the noise in the
ear through the fluid found in the inner ear. We
define noise here as the sound that cause
discomfort to the hearer but this definition is not

scientifically enough as noise to one person may

not be so for another, (Chalupnik ,1977).
Therefore, put more scientifically, noise can be
defined as sound that measures above 85db (db
means decibel, the unit of measurement of
sound). Most noise come as irregular vibrations.
Every sound has two major aspects which are the
frequency or pitch and the intensity or amplitude,
(Cheremisionoff & Cheremisionoff,1978). The
frequency is determined by how rapidly the
generated sound waves vibrate. In terms of the
sound intensity, the human ear has a wide range
to which it can be exposed. The range is from
one billionth (10°) Watt to 107 Watt. Silence
which we describe as the arbitrary threshold
level of sound is represented by zero decibel
while the faintest sound audible to the human ear
is represented by 1db.

The greatest physiological effect of noise
in a man is temporary deafness or permanent
hearing loss, (Rau & Woolen, 1980) and increase
in blood pressure. Other effects are discomfort,
tiredness, stress and feeling of irmritation,
aplynopsys (inability to sleep), low blood
resistance to diseases and many more others.
Noise has been implicated as one of the causes of
Ulcer and the allergies like hives. It can also lead

to somatic manifestations such as gastric acid
problems. In particular,, temporary exposure to
noise can lead to impairment in hearing which is
termed auditory fatigue while exposure to noise
for a very long time without enough time for
recovery usually leads to permanent hearing loss.

In general therefore, we see noise as a
multidimensional problem because of multiple
ways it can be interpreted and understood.
Hence, a proper mathematical model and
analysis of noise involves associating a random
variable (as many variables are involved in
propagating noise) with multidimensional
physical processes causing the noise.

Mechanism of Hearing

The details of the structure of the ear can be
found in the work of Adagba (2005), Burtons &
Hopkin (1983). For a given sound to be heard
there must be the presence of air medium. Thus
when a sound is generated, it results in
generation of waves as a result of the vibration of
the object that produced the sound. These sound
waves are collected by the pinnae and directed
through the external auditory meateus to impinge
on the tympanic membrane or the ear drum. This
vibrates the eardrum and then passes the energy
of vibration on to the middle ear. The middle ear
is open to the throat through the Eustachian tube
so that the air pressure through this tube
equalizes the air pressure on both sides of the
eardrum and then the transfer of the energy of
vibration from the outside of the eardrum to the
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middle ear is possible. At the middle ear. we
have a series of three bones which help in the
transfer of the vibrations coming from the outer
part of the eardrum to the inner part. These bones
are the malleaus, incus and stape. These bones
are connected such that they connect the
tympanic membrane with the oval window of the
cochlea which is the organ where the vibrations
are again converted into energy impulse. In the
course of conducting the vibrations to the
cochlea by these bones, the vibration is increased
in strength or rather amplified. It is known that
sound pressure received at the tympanic
membrane is relatively lost as most is
transmitted at the cochlea where it is amplified to
a 22-fold greater pressure, (Burtons and Hopkin,
1983; Wegel et al ,1932; Wever and
Lawrence,1930b, 1950a). The mechanical forces
that are transferred by the bones of the middle
ear are transformed into the hydraulic pressure
when the stape strikes the oval window. Since
the oval window is filled with fluid, this pressure
applied to the oval window by the striking of the
stape 1s transmitted through this fluid which
eventually causes a vibration of the basilar
membrane, a slight structure which extends
from the cochlea to the auditory nerves and
totally lying in the fluid. This region of the ear is
called the inner ear. The basilar membrane has
Hair cells on its surface such that the vibration
of the fluid and thus the basilar membrane
produces shearing movement between the hair
cells and the tectoral membrane of the organ of
Corti . This initiates wave impulse in the fibres
of the auditory nerve. It is generally agreed that
sound waves are analysed at the cochlea and that
zach frequency has its own place in the basilar
nembrane. The auditory nerve will then send
his  received impulse to the brain for
nterpretation and subsequent response to it.
Mathematically we shall not go into how we
espond to this noise here but rather we shall
ook at how this noise is received and how the
:ar structures respond to it.

In this paper therefore. we wish to draw a
nathematical model on the fluid motion due to
essure received at the cochlea as a result of a
riven noise that generated sound waves and
dicked up by the ear. Further work will show
10w this pressure deforms the basilar membrane
vhich results in impulse generation and transfer
o the brain through the auditory nerves.

The Fluid Mechanics of the Cochlea.
As stated earlier, the cochlea is the part of the
inner ear which is a small fluid-filled chamber
and contains the biological structures that
convert mechanical signals into neural signals. In
addition to the signal conversion, it does process
signals. Thus, a clear understanding of the
mechanism requires that we understand the
cochlea fully as it relates to audition, (Lesser and
Berkkley, 19972; Ranke, 1950b and Lamb,
1904).

To model the fluid dynamics in the
cochlea, the following assumptions are made:

1. The model is a two dimensional model in
an enclosed cavity containing a structure
of spatial variable elastic properties.
The spiral cochlea is unwound

3. The central duct in the cochlea which
contains the Corti and which is enclosed
by Reisner’s membrane and basilar
membrane will be represented by a single
elastic partition.

4. The mechanical properties of each
partition are represented by the
assumption that each point acts as a
damped harmonic oscillator point to
point, coupling being only through the
surrounding fluid. This assumption leads
to representing the partition by a
mechanical impedance z(x; .t), x; being
the distance from the oval window along
the partition and t, the time.

5. The endolymph is considered
incompressible for it has the same sound
speed as water. The wavelength of an
acoustic signal at 500Hz ( at high
frequency for hearing ) is about 30 cm
while the cochlea is only 35cm
(Goldstein, 1967).

6. The fluid flow will be considered inviscid
though we shall regard this as a first step
in an expansion procedure.

7. The endolymph is considered inviscid

(E]

8. One point that is needed to be
remembered is the fact that the motion of
the basilar membrane is small, a
displacement of  about 10"°cm
corresponds to normal amplitude of
sound.

9. Man can detect sound corresponding to
the basilar membrane and eardrum
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displacement of 10"'%m. Also known is
the fact that non-linearity does exist in
mechanics, though many of these are to
become noticeable over a long period of
time. The works of Goldstein (1967),
Goblick and  Pfeiffer (1969) in
electrophysiology include the presence of
non-linearities in cochlea mechanics.

10. There exists non-linearity caused by
eddies in the cochlea and this 1s different
from the above linearity talked about.
This eddy called the Bekesy eddy, is
understood as resulting from the
combination of viscosity and non-linear
effects.

From all these, we have that the flow pattern in
cochlea model excited by an oscillatory
disturbance exhibits a steady streaming motion
as well as motion typical of a fluid with a free
surface. As the excitation is purely oscillatory,

the steady motion must result from a non-linea
Interaction as can be seen from the works o
Morse (1948). Pain (1976) and Rhode (1971).

The Mathematical Model.

To be able to get the required model that will
describe the cochlea dynamics, we assumed that
the basilar membrane motion is primarily
controlled by  potential  flow.  Physical
measurements by Von Bekesy (1947) shows that
the maximum basilar membrane slope is
sufficiently small and this supports the
linearization of the equations involved. Our
model here is for an enclosed two-dimensional
cavity and the basilar membrane appears in it as
a thin plate immersed in the fluid in the cavity.
We shall consider the linear short-time scale
aspect of the cochlea behaviour. Thus, for the
figure below, we assume a linearised two-
dimensional potential flow, that is:

POTENTIAL FLOW MODEL OF THE COCHLEA

In this diagram, &, and é?: are the displacements
of the oval and round windows respectively and
we equally denote the upper domain where x5 >
0, by the subscript 1 and the lower domain x3 <
0, we use the subscript 2. x5 denotes the height of
the wave in the cochlea while x; is the distance
traveled by the wave.

Using the work of Green and Naghdi (1967), the
equation of motion of such plate is given by:
ity + F - o (1)

AN /(¢4

where o3 i1s the elastic constant or the
flexural rigidity of the hair cells in the basilar
membrane, p is the mass density of the basilar
membrane, u; is the velocity of the vibrating
membrane while F5 is the load on the membrane
which can be viewed as external forces acting on
the membrane and « denotes the coordinate of
interest. Lesser and Berkkley, (1972) gave the
equations of motion characterizing the flow of a
non-viscous incompressible fluid in such cavity
as:
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where p is the fluid density, P; is the fluid
pressure, i =0,1,2 and U and V are the velocities
on both the x3 and x, axes respectively.

Since the flow motion of interest is that motion
with small amplitude, we neglect the product
terms in equations (3) and (4) and we obtain

U dP,

b el 5
P " o, =
v _ P, ,
Z o Tu 6
P ox, &

We shall assume a velocity potential @ such that
V® =(U,V) where U and V are the x; and X3

fluid velocity components and equation (2) is
satisfied.

Hence,

a_U__i @ :i @ N

or  ar\ax, ) ox | o

_3(®)_2(d) 5

or ot\dx,) ox,\ o

If we substitute U =a£andV=2cR into
X Xq

equation (2), we get
aU av 8 [ a )
ox, 6x3 axf ox;
This implies that in the upper and lower
chambers,

=Vi® =0 (9

2 2 A
V(r)q) V(r)
where v 9’ i 9’ (10)
o axf ax;

We note here that @, and @, are the potentials
at the upper and lower chambers of the Cochlea
respectively. Substituting equations (7) and (8)
into equations (5) and (6) respectively, gives us:

2 (3®) 19F (9% B

AUt by o] RS OO | RO 1

a.\-,(a;]‘“palt axl[a: * p) an
and

o (0®) 10P, 9 (0@ P,

Phauiitt| (oot ol el 1= Bhinil £ 1=0 12

ax,(az}'paa, ax,(a;+p] e

Thus, we have the pressure equations in the
upper and lower chambers as

p-st—'+f’:=0 (13)
pai"-+£,= (14)
at

Now the boundary conditions on @ at x; = L
and x; =/, are:

BCI)BQ)

At x, =L, =0
: ax, axl
At l ] =0
%, =l
: ax1
At x=-d, 9, _,
: ox,

L = end of the Basilar membrane and the
beginning of the auditory nerve.

7 1 = the walls of the Cochlea or the
auditory channel

Having derived these equations let us then solve
them to be able to carry out some analysis and
discussions.

Solution of the Equation of Motion of the
Fluid

The equations of the motion of the fluid in both
chambers was given as

v(,,6—3¢+aq’ 0 (9)
dx!  ox;

as above

This equation is a Laplacian equation which is a

second order partial differential equation with

constant coefficients and of the type designated
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as elliptic equations in the Potential flow theory.
Let us assume expressions for ®; and ®; and see
whether they satisfy this differential equation.
Thus, suppose

B0, 3)=(k cosix, +hysindx A costlx +Bsinbdx) (19
P,(5,%5) =(k costx, +k,sind, x5 4, cosbi,x, +B sinbd,x,) o

In these two equations above, k;, A;, and B; are
the amplifying factors of the noise while A; are
measures of the flexural rigidity of the hair cells
due to the generated noise.

We can see that they satisfied equation (9)
respectively  when  substituted into it
appropriately. Hence we call them possible
solutions to the differential equation (9). These
solutions and their derivatives with respect to x,
are finite and continuous at all points except
possibly at some points on the boundary of the
field. Thus, the smoothness of the velocity
distribution is ensured at all points of the fluid
except at these points stated; Barbel et al (2002),
Bell and Holmes (1986b), Gupta (1987), Harold
(1982).

Using the boundary conditions as stated above,

we then have that:

0D, .

—a-'" = (—l|k|Slﬂl|X| +A.1kchSl|Xl ) (A]COSh;\qX;}
X

+ B;sinhlnn )

sothat at x, =L, and x3 =0, we have:

0 = -Ak;sinhA L + A k; coshA, L and for
Ay # 0, we get that
k sin AL
k, = S SInAL 17
2T cosAL {an

Similarly, on x5 =1, and x, = 0 we have that:

é;—q)i = (E, cosAx, +k,sindx, IA,A, sinhA x, + A4 B, coshA x,)
X3
= 0=AsinhA/+ B coshi/

_ —AsinhA/
N coshA/ 8

ie B

Substituting equations (17) and (18) into

equation (15), we get

fcos A (L-x,)coshA, (I - x,)
cosA, L cosh A/

D (x,.x;)= where =k A, (19)

In a similar way, equation ‘(l6j will give

yeosh(L—x)coshh, (I +x,)

cosd,Lcoshl) wherg=kd, o

Dy(x,. %)

To obtain the expression for A, we solve the
homogeneous part of the equation of the Basilar
membrane, ( Adagba, 2005 ), which is given as:

o', ps’uy _ ps(f-y)cos A (L-x,)
o’ a a,cos AL

" to obtain i, = Acosh A, x, + Bsinh A_x, fori

=1,2.
where

— ’p
/1,-0 =1 ra

To be able to obtain the value of A and B in the

solution above, we define A; , ( Titchmarch,

1986 ; Barrett and Wylie, 1995) , as

A, =wJaZl

For convenience, let A;= A, although we know
that a3, the flexural rigidity of the hair cells on
the basilar membrane, is not the same at x; and
X3,

where ® is the wave number

Hence,

Peoswi eom&(:.-x,)msm:,jr}u -x,) @
wmtj—ELcosWEf

D, (x,, X, 1) =

whereff =k A
and

- ,Boowrconj;‘g (L-x) costndg’(l +x,)
COﬂ\E, Lcosltd—{;_:l

22

D,(x5,x,0) =

where-fi=y

Going by the expression for A;, we assume it to
have the same value at both x, and x3. Equations
(21) and (22) are the solutions of the fluid
equation in potential form where the velocities
can be determined very easily. The term cosmt is
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to take care of the fluctuation in the flow with  and (20) still describing our potentials at both
respect to time. If the noise is not a function of  sides or chambers with appropriate substitution
time in which case t can be assumed to vamnish,  for A.

then cos 0 = 1 and we have our equations (19)

) | ﬁ _
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Analysis of Results

At the initial time of formulation of the model,
we had denoted the fluid variables in the upper
domain where x3 > 0 by the subscript 1 and those
at the lower ‘domain where x3 < 0 by the
subscript 2 while the velocity components for the
Xx; and X3 directions or axis are U and V
respectively. Thus, we can reduce the velocities
obtained in equations (21) and (22) to the
velocity components in the upper and lower
domains to see whether the structures of the
Cochlea in these domains in any way alter the
flow motion and thus velocities there. Hence
from equation (21), we get that:

-~ D, m\(_ ﬂcosalsnmr (L—-x)cosm\/_(l—x,} .
> cosy[2 Leoshuy[ 21

aq; 04_ £ Beosw smmJ_ (L-x,)cosml‘[‘(Hx,
e a‘- cos{:J— Lcosth-:l 2

We also use equation (22) to get V; and V; as

- a[% Poosar cosen[2 (L, sinhar 2 (- x,) -
cosa[£ Leoshaa[ 21

v-.,_; ad_ﬂwsalm(u.—.t,)smhm‘f—(nx,) (;26)
dx, an-—meJ_

From equations (21) and (22), we also obtain the
complex Velocity potential field of flow in the
upper chamber (thus on the surface of the basilar
membrane) as:

.y
oy

U+iv=299, .09,

ax, dx,

o[£ cosarinan[Z (L - xycoshn[Z 1 - x,) - cosan|E (L x sinben[£ 1+ x,)]
costi_lesl'ngl

(26)

We can see from equations (23) to (26) above
that these variables U;, U, V, and V; will be

unbounded if cos /2 L = 0. This implies that

(Zn - l)Jr J_
,

_— where the velocities are unbounded.

,n=1,2,

Hence, the solutions obtained so far exist and
have meaning only if

- (2n—l)7? @
2L £
ensures that the velocities are bounded.
Equations (23) and (25) denote the velocity
components in the horizontal (U) and vertical
(V)- axes at the upper chamber while equations
(24) and (26) are for the case of the lower
chamber respectively.

From these equations therefore, we have
been able to determine the velocity potentials for
both chambers. We saw that they are of the same
magnitude, although of opposite signs. We
equally can see that as far as © is as predefined,
the velocity potentials and all their derivatives
with respect to x,; are finite and continuous at all
points except possibly at some points on the
boundary of the flow field where w fails. Hence,
the smoothness of the velocity distribution is
ensured at all points of the fluid.

To be able to see these conclusions or
results more clearly, we plot the curves
representing these velocity potential expressions.
To do this, certain values have to be chosen for
the constants. Thus, adapting values from the
work of Lesser and Berkley ((1972), we have
that a;=2 (Calculated), | @ |=10%, p=1,L =
35mm , P=1.Using these values, although with
appropriate variations, we arrived at the
following figures and then conclusions:

In Figure 1, we saw that when we assume that
the basilar membrane has constant flexural
rigidity, the wave generated by the fluid motion
in the cochlea as a result of noise externally, has
the same shape at all points of the basilar
membrane. This means that there is equal
transmission of the noise to all points of the
basilar membrane. Experimentally, this is not
true. Hence, we considered a case where the
flexural rigidity decreases with x,. This is
shown in Figure 2. Here, the peaking of the wave
increases with x; and this goes to confirm that
the noise is not equally received at all points of
the basilar membrane and therefore agrees with
known experimental evidence,(Rhode, 1971). To
stil be sure of our conclusion here, we
considered a case where the flexural rigidity
increases with x, as shown in Figure 3. Here the
wave peaks very close to the entrance of the

which



Mbah, G.CE. 68

inner ear, which is the beginning of the basilar
membrane. This appears unrealistic for a normal
person although this may be true for one who is
hard-at-hearing. Thus, for one who is partially
deaf, Figure 3 appears real for the ‘reception of
the noise in his/her ear.

In Figure 4, we assumed the same flexural
rigidity but varied the x;. The figure appears the
same with Figure 1 with the difference only in
the magnitude of the velocity potential. This is
realistic enough as we do not expect a shift in the
wave form but may be in terms of magnitude.

To test for the effect of the noise input in the
nature of the generated wave in the ear, we
varied the value of B. Thus, for p=2, the wave
form becomes highly magnified for the case
where the flexural rigidity of the basilar
membrane was assumed constant. It actually
doubled. In Figure 6, we considered the case
where the flexural rigidity decreases with
increase in X;. We obtained the same result that
the wave form will be highly magnified and in
this case not necessarily doubled but even higher
than that. From this two results therefore, it
follows that since the flexural rigidity reduces
with increase in Xx; and since the basilar
membrane is elastic, then there must be certain
level of B that must be dangerous to the hearing

mechanism. This is because at such level, the
elasticity of the basilar membrane will be broken
and there will be no noise impulse transmission
to the brain for interpretation thereby leading to
deafness.. This therefore corroborates the
experimental evidence that intense noise destroys
the mechanism of hearing or leads to temporary
deafness, (Cheremisionoff & Cheremisionoff,
1978)

Concluding therefore, we may say that
noise effect in the ear is transmitted effectively
in the Cochlea via these fluid equations which
we have solved to obtain the velocity potentials.
As we have seen certain level of the noise may
damage the hearing ability of an individual but
will not distort the flow mechanism and the
velocity of flow in the Cochlea as shown here.
This is so because the basilar membrane is

immersed in the fluid and the rocking of the foot

of the stapes on the cochlea must transmit the
noise to the fluid in the cavity in the form of
vibration, (Bell & Holmes, 1986b; Lesser and
Berkley, 1972; Rhode, 1971). It is this vibration
that sets up this motion in the fluid. Therefore,
whether the hearing ability in an individual is

- lost or not does not in any way affect the

establishment of fluid motion in the Cochlea
once there is noise or even sound entering the
ear.
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