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Abstract: Due to the increasing trend in 

distributed cloud environments, strong data 

provenance and integrity practices are even 

more important than before to ensure answers 

to security and traceability requirements as 

well as compliance.  The new challenges, 

developments, and best practices in monitoring 

and security of data for cloud systems are 

discussed in this paper. Key challenges include 

scalability limitations, privacy vs. 

transparency trade-offs, and regulatory 

compliance issues. To address these concerns, 

blockchain-based provenance tracking, AI-

driven anomaly detection, cryptographic 

hashing, and privacy-preserving techniques 

such as homomorphic encryption and secure 

multiparty computation (SMPC) have emerged 

as innovative solutions. The study also 

examines real-world implementations in 

healthcare, finance, and supply chain 

management, demonstrating how 

organizations leverage provenance tracking to 

enhance trust, security, and operational 

efficiency. Additionally, the paper discusses 

standardization efforts such as W3C PROV and 

ISO 27037, which aim to improve 

interoperability and legal compliance. Moving 

forward, advancements in federated learning, 

decentralized identity management, and 

quantum-resistant cryptography will play a 

crucial role in enhancing provenance tracking 

and ensuring secure cloud ecosystems. By 

integrating AI-driven monitoring, blockchain 

scalability solutions, and adaptive compliance 

frameworks, organizations can build resilient, 

transparent, and tamper-proof data 

management systems in an increasingly digital 

world. 
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1.0 Introduction 
 

The growing dependency on distributed cloud 

environments has changed how organizations 

store, process, and manage data (Sunyaev & 

Sunyaev, 2020). Cloud computing allows 

higher scalability, cost rectitude, and 

availability through which firms can operate 

within a very interconnected ecosystem. Even 

though some distributed infrastructures raise 

very crucial concerning-the integrity and 

provenance of data, organizations cannot seem 

to ascertain the authenticity, origin, and 

modifications of any data throughout its life 

cycle (Li & Zhang, 2021).. An absence of a 

structured data provenance framework gives 

rise to clouds easily susceptible to unauthorized 

alteration and cyberattacks, in addition to 

potential non-conformance to regulations, 

greatly posing risks to the partners and clients 

(Kommisetty, 2022).  

Data provenance is simply the tracking and 

verification of the source of data, different 

modifications of data, and ultimately the flow 

of data across different cloud nodes (Suen et 

al., 2013). Provenance implies transparency 

and trustworthiness and is done by 

systematically keeping the track record and 

showing the evidence of where data originates, 

who changed it, and how the data changed. The 

very importance of provenance is supported by 
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industry statistics stating that IBM Security's 

Cost of Data Breach Report (2021) has found 

that more than 45% of data breaches result 

from a lack of visibility into data movement 

(Ametepe et al., 2021). Thus, tracking data 

provenance provides companies a way to 

reduce such risks by obtaining an auditable trail 

of data transformations, which is important for 

ensuring data integrity, regulatory compliance, 

and security. Besides, it is not well supported 

that managing provenance introduces 

additional complexity to distributed cloud 

environments because of the large number of 

data replicas, geographically distributed 

servers, and dynamic network interconnections 

(Zhang et al., 2011).  Organizations should be 

able to have confidence that the data they use 

to make decisions has not been tampered with 

and continues to be valid, which is as important 

as data integrity   Mechanisms for data integrity 

offer consistency, prevent unwanted 

modifications, and detect abnormalities in 

flow.  According to Cybersecurity Ventures, 

data manipulation is one of the fastest growing 

risks, and by 2025 global losses due to 

cybercrime are expected to reach beyond $10.5 

trillion per year (Imran et al., 2017). As per the 

risks of getting corrupted and lying data, it 

becomes the key requirement for implementing 

cryptographic hashing, blockchain-based 

tracking of provenance, along with real-time 

integrity verification techniques, both for cloud 

service providers and enterprises. This 

technology integration assuredly will earn 

immense trust and reliability on cloud-based 

applications, particularly in the healthcare, 

finance, and supply chain sectors, where data 

integrity is mission-critical (Imran & Hlavacs, 

2012). 

The problems with data provenance and 

integrity in dispersed cloud environments are 

due to lack of conventions frameworks, 

insufficient scalability and compliance 

limitations (Katari & Ankam, 2022). 

Traditional provenance models often do not 

cope with how fast cloud infrastructures evolve 

nowadays, where real-time data interactions, 

AI-based processing, and hybrid cloud models 

intervene to muddle the tracing of provenance 

(Zafar et al., 2017). Moreover, whenever 

detailed data trails are furnished, privacy issues 

surface since provenance metadata could 

disclose sensitive data about users and business 

activities. Cloud architects are finding it hard to 

balance privacy and transparency when it 

comes to security. They looked into the 

provenance models based on zero-knowledge 

evidence, homomorphic encryption, and secure 

multi-party computing to enhance privacy 

(Imran et al., 2017). To establish cloud systems 

that are more proven, several new technologies 

are under development as potential solutions to 

these problems, such as blockchain, artificial 

intelligence, and decentralized identity 

management (Lim et al., 2018).  Hussain & Al-

Turjman (2021) opined that the blockchain 

technology can facilitate the prevention of 

tampering of origin because it brings clarity 

and data immutability, which is a possible tool 

in stopping origin manipulation. Decentralized 

identity models can limit access to sensitive 

data by authorized users and AI-based anomaly 

detection might be capable of detecting 

suspicious changes in data in real-time.  Studies 

have shown that lucrative technology, such as 

cloud security systems, blockchain enabled 

provenance monitoring manages a minimum of 

80 percent of economic fraudulent practices, 

even in the financial transactions, which serves 

as a strong example of the value of employing 

advanced technology (Gudala et al., 2022).   

The work is expected to place the theoretical 

problems and challenges of distributed data 

provenance and integrity in cloud 

environments and technological innovation 

(Ametepe et al., 2021).  

Based on several real-life case studies and 

applying number of provenance models and 

security mechanisms, the study attempts to 

offer best practices in deploying provenance 

conscious cloud infrastructures. It will also be 

significant in the future of paradigms of cloud 
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computing in terms of trust and compliance as 

well as data authenticity to industries, 

researchers, and regulators (Gudala et al., 

2022).    

Through conceptual analysis of prevailing 

frameworks, modern trends and directions the 

research contributes to the increasing literature 

on data provenance, cloud environment 

defense to provenance gaps, unlawful access 

and data manipulation (Dib & Rababah, 2020). 
 

2. 0 Conceptual Foundation 

2.1 Data Provenance 
 

Data provenance is the history of a piece of data 

i.e. the origin of the data, the activities that 

make the data change its state and the path 

through which data passes through other 

systems.   

 It serves as a kind of record keeping that 

documents creation, change, and distribution of 

data over time (Simmhan, et al., 2005). In the 

cloud setting, provenance guarantees that 

operations have been performed on the data and 

its accountability, traceability and transparency 

in distributed platforms where much more data 

replication, processing and storage occur or are 

conducted all at once under different locations 

(Groth, 2007). Provenance gives organizations 

confidence in verifying the authenticity of their 

datasets, thus, all of which fall under data 

governance, compliance, and cybersecurity. 

Provenance metadata typically consists of 

timestamps, user activity logs, and 

transformation information, which can allow 

organizations to monitor and audit their data 

quite effectively (Trace, 2020) . Provenance is 

critical in building trust and reliability at a large 

scale while deploying distributed 

infrastructures. Cloud environment stores and 

processes large amount of data which keeps in 

changing at intervals making auditing and 

logging change slightly difficult and 

unauthorized modification to any of the data 

much recommended. Provenance mechanism 

helps to detect anomalies, to verify data 

integrity and also to do forensic investigation if 

security breach or corruption is identified in the 

data (Bettivia et al., 2022). There is also the 

need for detailed records of data processing 

activities to be maintained as may be required 

by law, for example, GDPR (General Data 

Protection Regulation) or HIPAA (Health 

Insurance Portability and Accountability Act) 

rules. Adoption of provenance tracking in 

cloud services will dramatically help to 

increase regulatory compliance and decrease 

the security risk incurred by optimizing data 

lifecycles (Cheney et al., 2009).  

Therefore, the value of provenance on Cloud is 

much wider than simply the dimension of 

compliance and security; it additionally 

includes efficiency, and better decision-making 

(Singh et al., 2018).  

Also, provenance metadata provides automatic 

detection of abnormal activity and real-time 

tracking, which, among other things, reduces 

the impact, and the costs of data manipulation 

and exposure to cyber threats. Provenance 

tracking has already been implemented in 

important industries in this context, including 

healthcare, financial services, supply chain 

management, etc. Provenance tracking is being 

adopted in many industries, thus achieving data 

attributes like quality and providing the 

company with the means for faster audits and 

better data-driven decisions. In medicine it 

involves the tight data provenance for the 

integrity of patient records without the 

opportunities for medical fraud. In financial 

systems, provenance tracking aids in 

discovering fraud and increasing translucence 

of transactions. Data provenance bolsters trust, 

accountability and dependability and thus 

forms an essential building block of modern 

cloud computing architectures (Mather et al., 

2009). 
 

2.2 Data Integrity 
 

Data integrity is defined as the maintenance of 

data's accuracy, consistency, and reliability 

during the entire lifespan of the data. If data are 

altered, destroyed, or fabricated to an unknown 

extent, there is a trustworthiness issue. The best 

definition of this term would be when data are 



Communication in Physical Sciences, 2024 11(4): 1030-1059 1033 
 

 

stored, transferred, or processed in a system 

(Whyte, 2021). In cloud computing, where data 

is often accessed, modified, and shared across 

multiple locations, integrity plays an important 

role in seeing that no unauthorized access will 

disrupt, corrupt, or make the data inconsistent 

(Thokala, 2021). Protection mechanisms for 

data integrity-Checksum, cryptographic hash, 

and validation-helps to detect and protect any 

unauthorized data modifications. Ultimately, 

data integrity is the basis upon which trust can 

be built in digital transactions, thus averting 

irreversible loss of critical information while 

also guaranteeing safe decision-making within 

cloud environments (Sharma, et al., 2021). 

Therefore, the integrity of data is paramount in 

cloud computing because it protects 

confidential data and ensures smooth 

operations (Aldossary and Allen, 2016). The 

cloud-based solutions to protect integrity are 

useful to businesses that are vulnerable to illicit 

usage, accidental data loss, and attacks of 

trustworthy and verifiable datasets. Cloud 

service providers are able to guarantee the 

integrity of data through redundancy, block-

chain ledgers, and by detecting errors and 

repairing them (Kumar & Poornima, 2012). 

Moreover, the regulatory frameworks like 

GDPR, HIPAA, and ISO 27001, make it 

binding on an organization to have the highest 

possible integrity of data. Unless integrity 

safeguards are strongly enforced, organizations 

risk suffering from corruption or manipulations 

of data that lead to financial loss, rerouting of 

business confidence, and overall operational 

interruption (Sun et al., 2014).  

The advantages of data integrity further 

compose security, organizational efficiency, 

trust, and regulatory compliance (Maddukuri, 

2021). Organizations that focus on integrity 

reap benefits in terms of accurate analytics, 

error-free data transactions, and lower risk of 

perpetrated frauds. For example, in banking 

and finance, data integrity avails the 

correctness of financial transactions and fraud-

proofing amendments (Aldossary & Allen, 

2016). On the other side, in healthcare, 

upholding integrity on patient records assures 

safe medical decisions and adherence to legal 

requirements. The amalgamation of automated 

integrity verification, cryptography, and 

blockchain technology within cloud 

environments will yield a secure and resilient 

infrastructure for processing critical data. By 

confirming that data remain accurate, 

complete, and reliable, organizations will 

maximize the security, compliance, and 

trustworthiness of their digital systems (Mather 

et al., 2009).\ 
 

2.3 Distributed Cloud Environments 
 

The characteristics of a distributed cloud 

environment require the cloud service to be 

delivered from a cross-section of multiple data 

centers in remote geographical locations, yet 

managed as a single entity (Sunyaev & 

Sunyaev 2020). The drawback of traditional 

cloud models is that it emphasizes a centralized 

infrastructure. In contrast, distributed cloud 

environments allow companies to disperse 

computing resources close to the end user, 

thereby reducing latency and enhancing 

availability and scalability (Greenstein & Fang 

2020). The main distributed cloud model 

providers are Amazon Web Services (AWS), 

Microsoft Azure, and Google Cloud, which 

provide localized services under a centralized 

control system. When data is able to be 

processed locally instead of on a remote data 

center, this architecture is excellent for edge 

computing applications, and applications that 

demand low latency and fewer data transfer 

requirements, e.g.: real-time applications, 

regulatory compliance (Saboor et al., 2022).  

The performance, fault tolerance and 

operational efficiency are the advantage of 

distributed cloud environments (Mather et al., 

2009). Organizations can have more disaster 

recovery and reduce the amount of traffic in the 

networks by using computing resources. 

Applications such as IoT networks, 

autonomous systems and financial trading 

which require low-latency processing can gain 
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from this architecture (Saboor et al., 2022). 

Additionally, it makes regulatory compliance 

easier by enabling businesses to handle and 

retain sensitive data within specific 

geographical bounds in order to comply with 

laws such as the California Consumer Privacy 

Act and the General Data Protection 

Regulation. 

Businesses can be able to optimize the 

workloads on a dynamic basis because of the 

extra flexibility that the distributed cloud 

systems provides, which allow the resources to 

be transparently allocated on the basis of the 

demand (Sarathy et al., 2010).  

One major hindrance in use of security 

measures in distributed cloud environment is 

security. The attack surface is increased as data 

gets processed complex, and kept in many 

different places; there are more chances of data 

breaches, illegal access and cyberattacks 

(Alkadi et al., 2020). In that way, security 

systems related to communication channel, 

data integrity, and access control should be 

applied to the outsourced globally distributed 

cloud nodes (Mushtaq et al., 2017). 

Interoperability problems may force 

organizations to provide consistency, 

synchronization of data in numerous cloud 

instances, and safety. Compliance with Let's 

talk about the following when you are working 

on the global stage: The appearance of the 

compliance problem is observed when 

companies act in numerous jurisdictions where 

data protection laws can be different. Given 

these risks, there are measures that have to be 

employed by organizations that use end-to-end 

encryption, more advanced identity 

management techniques, and real-time threat 

detection in order to ensure that their 

distributed cloud infrastructure remains secure 

(Alashhab et al., 2022). 
 

 

2.4 Theoretical Frameworks 
 

Using security models such as provenance-

based, distributed trust model, and cloud 

security, it may be possible to secure, monitor, 

and ensure data integrity (Asante et al., 2021).  

The CIA Triad Concept (Confidentiality, 

Integrity and Availability) is the most well 

known and applied model in data security and 

is applied to construct safe cloud 

infrastructures.  According to Wang et al. 

(2021), there are availability: need to assure 

when need data and service and when data 

available to data and services; confidentiality 

local access data to unauthorized personnel use 

data; and integrity ensures unmodified, reliable 

data formed. To safeguard from a large range 

of cyberthreats, system failure and 

unauthorised access requires particular 

advanced encryption, authentication protocols 

and redusancy techniques in this model which 

is particularly relevant to a distributed cloud 

environment (Habib et al 2022).  

One of the best theoretical frameworks for data 

provenance is the PROV Data Model and it had 

been created by World Wide Web Consortium 

(W3C) (Zhang et al., 2020). In order for 

traceability of the data transformations and 

ownership changes to be tracked, throughout 

cloud infrastructures, this paradigm towards 

data and cloud infrastructure recommends a 

standardization of recording, representing, and 

sharing the provenance information (Closa et 

al., 2017). In order to supply a sort of 

provenance record, the PROV model defines 

entities (data objects), activities 

(modifications) and agents (users or systems 

executing actions). Provenance models such as 

PROV enable organizations to ensure the 

accountability of data, auditability of process, 

and compliance with laws like the GDPR and 

HIPAA. Provenance models can also assist 

forensic investigations as they will help 

organizations track unauthorized changes and 

discover anomalies in data usage (Pandey & 

Pande, 2021).  

Theory behind the provenance based on 

blockchain and distributed trust mechanisms: 

By applying these theories-the Byzantine Fault 

Tolerance (BFT) Model and Decentralized 

Trust Theory, the systems are known as 

blockchain models (Hermstrüwer, 2020). BFT 
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Model handles difficulties experienced in 

distributed systems when nodes turn malicious 

or fail in an unexpected manner. Blockchain 

technology applies BFT principles and 

therefore, it guarantees that even when a certain 

number of nodes fail or even are compromised, 

it still achieves consensus and will still keep the 

integrity of data (Wang et al., 2022). According 

to Decentralized Trust Theory, trust can be 

established in a system without relying on a 

central authority, which is applicable in 

blockchain-based provenance tracking. In the 

case of cloud computing, this tamper-proof 

data logs, automated smart contracts, and 

secure data exchange without requiring the 

need of intermediaries (Hermstrüwer, 2021).  

By Game Theory and Economic Models of 

Trust, distribution in common distributedly 

achieved security and integrity of data in the 

cloud is also possible (Gao et al., 2016). Game 

theory models the interaction between users, 

cloud providers, and attackers, predicting 

strategy under which data will be secured based 

on the incentives and risks (Esposito et al., 

2020). Reputation-based trust models, which is 

an economic derivative theory, is employed to 

give the nodes or users a rating of trust based 

on their past actions in a distributed cloud 

environment. These models are vital to security 

in multi-cloud and hybrid cloud systems, in 

which multiple stakeholders share resources 

and require assuring each other of reliability. 

To combine these theoretical frameworks, 

researchers and cloud providers are working 

together in a strategic manner to create more 

robust, transparent, and resilient cloud 

computing technology that can address 

provenance, data security, and distributed trust 

mechanisms (Kirlar et al., 2018). 
 

3.  0 Data Provenance in Distributed 

Cloud Environments 
 

Data provenance refers to the procedure of 

documenting the information and the 

modifications and relocations that take place 

between the origin of the journey to the end, 

until the information gets to the ultimate 

processing stage.  It provides companies with 

the instruments to ensure data integrity, 

protection, and conformity in scattered cloud 

environments (Imran & Agrawal, 2022).  In 

cloud-based systems, provenance data can be 

utilized to keep information of data usage, 

transformation, and dependency- all of which 

is required to be audited and held accountable. 

The relations among entities, activities, agents 

as well as their interaction with timestamps are 

presented in Fig. 1 to offer a conceptual view 

of data provenance mechanism.  These links 

provide a means of viewing the data 

generation, usage, and attribution in cloud 

distributed systems. 

3.1 Types of Data Provenance 
 

The process through which data has been 

modified and relocated across the source to the 

place of processing is known as data 

provenance (Imran & Agrawal, 2022).  With a 

good understanding of the different kinds of 

data provenance, organizations will be able to 

ensure the security, compliance, and integrity 

of dispersed cloud system data.  There are two 

important kinds of data provenance, including 

system vs application provenance and coarse vs 

fine granularity (Hu et al., 2020).  The most 

suitable of the above-mentioned methods will 

depend mostly on the degree of detailing, the 

processing power that is available, and the 

circumstances that the data will be tracked 

(Simmhan et al., 2005). 
 

3.2 Fine-Grained vs. Coarse-Grained 

Provenance 
Generally speaking, fine-grained provenance 

records changes at extremely fine levels; it is 

frequently interested in monitoring changes at 

the byte, field or attribute level (Ruan et al., 

2021).  Financial transactions, medical data, 

and scientific research, just to name a few 

examples - where the smallest modifications 

may have a great impact - are among those 

domains in which fine-grained provenance is 

useful (Chapman et al., 2020).  For audits and 

compliance purposes, fine-grained provenance 

is useful because it reflects an accuracy and 
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responsibility of a high degree.  Performance is 

hurt by other challenges, such as processing 

and storage overhead costs, at least in very 

large-scale cloud systems. On the other hand, 

coarse-grained provenance reforms data at a 

higher level of abstraction, focusing on the 

most significant processes, workflow, or 

dependencies instead of tracking every minor 

change within a transformation (Oliveira et al., 

2018). This method is mostly applied in 

business process management, enterprise cloud 

applications, and data pipeline tracking 

because it does not need much space to 

comprehend general flow but rather minor 

modifications (Herschel et al., 2017). Thus, 

coarse-grained provenance is more scalable 

and more storage efficient; thus, it is applicable 

for cloud computing purposes. However, it 

lacks the ability to trace fine details of changes 

that may be a drawback for some security-

sensitive applications requiring forensic detail. 

Many organizations currently take a hybrid 

approach, where fine-grained provenance is 

available for some critical data points and 

coarse-grain tracking for the workflow view 

(Rupprecht et al., 2020). 

 
Fig.  1: Data Provenance in Distributed Cloud Environments (Astera, 2021) 
 

3.3 System-Level vs. Application-Level 

Provenance 
 

The other major distinction concerning data 

provenance is made between system-level and 

application-level provenance (Magagna et al., 

2020). System-level provenance is 

automatically recorded by the underlying 

operating system, cloud infrastructure, or 

middleware for tracking the movement of data 

between different storage systems, networks, 

and computational nodes (Rupprecht et al., 

2020). This type of provenance is hardware-

independent and can be utilized to analyze 

system performance, detect security threats, 

and optimize resource allocation. Being such 

low-level provenance, it is usually coarse-

grained and may fail to capture application-

specific data changes (Muniswamy-Reddy et 

al., 2009). 

On the flip side, application-level provenance 

is recorded in software applications, databases, 

or user-driven processes, capturing domain-

specific transformations of data (Luczak-

Rösch, 2014). For instance, application-level 

provenance in healthcare systems would track 

who modified a patient's medical record, what 

was changed, and why (Pinto et al., 2022). This 

form of provenance is fine-grained and caters 

to the unique requirements of an application, 

thus making it very useful for auditing, 

compliance, and debugging. However, it has to 

be custom implemented within each software 

system and might impose additional 
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computational and storage overhead if not 

managed well (Pinto et al., 2022). 
 

3.4 Methods for Capturing Data 

Provenance 
 

 

It has been stated that data provenance is 

essential for traceability, security, and 

compliance in a distributed cloud environment 

(Ametepe et al., 2021). And of these, the most 

favoured technique happens to be metadata 

logging, i.e. keeping the record of data that was 

created, modified or transferred. In such case, 

the metadata logs record dimensions including 

timestamps, user operations, system events and 

transformation history, thereby helping 

organizations ensure the life cycle of the data 

(Ametepe et al., 2021). Many cloud platforms 

and databases are focusing on the automation 

of metadata logging in order to integrate some 

parts of data governance, auditing, and security 

monitoring. While metadata logging offers a 

systematic and scalable means of capturing 

provenances, in large-scale systems, both due 

to both the vast amounts of data and the 

requirement for efficient storage/retrieval 

mechanisms, metadata logging quickly 

becomes resource-prohibitive (Imran et al., 

2017). 

Another way that data provenance can be 

guarded is through cryptographic hashing 

which can be used to ensure that data is 

representative and tamper-proof (Bany Taha 

2015). A message hashing algorithm such as 

SHA-256 (Secure Hash Algorithm) generally 

generates a unique fingerprint of the data 

record that allows hand verification by the 

system to see if data is changed. In this sense, 

if a small change is made for data, the hash 

value will be different in magnitude, thus to 

warn the administrators about any 

unauthorized change. Cryptographic hashing 

algorithm is therefore applied extensively in 

digital signatures, file verification, and 

conformity audits to give assurances to the 

reliability of the data throughout its life cycle 

(Porkodi and Kesava-raja, 2021). However, 

this technique is change-oriented but does not 

record the complete history of changes, so it is 

the best to be used together with other 

provenance techniques (Li et al., 2022). 

A state-of-the-art decentralization approach is 

the blockchain-based data provenance tracing 

(Soldatos et al., 2021). Immutability and 

tamper-proof recording of data transaction, 

which are the core qualities of blockchain, are 

perfect for ensuring maximum security in the 

most sensitive areas of operation, such as 

financial services, healthcare, and supply chain 

management. A data transact uniquely has a 

cryptographic linkage to a block position 

(which ultimately means any modified 

rewriting to the provenance record would 

necessitate the rewriting all future blocks, 

hence grossly computationally inhospitable) 

(Jyoti & Chauhan, 2022). In a blockchain-

based provenance architecture, the precision 

and integrity of the data can be strengthened 

further, along with providing greater 

management of the independence of 

verification through smart contracts. However, 

despite such high security benefits, blockchain 

comes with scalability and performance issues 

as it is adopted in the cloud environment at a 

high volume with control over transaction 

processing speed and storage costs. By 

combining metadata logging, cryptographic 

hashing, and blockchain-based tracking, 

organizations are able to develop an 

encompassing, secure and verifiable 

framework for data provenance (Siddiqui et al., 

2020). 
 

4.0 Challenges in Data Provenance 
 

Specifically, the main problem with data 

provenance in the dispersed cloud setting is 

scalability, privacy, and trust (Liang et al., 

2017). With devices and services producing 

and processing vast amounts of data, and with 

humans continuing to seek the capability to 

monitor the entire lifecycle of data, data 

complexity continues to grow with time. Noor 

et al. (2013) observe that the incremental 

nature of record modifications requires 

provenance techniques to support the concept 
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of Big Data, WF-oriented operations, and real-

time analytics in which data is continually 

updated without creating huge overheads in 

terms of provenance information processing 

and storage. A primary challenge with 

provenance to distributed computing can be 

how to provide coordinated provenance claims 

between multiple cloud nodes without 

compromising on speed. Distributed ledger 

management systems, indexing, and effective 

storage strategies are required to be efficient, 

since the conventional logging systems usually 

break in times of stress (Olawale et al., 2020). 

Another problem is the privacy protection and 

the presence of legal frameworks. Without 

most of the specifics, some stringent laws such 

as the Health Insurance Portability and 

Accountability Act (HIPAA) and the General 

Data Protection Regulation (GDPR) provide a 

guideline on how data should be used, stored, 

and retrieved (Mendelson, 2017). Provenance 

tracing also provides additional accountability 

and security, although security may be broken 

by revealing sensitive user information about 

data transformation. 

Recording access to financial or medical 

information, such as but not limited to logging 

in, can prove to disclose confidential 

information such as patient history or details of 

transactions. To solve this issue, privacy-

preserving provenance systems such as as 

anonymization, encryption, and access control 

systems should be implemented to facilitate 

compliance with it and perform effectively as 

tracing mechanisms (Torre et al., 2021). 

In addition to the problem related to 

provenance manipulation and trust, cloud 

provenance management is a difficult topic. 

Since provenance records testify about the 

validity and reliability of data, malicious 

attackers might want to create their own 

records or seek solutions to cover illegal 

manipulations, security violations or fraud (Li 

et al., 2021). Conventional centralized 

provenance systems have the risk of insider 

attacks; whereby privileged administrators will 

attempt to conceal the traces of an incident by 

deleting or corrupting logs. 

In the context of multi-cloud and third parties, 

organizations' complete trust in the external 

providers' ownership of accurate provenance 

records becomes an issue fearing incurs of 

mismanagement or malicious fabrication 

(Julakanti et al., 2022). 

Blockchain technology has been suggested as a 

way to solve such problems and deliver 

tamper-proof provenance traceability in a 

decentralized manner (Westerlund et al., 

2018). With blockchain, once provenance 

records have been written to the ledger, they 

cannot be changed without the agreement of all 

the nodes in the network (Shekhtman & 

Waisbard, 2021). This characteristic 

exacerbated trust and transparency and is very 

relevant in the field of supply chain 

management, financial systems and digital 

forensics (Batista et al., 2021). Nevertheless, 

blockchain does present challenges in 

scalability, as there is a wide spread ledger that 

requires large computational capacity and 

storage capacity to maintain. Continuously, 

research papers gravitate towards solutions, 

like off-chain storage and sharding and an 

optimized consensus algorithm, to strike the 

efficiency-security balance (Zhu et al., 2021). 

Hence the data provenance problem cannot be 

solved without a multi-layered approach to 

address scalable, privacy, and trust problems at 

the same time. This involves combining 

efficient storage systems, privacy controls for 

compliance purposes and secure validation 

techniques (Kumar 2016). To accommodate 

both scalability and regulatory compliance, 

only privacy-preserving cryptographic means, 

AI-driven anomaly detection, and secure cloud 

architectures are suitable for ensuring that 

provenance tracking is taken full advantage of. 

By addressing these issues comprehensively, 

organizations can construct strategies that 

encourage trust, guarantee data integrity, and 

uphold compliances in dynamic digital 

landscapes (Mushtaq et al., 2022). 
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4.1 Ensuring Data Integrity in Distributed 

Cloud Environments 

Finally, but not the least, data integrity is 

paramount to knowledge in the distributed 

cloud structures since it guarantees that 

knowledge is legal, trustful, and credible over 

its lifetime, between creation and destruction.  

The diagram in Figure 2 demonstrates that a 

combination of various methods, such as data 

validation, filtering, encryption, access 

controls, and audits, are used to ensure data 

continuity and integrity in the cloud. 

Unauthorized and malicious modifications are 

among the threats that cloud data integrity is 

always vulnerable to (Zafar et al., 2017).  An 

attacker that removes, adds, or changes some 

information in datasets is performing an 

operation of data tampering that can cause a 

fallacy which affects the effectiveness of 

operations and decision-making.  Common 

vector attacks such as SQL injection, 

ransomware, and man in the middle (MITM) 

are commonly used to attack data when it's in 

motion or at rest.  Intensive areas like 

healthcare, banking and law can have 

devastating impacts.  For example, modifying 

financial transactions can facilitate fraud, 

whereas modifying medical records can result 

in incorrect treatments.  Organizations should 

implement strong encryption, access controls 

and real-time verification procedures in order 

to counter these threats (Kaja et al., 2022). 

One such worst threat is insider attacks, in 

which the staffs and regional administrators 

with special privileges may intentionally or 

unintentionally damage data (Saxena et al., 

2022).  In comparison to the external attackers, 

trusted insiders are more difficult to detect 

(Zhang, 2020).  While carelessness can lead to 

accidental overwriting or data loss, employee 

discontentment can result in intentional 

manipulation of the data leading to creating 

disorder or releasing proprietary data for 

personal gain.  According to a study (Silowash 

et al., 2012), RBAC, continuous monitoring, 

anomaly detection via artificial intelligence 

(AI), and zero-trust models are all necessary to 

identify insider threats.  Another integrity 

problem for distributed systems is a replication 

complexity, where data spread on several 

servers or databases can become out of sync 

due to disconnection, synchronization failures, 

or delay (Tandel, 2022). Applications in 

banking, logistics, e-commerce, or other 

industries using such inflows generate risks of 

duplicates, outdated records and corrupted 

records, which may result from inconsistencies 

(Malik et al., 2016). To provide this, 

organizations need to implement robust data 

validation processes, integrity checks and 

conflict resolution to maintain consistency on 

geographically distributed systems (Gogineni, 

2022). 

 
Fig. 2:  Data Integrity in Distributed Cloud Environments (Wall Street Mojo, 2020) 
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4.2 Techniques for Ensuring Data Integrity 
 

Cryptographic hashing is one of the most 

popular techniques of ensuring data integrity 

through generating a uniquely fixed size hash 

value for any one given dataset (Hambouz et 

al., 2019). Hashing algorithms such as SHA-

256 (Secure Hash Algorithm-256) and HMAC 

(Hash-based Message Authentication Code) 

work in the direction of making the digital 

fingerprint of the data, in which the systems can 

check if any nodes modified the same 

information (Kairaldeen et al, 2021). With not 

much modification in data, the total value of 

hash changes means that it is easy to detect any 

unauthorized change. In addition to the secret 

cryptographic key, HMAC has access to the 

extra level of protection, in other words, the 

generation and verification of hash values is 

possible only for authorized entities. 

Cryptographic hashing is primarily applied to 

file integrity monitoring, verifying databases, 

and secure transmission of data over 

computerized cloud networks (Kairaldeen et 

al., 2021).  

The other important way of securing data 

integrity is the digital signatures that rely on 

Public Key Infrastructure (PKI) (Danquah & 

Kwabena-Adade 2020). Traditionally, digital 

signatures involve asymmetric encryption: 

Asymmetric encryption involves a private key 

that is employed to sign some data and a public 

key to verify for. This add-up to assure more 

data is changed between storing data and 

transmitting and tracing data through legally 

sender (Sagar Hossen et al, 2020). PKI, which 

is a larger security architecture, further 

provides secure key management and 

authentication and encryption mechanisms to 

withstand unauthorized modification. Such 

industries as finance, healthcare and 

government highly depend on PKI based 

digital certificates as protective mechanisms 

against sensitive transactions and regulation 

documents assuring data integrity and 

authenticity in that (Khan et al., 2022).  

The blockchain along with the intelligent 

contracts offers decentralized and unchanging 

techniques for data integrity (Rahman et al., 

2022). Blockchain keeps data in an 

indestructible and distributed ledger of 

transaction whereby each block is linked 

cryptophile to the preceding. This can prove 

out to be infeasible from a computation point 

of view when applying for wrong proof by an 

attempt of modifying data without changing all 

the blocks that follow the block containing 

what was changed. Hence, blockchain emerges 

as a good answer for trust in cloud 

environments, supply chains, and financial 

transactions (Tarafder et al., 2022). Smart 

contracts are basically self-executing pieces of 

code stored on the block chain, thus automation 

of integrity checks would be ensured by 

triggering actions based on the fulfillment of 

pre-set conditions. As such, data would be 

unalterable, transparent, and verifiable without 

reliance on centralized authorities 

(Ramachandran & Kantarcioglu, 2017).  

Last but not least, Trusted Execution 

Environments (TEEs) and secure enclaves 

offer hardware-based security methods to 

prevent any potential manipulation of sensitive 

data (Schneider et al., 2022). TEEs, for 

instance, Intel SGX (Software Guard 

Extensions) and ARM TrustZone create 

isolated execution environments on a 

processor. These holistically secure critical 

operations from the possibility of compromise 

by other systems. When storing and processing 

data, these secure enclaves can be protective 

against malware, insider threats, and 

unauthorized access (Brandão et al. 2021).  

REEs are extensively utilized in cloud 

computing, financial transactions, and secure 

communications as they provide a trusted basis 

for data integrity verification and management 

in today's dispersed environment.  By using 

these secure enclaves, organizations would be 

able to protect their cloud infrastructure against 

data manipulation and unauthorized changes, 

demonstrating that data that is trustworthy, 



Communication in Physical Sciences, 2024 11(4): 1030-1059 1041 
 

 

reliable, and immutable (Chakrabarti et al., 

2022). 
 

5.0 Emerging Technologies and Trends in 

Data Provenance and Integrity 

5.1 Blockchain and Decentralized Ledgers 
 

 

Blockchain and decentralised ledgers are 

considered to be the most cutting edge 

technology introduced for data authenticity and 

integrity (Deshpande et al., 2017). The 

blockchain offers a blockchain infrastructure 

for recording data provenance where data 

modifications are immutably recorded for 

auditing. Since the provenance records on a 

blockchain are cryptographically stored in a 

decentralized fashion, it eradicates the 

possibility of single points of failures and 

manipulation from within, which is usually the 

case for centralized systems of provenance 

(Madupati, 2021). Every transaction registered 

in a block chain has a timestamp, is signed 

cryptographically, and linked to the previous 

block, therefore forming a perpetual and 

verifiable history of data. This makes the 

blockchain an ideal tool to track the validity of 

data, prevent fraud, and ensure consistency on 

distributed cloud environments (Vagadia, 

2020).  

Several applied case studies are provided to 

show the effectiveness of blockchain-based 

provenance solutions in different industries 

(Xu et al., 2019). In the healthcare industry, 

enterprises like MedRec have built systems 

based on blockchain in tracking electronic 

medical records (EMRs) to ensure the security 

of data for patients, its auditability and tamper-

proofing. In the context of food supply chains, 

the IBM Food Trust Blockchain offers 

companies like Walmart and Nestle the 

opportunity to trace the origin of food products 

whilst significantly reducing instances of fraud 

and/ or risk of contamination (Soldatos et al., 

2021). The authors' conclusion is: For financial 

fraud and money laundering, the blockchain-

based provenance in finance is being used; 

companies are tracing the source and 

transmission of digital assets using 

decentralized ledgers. There are many case 

studies which speak to the way in which 

blockchain fosters transparency, trust and 

accountability in provenance tracking (Dang, 

& Duong, 2021).  

 

 
Fig. 3: Emerging Technologies and Trends in Data Provenance and Integrity (HubSpot, 

2021

Some of the challenges confronting its 

realization include scalability, energy 

consumption, and regulatory implica-tions 

(Khan et al., 2021). Traditional blockchain 

systems such as those underpinning Bitcoin 

and Ethereum require great computing 
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resources to verify transactions, thus rendering 

them less practical in a high-volume cloud 

application. Layer 2 scaling, proof-of-stake 

(PoS) consensus, and hybrid blockchain 

models are under exploration as new solutions 

that would enhance efficiency while 

maintaining security (Madupati, 2021). Also, 

integrating privacy-keeping technologies (for 

instance, zero-knowledge proofs, 

homomorphic encryption) would assist in 

achieving equilibrium between transparency 

and data confidentiality while maintaining 

conformity with data protection regulations 

such as GDPR and HIPAA (Habib et al., 2022). 

The future of blockchain for data provenance 

and integrity will continue evolving with 

advancements in smart contracts, decentralized 

identity management, and anomaly detection 

supported by artificial intelligence (AI) (Jabbar 

et al., 2021). In an environment where 

organizations are accelerating their transition 

to a multi-cloud and edge computing 

architecture, blockchain-based provenance 

systems will play a significant role in 

supporting the integrity of distributed data 

systems and protecting against unauthorized 

modifications. With blockchain’s immutable 

nature, cryptographic security, and 

decentralized trust mechanisms in place, 

organizations could create next-generation 

provenance systems to facilitate data integrity, 

provide verification of the data source, and 

satisfy auditability requirements attributed to 

regulations in an increasing digital world 

(Madupati, 2021). 
 

5.2  AI and Machine Learning for 

Provenance Tracking 
 

AI and ML are capable of benefiting the recent 

developments on the provenance tracking and 

data integrity checking tools for the distributed 

cloud environments (Soldatos et al., 2021). The 

traditional provenance systems typically use 

manual bookkeeping and rules-based tracking; 

this could be inefficient and rely on human 

beings that are prone to making mistakes. 

Automated provenance tracking using AI and 

ML does not only provide real-time pattern 

identification, but can also help with anomaly 

detection and predictive analysis, resulting in 

suspicious activities being detected as being 

out of the ordinary (Habib et al., 2022). In 

addition to the analysis of large groups of data, 

the use of artificial intelligence and machine 

learning also includes detection of inconsistent 

data that may indicate violation of integrity, 

with or without human intervention. 

Specifically, adding AI provenance tracking 

makes information management structure 

within organizations more transparent, secured, 

and compliant while reducing the risk of 

manipulation of data and even fraud (Habib et 

al., 2022). 

One of the best use cases of AI about 

provenance tracking is the anomaly detection, 

where it detects an unusual pattern in the data 

flow, access log and modification history 

(Nedelkoski et al., 2019). machine learning 

(ML) algorithms can create a normal baseline 

of behaviour of data in order to detect 

deviations that might signal unsanctioned 

change, insider threat, or cyberattacks 

(Nedelkoski et al., 2019). By way of example, 

in financial transactions, suspicious transfers of 

funds or percentage modifications in data can 

be picked up with the help of AI-driven 

anomaly detection mechanisms as a fraud 

prevention mechanism along with compliance 

violations. In the healthcare industry, too, the 

same change will occur, where AI can be used 

to analyze the modification of EHR or 

unauthorized access to ensure that it does not 

breach any of the medical data systems and 

maintains its integrity and reliability (Zipperle 

et al., 2022).  

One of the AI-based projects is automated 

auditing and it is a procedure where machine 

learning models assess provenance logs, ensure 

data integrity, and report violations for real-

time alerts (Adelusi et al., 2022). Unlike typical 

audits that are carried out periodically and may 

not address the threats of security in real time, 

AI-based audits offer continuous monitoring 
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and instant determinations of threats (Lakarasu, 

2022). However, the adoption of a cloud 

service provider has increasingly relied on the 

use of AI forensic tools to trace the 

vulnerability of data, determine malicious 

changes, and support the provision of 

regulatory compliance. AI can also optimize 

the tracking of provenance on blockchains as 

per the probed trends concerning data access 

and improved storage efficiency in distributed 

ledgers (Adelusi et al., 2022). 

As AI and ML technologies evolve, their roles 

will only be magnified in ascertaining 

provenance integrity in multi-cloud and 

decentralized networks (Lakarasu, 2022). With 

improvements in federated learning, 

explainable AI (XAI), and AI-smart contracts, 

automated provenance verification will be 

further strengthened in the future, and bias, 

interpretability, and scalability challenges will 

also be addressed (Bellagarda & Abu-

Mahfouz, 2022). Such organizations would be 

able to build emerging, self-learning 

provenance systems by joining AI-based 

anomaly detection with continuous auditing 

mechanisms in preventing data integrity 

breaches at the proactive level, thus enhancing 

the overall trust that would be placed in cloud 

environments (Ahmad et al., 2021). 
 

6.0 Homomorphic Encryption and Secure 

Multiparty Computation 
 

An increase in the reliance on a distributed 

cloud environment for sensitive data storage 

and processing by organizations invariably 

creates the challenge of ensuring privacy and 

integrity (Olawale et al., 2020). While 

conventional encryption techniques are used 

for protecting stored data and transmission, 

decrypting data exposes output to threats 

during computation process. Innovative 

approaches like Homomorphic Encryption 

(HE) and Secure Multiparty Computation 

(SMPC) can pave way for privacy-preserving 

data verification since these techniques allow 

computations on the encrypted data without 

revealing the underlying data. Such 

enhancements in cryptographic techniques are 

particularly beneficial in sectors like 

healthcare, finances, and government, as 

privacy is a big concern in such sectors 

(Aldossary & Allen, 2016).  

Homomorphic Encryption (HE) performs 

computations directly on encrypted data, gives 

an output in encrypted form, and that output 

matches with the expected output generated 

with the same operation on plaintext data when 

decrypted, thus making computations without 

loss of confidentiality possible (Alaya et al., 

2020). This makes it suitable to perform data 

processing operations with respect to 

confidentiality.  Applications such as encrypted 

provenance tracing, outsourced data analytics 

and secure cloud computing are a good fit for it 

(Wood et al., 2020).  Although there are a few 

classes of HE, such as fully homomorphic 

encryption (FHE), somewhat homomorphic 

encryption (SHE), and partially homomorphic 

encryption (PHE), the last class of HE is the 

most developed and allows for an infinite 

number of operations to be performed on the 

encrypted data. Nevertheless, HE has its own 

drawbacks such as high computational 

overload and low performance efficiency 

(Alharbi et al., 2020). 

Another way of protecting privacy is secure 

multiparty computation, which allows multiple 

participants to collaborate to compute a 

function over their combined inputs, without 

releasing data about each individual input 

(Zhao et al., 2019).  The SMPC maintains the 

confidentiality of inputs from each party, but 

permits them to know the final calculated 

outcome.  These methods are important in 

federated learning, collaborative data analytics, 

and situations where the provenance is being 

monitored without disclosing raw data 

including when organizations share insights 

(Du & Atallah, 2001).  SMPC enables fraud 

checks to be carried out between a number of 

banks without the disclosure of financial 

institution private transaction details and joint 

efforts may still be used to carry out medical 
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research utilizing patient details using 

encryption without violating some laws such as 

GDPR and HIPAA (Zhang et al., 2021). 

With the caveat of security, homomorphic 

encryption and SMPC conjoined has boosted 

the data provenance and data integrity of the 

cloud settings (Zeiselmair et al., 2021).  Apart 

from the prevention of insider threats without 

revealing the sensitive information, it can be 

used to validate modifications in data that may 

be managed for secure audits (Jayaraman & 

Mohammed, 2020).  To optimize this 

technology for practical applications, there are 

a lot of hurdles to overcome, should it be in 

terms of scalability, computation efficiency, 

and even practical implementations.  Future 

perspectives on privacy preserving data 

verification will be enhanced with the further 

advancements in quantum resistant 

cryptography, optimized cryptography 

schemas, AI based started cryptography 

optimization, hence enabling safe and high 

quality cloud computing. (Ghaffaripour, 2022) 

 

6.1 Interoperability and Standardization 

Efforts 
 

Interoperability and standardization in data 

provenance are needed for consistency, 

reliability, and compliance across the 

distributed cloud environment (Katari & 

Ankam, 2022). Due to the growing adoption of 

multi-cloud architectures and decentralized 

data processing together with blockchain-based 

provenance systems, organizations require 

standardized frameworks (Cheney et al., 2009). 

The absence of common standards will lead to 

provenance records being incompatible, 

fragmented, or unproven from different 

systems, which makes auditing, regulatory 

compliance, and cross-platform data 

integration problematic. Several international 

bodies and research initiatives have been 

developing provenance standards to enable 

seamless data tracking, validation, and 

exchange between different cloud 

infrastructures (Herschel et al., 2017). 

The most famous framework have PROV 

under W3C from World Wide Web 

Consortium (W3C), which is known as 

Provenance Data Model (Wittner et al., 2022). 

The PROV model provides an organized path 

of representing and exchanging provenance 

data that identifies prov entities as data objects, 

activity being modification, or the agents 

involving the users or systems for changes 

(Closa et al., 2017). The application of PROV-

O - an ontology for provenance representation 

- will be sufficient in such cases for ensuring 

compatibility across a multitude of cloud 

platforms, databases and analytics systems. 

Another important standard is the ISO 27037 

which outlines guidelines on how to collect 

digital evidence and track forensic provenance. 

This standard is the most widely accepted 

standard in cybersecurity, digital forensics and 

legal compliance to ensure provences records 

can be innocently lawfully admissible and 

verifiable into inquiries (Missier et al., 2013).  

Ongoing research is still trying to put more 

emphasis on the aspects of provenance 

standardization and interoperability, especially 

with the advent of AI-driven analytics, 

decentralized identity management and 

blockchain-based tracking systems (Shinde, 

2022). The research work to be carried out is to 

be able to automatically validate provenance 

protocols computing cross-platorm metadata 

schemas and provenance ontologies machine-

readable for vastly improved real-time data 

traceability and verification (Adelusi et al., 

2022). Likewise, Open Provenance Model 

(OPM) and ISO/IEC 29100 Privacy 

Framework dream for global standards on 

provenance with respect to the privacy, 

security and data protection (Lewis et al., 

2021). 

Future developments on semantic web 

approaches, AI-driven provenance tracking 

and safe and secure multi-cloud provenance 

transfer protocols in future will improve 

interoperability and standardization more 

(Adelusi et al., 2022). It is then hoped that the 
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organizations running under the standardized 

provenance models would have a higher level 

of transparency, even while maintaining 

regulatory compliance, which would increase 

trust for the distributed cloud environment 

(Lakarasu, 2022). Adhering to global provens 

and interoperability standards would guarantee 

that companies have smooth governance of 

their data, thereby reducing the fragmentation 

risk and enhancing the borderless data sharing 

in an increasingly digital connected ecosystem 

(Mohna et al., 2022). 
 

7.0 Case Studies and Practical 

Implementations 

7.1 Real-world Use Cases:  
 

Provenance and integrity techniques are 

needed for real-world applications to satisfy 

data needs, especially in the case of requiring 

security, traceability, and compliance (Adedeji, 

2020). The healthcare, finance, and supply 

chain management are today moving towards 

adopting some technologies designed with 

some mechanisms such as blockchain, AI-

driven anomaly detection, and cryptographic 

verification, which will ensure proving that 

data are tamperproof, auditable, and trust-

certified (Singh et al., 2018). However, these 

technologies will provide solutions that will 

address more urgent matters such as 

operational efficiency, fraud identification, and 

compliance with rules.  They are, therefore, the 

most useful for improving business processes 

and protecting sensitive data (Pasquier et al., 

2018).  Accordingly, one of the best examples 

of provenance and integrity applications is 

health data security, where the confidentiality 

and fidelity of electronic health records (EHRs) 

are very important (Margheri et al., 2020). 

Healthcare institutions are usually dealing with 

information about patients that are available in 

multiple systems, thus allowing unauthorized 

modifications, cyberattacks, and compliance 

breaches. A classic example of the latter is 

MedRec, an MIT-developed system whose 

main logic is to provide patients a secure, 

immutable storage type for their records using 

blockchain technology (Zarour et al., 2021). 

All changes to medical data are 

cryptographically recorded and verifiable 

according to MedRec. Thus, allowing a patient 

and his health providers to track those changes 

made under a record without any breach on 

HIPAA. It is possible to mention similar 

blockchain applications used in hospitals and 

pharmaceutical companies, like counterfeit 

drugs prevention and the assurance of 

interoperability of data and easy medical 

research procedures (Pandey et al., 2020). 

The financial sector also attaches great 

importance to data integrity or provenance 

tracking to avoid fraud, support a transaction, 

or effectively meet the demands of Anti-Money 

Laundering (AML) (Elumilade et al., 2021). 

Banks use such blockchain-based ledger 

systems, and AI-driven anomaly detection 

systems to track records of transactions and 

alert suspicious activity at that point in time. In 

regard to views, JPMorgan chase also 

incorporates blockchain through cross-border 

payments and fraud detection to prevent such 

fraudulent fund transfers or manipulation of 

data (Edge and Sampaio, 2009). Similar to 

Mastercard, it has Provenance Verification 

System which is a system that verifies the 

history of transactions to prevent its fraud, 

using AI-based verifications and cryptography. 

By incorporating blockchain and AI, it will 

complete a network of secure, traceable, and 

tampered-proof trail of transactions that will 

enhance the confidence in a globally accepted 

banking system (Hasan et al., 2009).  

The other relevant field of practical use of data 

provenance is that of supply chain 

management, where relevant businesses need 

to be aware of how to facilitate tracing 

authenticity of goods, traceability, and integrity 

in their transit within global logistical systems 

(Madanagopal et al., 2019). With provenance 

tracking, based on blockchains, the company 

may trace the provenance of the products to 

their origin, to whom they have been sold, and 

to what condition they were at each step of the 
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supply chain. A notable case is an IBM Food 

Trust, the blockchain-based system that was 

implemented by these corporations as 

Walmart, Nestle, and Unilever to operate their 

food supply chains with an aim of minimizing 

contamination risks (Wittner et al., 2022). This 

immediate visibility is offered by IBM Food 

Trust since every transaction can be tracked as 

a part of an immutable ledger, thus allowing 

businesses to identify fraudulent suppliers 

instantly, damaged goods, or fake products 

Brandín & Abrishami, 2021).  

All these effective applications of the data 

provenance and data integrity solutions in 

healthcare, finance, and currently with supply 

chain applications show that the need to ensure 

secure data tracking is growing across 

industries (Clauson et al., 2018). Naturally, 

such case studies have demonstrated the 

potential of blockchain, AI, and cryptographic 

methods. As with any other technology, one 

will have always some problematic aspects on 

the one hand, including the problem of 

scalability, the regulatory compliance issues, 

etc. (Yaqoob et al., 2022). The future 

development of quantum-proof encryption, 

decentralized identity, and mechanisms based 

on AI to perform provenance tracking, will 

definitely improve the adoption of secure data 

provenance solutions in critical areas (Yaqoob 

et al., 2022).  

It is what the organizations will benefit by the 

exploitation of blockchain, AI, and 

cryptography to all the security, forecasting, 

and other functionalities of the mentioned 

technologies as they can increase their trust in 

data and minimize fraud risks and simplify 

compliance (Jamil et al., 2019). As such, only 

the enviable future will see security, 

auditability, and fictitiousness of data being 

addressed as more industries use provenance-

aware systems (Yaqoob et al., 2022). 
 

8.0 Lessons Learned and Best Practices 
 

Through the experience of painting, other 

lessons could be gleaned from the challenges, 

strengths and best practices of data security in 

distributed systems from the implementation of 

data provenance and integrity techniques in 

other sectors (Hasan et al., 2007). One of these 

was that Data provenance should not be an 

afterthought but built into system architecture 

from the onset. Indeed, attempting to add 

provenance tracking features to existing 

systems has been problematic for many 

organizations, which amplifies security risk 

and degrades efficiency (Hu et al., 2020). 

Organizations that employed blockchain-

provenance, AI-based anomaly detections and 

cryptographic validations strongly asserted the 

importance of cross-platform interoperability, 

efficient data governance protocols, and pre-

planning for provenance tracking to function 

effectively (Ikegwu et al., 2022). 

Provisioning, additionally, has lessons to learn 

from transparency against privacy in the case 

of dissemination. Even though detailed records 

of provenance account for more accountability, 

they are also likely to hold sensitive business or 

private information and create risks of non-

compliance under regulations like GDPR or 

HIPAA (Cobbe et al.,2020). Privacy-

preserving mechanisms like homomorphic 

encryption, secure multiparty computation 

(SMPC), and zero-knowledge proofs should be 

incorporated in organizations to maintain data 

secrecy while signifying approval for 

verifiability (Cobbe et al., 2020). The 

incorporation of techniques based on RBAC 

and user authentication mechanisms into 

provenance systems has been proven by 

industry leaders to mitigate risks while offering 

appropriate access permission privilege to 

authorized parties regarding important 

provenance data (Alansari, 2020). 

Scalability is one of the issues faced by 

organizations in their pursuit of provenance 

solutions mostly in real-time, highly 

transaction-intensive operational environments 

such as financial transactions and supply chain 

logistics (Alam & Roy, 2022). But, using the 

hybrid model with on-chain and off-chain 

storage has been beneficial in demonstrating 
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how we can increase efficiency (Malik et al., 

2018).  For less important metadata, yet less 

sensitive, audit logs that are critical to contain 

on-chain audit logs, should instead utilize 

security, but controlled cloud storage, rather 

than having the provenance data completely 

and/or partially stored in the blockchain 

networks by capturing all the internal nodes.  It 

still protects the provenance record's integrity, 

but decreases the computational overhead, as 

well as storage costs (Yang & Xu, 2016). 

In conclusion, practitioners will readily assert 

that effectively and proactively tracking 

provenance necessitates automation and AI-

based monitoring (Yang et al., 2016).  Rule-

based monitoring and manual audits are not 

sufficient to navigate our ever-changing large-

scale data context.  The detection, deterrence, 

and reaction to fraud, data breaches, and 

unauthorized data changes will greatly improve 

for companies that employ machine learning to 

automate anomaly detection, compliance 

reporting, and real-time verification of integrity 

(Odetunde et al., 2022). In the future, 

enterprises should continue looking into 

broadly interpreted frontiers to help improve 

and strengthen data provenance and integrity 

across Cloud and Distributed Systems, such as 

new AI-powered tools, decentralized trust 

frameworks, and adaptive security models 

(Litke et al., 2019). 
 

9.0 Open Challenges and Future 

Research Directions 
 

Although the improvement of data integrity 

and provenance is truly unbelievable, 

numerous challenges to be overcome remain, 

especially regarding the ability to store and 

retrieve data in large amounts (Wang et al., 

2015).  This is because it is not computationally 

efficient when monitoring changes and access 

of large volumes of data generated by 

enterprises in a multi-cloud and hybrid 

environment (Hu et al., 2020).  A variety of 

scaling challenges are generally associated 

with blockchain-provenance systems to 

process transaction latency and storage cost, 

notwithstanding its provenance immutability, 

such that future studies should look at 

lightweight provenance models, sharding 

strategies, and AI-driven data-compression 

strategies.  Also, the federation of learning and 

edge computing development can assist in 

spreading provenance loads better, and this 

approach will decrease the load on centralized 

cloud systems (Alam & Roy, 2022).  Another 

serious concern of provenance tracing is that it 

is difficult to strike a balance between privacy 

and transparency.  The granular security and 

compliance aspects of businesses require 

extensive provenance records that can be 

audited, and the need to maintain such massive 

logs puts the company at risk which is contrary 

to several laws, such as the GDPR and HIPAA 

(Tan et al., 2018). To allow organizations to 

verify the authenticity of the underlying data 

without sharing confidential material, future 

studies need to cover privacy-preserving 

provenance methods like the differential 

privacy, zero-knowledge proofs (ZKP) and 

secure multiparty computation (SMPC).  It will 

be very important to find a reasonable balance 

between traceability and confidentiality to 

develop next-generation provenance models 

that support user privacy interests and 

regulatory needs (Mihai et al., 2022).  AWS, 

Azure, and GCP are proprietary cloud 

platforms of different levels of openness and 

interoperability, which makes the integration of 

provenance tracking with these leading cloud 

service providers challenging (Galiveeti et al., 

2021). Although providers offer logging tools 

such as AWS CloudTrail, Azure Monitor, and 

Google Cloud Audit Logs, these do not often 

interoperate across platforms, creating a 

challenge for enterprises trying to maintain 

unified provenance records across multi-cloud 

environments (Quadri, 2017). Future research 

should look toward standardized provenance 

APIs, interoperability frameworks, and 

decentralized identity management, thus 

enabling easy integration across all available 

cloud platforms. In addition, smart contract-
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based automation can offer an extra layer of 

multi-cloud data traceability; thus, 

guaranteeing the consistency and verifiability 

of provenance records across different 

providers (Zou et al., 2021). 

The last, but by no means least, lingering 

hurdles imposed by regulatory and legal 

considerations pertaining to the 

implementation of provenance, as they set 

different compliance requirements for data 

tracking, for retention, and for auditing from 

country to country and from industry to 

industry (May, 2005). Regulations which 

include GDPR, CCPA, and ISO 27001 bind 

organizations to keeping accurate, clear, and 

verifiable provenance records while 

recognizing user rights for deleting and 

amending it (Kunz et al., 2020). Going 

forward, research should study adaptive 

compliance models that allow organizations  

align their retention of provenance policies 

with  local legal requirements. Subsequently, 

machine-readable compliance frameworks and 

AI-powered tools for regulatory auditing might 

be developed to automate policy enforcement 

and guarantee that progeny tracking fulfills the 

conformity of shifting global standards (Katari,  

& Ankam, 2022). 
 

10 Conclusion 
 

This paper has made an emphasis on the 

importance of tracing the origin of data, 

modifications to the same, and the volume of 

data that has been transferred down the line 

concerning security, compliance and trust 

concerns. It also claims data provenance and 

integrity to be a critical concern, particularly to 

distributed cloud environments, where the only 

hope appears to be scalability, privacy, and 

trust concerns. The participants appear to be 

reassured by the fact that blockchain, equipped 

with the mechanisms such as hash 

cryptography, AI powered anomaly detection 

prototype, homomorphic encryption, and 

secure multiparty computation (SMPC), can 

pass the test of privacy preservation. W3C 

PROV and ISO 27037 are other 

standardization-oriented solutions that offer 

guidelines that eliminate the necessity to 

enhance compliance and interoperability in the 

cloud-based provenance systems.  It is hoped 

that this research activity will uphold the 

scientific and governance principles of 

integration security models, authenticity of 

data, and creation of innovative provenance 

methods.  The paper will also in the light of 

emerging technologies, give some of the 

recommended practices toward the 

development of the reliable provenance-aware 

systems in the variety of theoretical, practical, 

and technological fields.  The biggest 

assumption that the paper points out as being 

the most critical in privacy-oriented 

provenance tracking under the jurisdiction of 

both the GDPR and PHI on compliance aspects 

of the privacy regulation is that transparency 

implies concealment.  The heated discussions 

have covered several topics related to the 

decentralized provenance models and cloud 

integration, with new possibilities of studying 

multicluster traceability and interoperability.  

The hybrid solutions, an off-chain and on-chain 

storage combination to maintain security and 

efficiency and introduce better data provenance 

and integrity procedures, are likely to assist 

organizations.  The most commonly used 

implementation in the future is the federated 

learning technique as well as AI-based 

surveillance and multiple adaptive 

cryptography methods that will enable scaling 

and tracking with privacy.  The provision of 

additional features needed to support cross-

platform provenance systems would ensure an 

easy integrative interface with service 

providers of different clouds (AWS, Azure, and 

GCP) without losing certain semblance of 

regulatory frameworks and compliance. 

The creation of international provenance 

standards that can consider the ethical and legal 
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issues related to the governance and security of 

data then comes into the picture for policy 

makers.  The development of AI-driven 

regulatory auditing tools, scaling of 

Blockchain, and development of technologies 

to enhance real-time verification of provenance 

should be the prime areas for future study.  

Distributed cloud systems will keep changing 

industries.  Building trust, lowering fraud, and 

maintaining security for important data to be 

used across industries all rely on secure, 

unalterable and tamper-proof traceback. 

Technology advancement brought with some 

platforms where firms, researchers, and the 

global community may subsume to build an 

immense amount of clarity all around the 

digital ecosystem, an ecosystem from which 

the stakeholders can identify and pinpoint the 

positions, which should be fortified with 

complete truth. Moreover, this frame of 

argument in technology will address both being 

able to sustain accuracy, accountability, 

robustness, and support against all of the 

known cyber threats starting to multiply. 
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