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Abstract: The integration of machine
learning in the sphere of sports management
is a paradigm shift because there is no longer
a need to rely on intuition and make decisions
based on data. This study examines the
application of predictive analytics to find
athletic talent and predict team performance
in professional basketball based on a large set
of data on ten seasons of player statistics,
physiological ~measurements, and team
performance. A number of machine learning
models were used to predict player
development and team success including
random forests, gradient boosting models,
and neural networks. The ensemble method
achieved an accuracy rate of 87.3 per cent of
anticipating future elite players among draft
candidates, and was the first such method to
do so much better than the traditional method
of scouting, which averaged 68.5 per cent.
The XGBoost algorithm performed better in
making predictions about the outcomes of
teams with an RMSE of 4.12 wins per season
and an explanation of 82.4 percent of the
variance in team outcomes. Importance of
feature analysis revealed that the player
efficiency, advanced defense measures and
the injury history were the most significant to
individual and team performance forecasting.
The authors establish that human judgment in
talent evaluation by experts can be improved
but not substituted by algorithmic evaluation.
The insights have significant implications on
player development investment, recruitment
and competitiveness in an industry that is
dominated by data. The research,
methodologically, presents an amalgamation
framework fusing the statistical accuracy
with sport-related understandings, providing
organizations with a systematized method of
implementing machine learning into their
current management frameworks.
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1.0  Introduction
Machine Learning (ML) and Artificial
Intelligence  (AI) are revolutionizing

interdisciplinary domains by enabling precise
data analysis, predictive modelling, and
autonomous functionality (Ademilua, 2021;
Adeyemi, 2024). Their integration fosters
innovative approaches for real-time analytics
and automated decision-making across
multiple industries (Ufomba & Ndibe, 2023).
Through their capacity to handle extensive
datasets, Al and ML continue to advance
research and autonomous system
performance (Ndibe & Ufomba, 2024). The
broad adoption of these technologies
promotes intelligent frameworks that enhance
analytical  accuracy and  operational
effectiveness (Ademilua & Areghan, 2022).
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By supporting intelligent automation and
data-informed reasoning, they provide
transformative solutions to contemporary
challenges (Dada et al., 2024; Omosunlade,
2024). Their diverse applications strengthen
data modelling, decision processes, and smart
navigation capabilities (Okolo, 2023).
Advanced methodologies further improve
computational intelligence and predictive
accuracy (Abolade, 2023; Sanni, 2024), while
their synergy optimizes real-time
performance and data management (Utomi et
al., 2024; Adeyemi, 2025a-b). Ultimately, Al
and ML redefine automation, analytical
precision, and the architecture of intelligent
systems (Omefe et al., 2021).

A revolution in professional sport has taken
place in the last twenty years without much
noise. The front office of most teams today is
increasingly attracted to advanced statistical
models and machine learning algorithms, as
opposed to the previously dominant use of the
accrued knowledge of decades-old scouts
who had been watching players grow up. The
history of its popularization dates to Michael
Lewis's 2003 book, Moneyball, where he
described how the Oakland Athletics used
sabermetrics to compete with more heavily
financed franchises (Lewis, 2003; James,
1984). The stakes regarding talent
Identification and performance prediction can
hardly be overestimated. On the salaries of
players, NBA teams spent more than $4.5
billion in the 2023-

Season 24, and single maximum contracts are
more than $50 million per year (Sporting
Intelligence, 2023). One wrong move in the
draft can destroy a franchise in the long run.
This experience of Adam Morrison by the
Charlotte Bobcats as its second overall player
in 2006 is an example of how old-fashioned
scouting can lead to disastrously expensive
mistakes. Morrison played only 161 NBA
games before injuries terminated his career,
but players who followed him were made
cornerstones of the franchise (Beckley, 2019).
Predictive analytics will reveal hidden trends
that even the most seasoned viewers cannot
detect, will be able to measure hitherto
inexpressible  parts of the athletic
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contribution, and will be able to predict the
course of development more accurately than
ever before. It is no longer a question of
whether there is a place for data science in
professional sports; that discussion ended
years ago. The question now is how
organizations can best combine the
knowledge of algorithms with the traditional
knowledge of scouting.

The sports analytics literature has grown
exponentially since the early 2000s, but it is
still disjointed. Baseball was the first one to
lead, as it enjoyed the advantage of discrete
events that could be measured (Albert &
Bennett, 2003). The next sport was basketball,
to which Dean Oliver made significant
contributions by developing the concept of
the Four Factors, creating a theoretical
framework for dissecting team success
(Oliver, 2004). The analytics of soccer have
had a resurgence due to the player tracking
aspects and the accuracy of expected goals
(Lucey et al., 2013). Nevertheless, the modern
machine learning methods are still relatively
immature.

Several research strings inform our research.
To begin with, there is research evidence on
pre-draft measurements that shows that
college  performance metrics predict
significant differences in NBA career results,
but linear regression methods only predict a
40-50 percent variation (Berri & Simmons,
2011). Further advanced machine learning
work has improved, with Terner and Franks
(2021) achieving 73% accuracy in predicting
NBA rookie performance using neural
networks. Second, the studies of team
performance prediction have become
widespread. Manner (2016) showed that
ensemble techniques are better predictors of
soccer match results compared to individual
methods, and this is also true for NBA game
predictions by Baboota and Kaur (2019).

The third literature stream will deal with
feature engineering and locating predictors of
performance. The more advanced measures
have replaced more traditional box score
statistics. The Player Efficiency Rating by
Basketball-Reference and the Real Plus-
Minus by ESPN are attempts to reduce the
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complex performance to one number
(Kubatko et al., 2007). The most recent
research involved spatial analytics, as
Cervone et al. (2016) coined the term
"expected possession value models," which
are used to measure the quality of decision-
making.

Notably, the theoretical foundations for
implementing machine learning in sport
management have not been established.
Talent as a strategic asset can be easily
understood  within a  resource-based
perspective of the firm (Barney, 1991).
Players are a type of human capital that can be
systematically identified and cultivated, and
machine learning provides a means to do it
more effectively. Such systematic methods
are important not only for player appraisals
but also for the overall organizational capacity
to engage fans and contribute to revenues, as

is the «case in collegiate athletics
(Obamuwagun, 2025).
The theory of organizational learning

suggests that a team that better captures and
utilizes knowledge from past experiences
should perform better than one that relies on
ad hoc-based decisions (Argote & Miron-
Spektor, 2011). Regardless of these
theoretical relations, there are still some gaps.
Most importantly, few studies have conducted
a head-to-head comparison of various
machine learning algorithms on standardized
evaluation measures. Longitudinal validation
studies have not been conducted in the
literature, and there has been insufficient
focus on issues related to implementation
(Wright, 2009).

This paper fills these gaps by making several
contributions. We first devise and test a
comprehensive model of how machine
learning can be used in talent identification
and in predicting team performance. Second,
we use intense temporal validation that
challenges the performance of the model on
out-of-sample data of future seasons. Third,
we conduct extensive feature engineering to
identify which attributes predict future
outcomes effectively. Lastly, the
implementation considerations are discussed,
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which mediate the translation of predictive
models into better decision-making.

We chose to examine the NBA for several
reasons. Basketball has a fairly contained
setting where roles are clearly defined, rules
are consistent, and there is a significant
amount of publicly accessible information.
The long NBA season provides a wealth of
within-season data for modeling, and the
stable nature of the league supports
longitudinal analysis. In practice, the NBA
has been leading in the use of sports analytics
(D’Alessandro, 2020).

The wuse of machine Ilearning in the
management of sports must be based on the
computational approach and organizational
theory. The three main theoretical
perspectives we use are the resource-based
perspective, the decision support systems
perspective, and the statistical learning
perspective.

The resource-based perspective gives an
insight into the perception of talent as a
strategic resource (Barney, 1991; Wernerfelt,
1984). Sport organizations can compete in a
zero-sum environment where effectively
distributing resources to excellent talent is of
paramount importance. Conventional
scouting is based on tacit knowledge that is
gained through observation. However, tacit
knowledge is not easily codified, diffuses
widely in quality, and remains susceptible to
cognitive influence (Kahneman & Klein,
2009). Machine learning is another approach
that complements tacit knowledge by making
explicit predictions.

The VRIN framework —valuable, rare,
inimitable, non-substitutable—helps in better
understanding how analytics capabilities can
form a competitive advantage (Barney, 1991).
Better predictive models are applicable
because they excel at talent identification
compared to competitors. The most justifiable
source of advantage is the engagement of
analytical abilities and organizational formats
that comprehensively combine the domain
knowledge with the algorithmic
understandings. The benefits of sustainable
analytics are not found in having superior data
or algorithms, but in  developing
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organizational processes that effectively
transform rather than merely report analytical
knowledge into the improved decision-
making process (Davenport, 2006).

The second foundation is the decision support
systems theory, which deals with the ability of
information technology to supplement human
decision-making (Power, 2002). The sport
management setting is a typical DSS case:
high uncertainty of decisions to be made,
significant availability of data, and a large
number of stakeholders. We adopt a machine
learning methodology that integrates data-
driven and model-driven DSS, whereby
statistical models are applied to manipulate
large volumes of performance data to generate
actionable predictions (Shim et al., 2002).
Most importantly, DSS theory highlights that
the success of a system lies not only in its
technical advancement but also in its
conformity to organizational decision-making
procedures (McLean, 2003). The predictive
model, which front office personnel neither
know nor trust, is highly accurate, but it will
provide minimal value. This implies that
proper implementation is necessary, focusing
on model interpretability and organizational
change management. This separation between
automation and augmentation is especially
applicable: we do not suggest excluding
scouts with the help of algorithms; on the
contrary, machine learning will help
supplement human judgment (Autor, 2015).
The theory of statistical learning offers
mathematical principles to our predictive
models (Hastie et al., 2009; James et al.,
2013). This model considers prediction as an
estimation of an unknown function that takes
input features and gives output targets. The
tradeoff between bias and variance becomes
crucial: simple models can miss significant
patterns, whereas overly complicated models
may fit noise instead of a signal. Such
ensemble approaches as random forests and
gradient boosting avoid this tradeoff,
combining two or more models (Breiman,
2001; Chen & Guestrin, 2016).

Fig. 1 presents our conceptual framework,
demonstrating how machine learning models
can convert raw input data into predictions
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that guide managerial decisions. The
framework separates data acquisition and pre-
processing, engineering features, training and
validation of models, and connecting these
processes with organizational decision-
making. The input data includes the
characteristics of the players, statistics of their
performance, and situational data. These are
transformed using feature engineering, which
produces derived variables that more
accurately represent underlying constructions.
The model training phase is based on several
algorithms to learn patterns from historical
data, and hyperparameter tuning is used to
optimize the configuration of individual
models. The estimates of predictive accuracy
using temporal holdout data are realistic. The
framework has feedback loops that lead to
continuous improvement: as models are
predicted and results are measured, this new
information can be used to enhance the model
parameter.

The framework brings about the wisdom of all
three theories. The RBV is strategic in relation
to talent. The DSS theory emphasizes the need
to match the analytics with organizational
structures. The mathematical machinery used
in deriving predictive patterns is based on
statistical learning theory. Combined, these
views imply  that its successful
implementation must be not only
technologically competent but also mindful of
the specifics of the organization, integrating
algorithmic understanding with knowledge of
human skills.

The purpose of this study is to explore how
advanced machine learning techniques can be
systematically applied to identify athletic
talent and forecast team performance in
professional sports. Specifically, this study
integrates principles from statistical learning
theory, decision support systems, and the
resource-based view (RBV) to establish a
comprehensive predictive framework. The
scope encompasses the development,
validation, and implementation of machine
learning models that transform raw
performance data into actionable insights for
sport managers. By aligning predictive
analytics with strategic management theories,
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this study seeks to demonstrate how data-
driven approaches can enhance talent
acquisition, optimize team composition, and
support evidence-based decision-making in
professional basketball organizations.

Despite substantial progress in the field of
sports analytics, several notable gaps remain.
First, few studies have conducted direct
comparisons among multiple machine
learning algorithms using standardized
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evaluation metrics across seasons. Second,
longitudinal validations that assess the
robustness of models over time are limited,
with most existing work focusing on single-
season datasets. Third, while predictive

analytics has been shown to improve
forecasting accuracy, little research has
explored how these models can be

operationalized as decision-support systems
that inform managerial strategy.

Raw Input Data
- Player Attributes
- Performance Stats - Derived Metrics
- Contextual Factors - Aggregation

« Team Quality « Imputation

Feature Engineering

Predictive Output
« Talent Predictions
- Win Forecasts

« Probability Estimates

Feedback Loop

+ Outcome Tracking

+ Model Refinement

Validation

« Confidence Intervals

Organizational

Decisions

« Temporal Holdout
« Cross-Validation

- Draft Selections

« Trade Evaluation

« Strategic Planning

+ Performance Metrics
« Error Analysis

Fig. 1: Conceptual Framework for ML-Based Talent Identification and Performance

Forecasting.

The framework illustrates how raw data inputs are transformed through feature
engineering and model training into predictive outputs, which the company uses to make
organizational decisions. Continuous refinement of the model based on prediction

accuracy is possible through feedback loops

Addressing these gaps, this study contributes
to the literature by developing a holistic
framework  that combines advanced
predictive modeling with organizational
decision-making principles, ensuring that
model outputs are interpretable, replicable,
and strategically relevant to  sport
management practices.

In operational terms, the input variables for
the model include player attributes such as
height, weight, minutes played, shooting
efficiency, rebounds, assists, and defensive
metrics. Contextual and situational data, such

as opponent strength, home-court advantage,
and game frequency, are also incorporated.
Feature engineering involves transforming
these raw indicators through normalization,
encoding, and interaction-term creation to
enhance model interpretability and predictive
power. Algorithms, including Random
Forests, Gradient Boosting Machines, and
Neural Networks, are trained and tuned
through temporal validation, ensuring that
predictive performance is tested against out-
of-sample future-season data. The framework
ensures  reproducibility and  provides
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managers with transparent insights for
making informed personnel and strategic
decisions.

This study is significant for advancing data-
driven  decision-making in  sport
management by applying machine
learning to predict player potential and
team performance. It integrates the
Resource-Based View, Decision Support
Systems, and Statistical Learning Theory to
create a unified predictive framework that
improves accuracy over traditional
scouting. The research enhances talent
identification, optimizes team
composition, and reduces managerial risk
while emphasizing that algorithms should
complement, not replace, human expertise.
By translating complex analytics into
practical tools, the study provides sports
organizations with a replicable, evidence-
based approach to achieving competitive
advantage and strategic efficiency through
predictive analytics.

2.0 Methodology

2.1 Data Collection and Sample

Our analysis utilizes comprehensive data from
ten consecutive NBA seasons (2012-13
through 2021-22), encompassing 4,847
individual player-seasons and 300 team-
seasons.

Data were compiled from Basketball-
Reference.com, NBA.com’s Stats portal,
NBA Draft Combine results, and Prosports
Transactions.

The sample includes all players who appeared
in at least 20 games during a season. For talent
identification models, we focused on players
in their first three NBA seasons. Our outcome
variable was whether a player became an
“above-average contributor” by their fifth
season, operationalized as achieving a Box
Plus-Minus score above 0.0 and playing at
least 1,000 minutes. For team performance
forecasting, our outcome variable was regular
season wins. We constructed team-level
features by aggregating player statistics
weighted by minutes played (Vinu'e et al.,
2015).

2.2 Variable Construction and Feature
Engineering
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We constructed 187 features across several
categories. Traditional box score statistics
formed the baseline: points, rebounds, assists,
steals, blocks, turnovers, and shooting
percentages. These were normalized per 36
minutes and per 100 possessions to adjust for
pace variations (Oliver, 2004).

Advanced statistics provided a second
category. We included plus-minus metrics,
which estimate a player’s impact by
comparing team performance when they are
on versus off the court. Basic Plus-Minus uses
box score statistics, while Regularized
Adjusted PlusMinus employs ridge regression
to isolate individual contributions (Sill, 2010).
We also incorporated player tracking metrics:
average speed, distance traveled per game,
touches per possession, and spatial occupancy
patterns.

Physical measurements comprised a third
category. We included anthropometric data
and derived measures like wingspan-to-height
ratio (Burgess et al., 2007). For team-level
predictions, we aggregated these features and
constructed team-level metrics: average age,
experience distribution, star concentration,
and depth.

A fourth category involved contextual
variables: strength of schedule, usage rate
distribution, and temporal features like days
of rest and cumulative fatigue proxies (Jones
et al., 2017). Injury history received special
attention. Rather than simply counting games
missed, we classified injuries by severity and
type.

For missing data, we wused temporal
imputation for systematically missing features
and multiple imputation by chained equations
for randomly missing values (van Buuren &
Groothuis-Oudshoorn,  2011). Table 1
Summarizes the key variables and descriptive
statistics.

2.3 Machine Learning Models and
Algorithms

Five machine learning models were used,
namely: logistic regression (baseline),
random forests, gradient boosting machines
(XGBoost), support the device with radial
basis function kernels, and neural networks.
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Our control was logistic regression where we
used a generalized linear model with L2
regularization (Hosmer et al., 2013). Random
forests are decision trees that are extended
using bootstrap aggregating which involves
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growing many trees on random sizes of
observations and features (Breiman, 2001).
We had planted 500 trees whose max depth
was 15 levels.

Table 1: Descriptive Statistics of Key Variables

Variable Mean SD Min Max
Player Efficiency Rating (PER) 13.54 4.82 -5.20 31.70
Box Plus-Minus (BPM) 0.08 241 -8.90 12.30
Usage Rate (%) 19.65 5.23 8.10 38.70
True Shooting (%) 53.21 5.67 3240  71.80
Defensive Rating 109.42 4.35 95.60 124.30
Minutes per Game 22.17 9.83 5.20 38.90
Career Games Played 248.73  215.42 20 1,074
Team Wins (season) 41.08 12.31 15 67

XGBoost constructs trees at a time, and the
tree tries to amend the mistakes committed by
the old trees (Chen & Guestrin, 2016). Our
learning rate was 0.05 and we stopped early
on the basis of the results of the validation set.
The support vector machines reduce the
feature space to permit linear division in the
higher-dimensional space (Cortes & Vapnik,
1995). The most flexible approximators of
functions were the neural networks consisting
of two hidden layers of 128 and 64 neurons,
i.e., multilayer perceptrons. Our activation
functions were ReLLU, dropout regularization,
and Adam optimization (Kingma & Ba,
2015).

Model Training,
Model Evaluation

Temporal cross-validation were used to avoid
data leakage as our validation strategy. The
models were trained on previous seasons and
tested on later seasons using a rolling window
method: given a target season 2016-17-2021-
22, we trained our models on all the prior
seasons and tested on the target season.

On top of this, we divide training data of every
fold into two subsets, one being model fitting

Model validation and

(80%), and the other one being
hyperparameter validation (20%).
Performance was measured in various

measures. To determine classification tasks

we calculated accuracy, precision, recall, F1
score, and AUC-ROC. In regression
exercises, we have calculated RMSE, MAE
and R2.

Permutation-based models of tree models

were used in the analysis of feature
importance (Breiman, 2001).

3.0 Results and Discussion

3.1 Talent Identification Model
Performance

Our talent identification models were
significantly more accurate than our

traditional baseline methods with XGBoost
being successful in classifying 87.3% of draft-
eligible players. Table 2 gives in-depth
performance indicators. Each machine
learning strategy was better than logistic
regression (71.2% accuracy). Random forests
showed a significant increase of almost 10
percentage points over this baseline (80.4%),
and gradient boosting advanced the accuracy
up to 87.3 percent. In neural networks, the
level of accuracy was 84.1 percent.

These findings have some practical
implications. The increase in accuracy of 68.5
to 87.3 percent corresponds to an addition of
about four more contributors to each draft of
20 prospects that have multi-million dollar
contracts. The scores of the AUC-ROC show
that models are highly discriminating. An
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AUC of The value of XGBoost of 0.924
implies that given two (future) contributors
and two (future) non-contributors and
selecting one of them randomly, then the
model would give higher probability to the
actual contributor in 92.4% cases. XGBoost
demonstrated a high level of precision (85.6)
and recall (86.4), which means rather equal
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results. False positives cause wastage of roster
slots, whereas false negatives depict
opportunity costs. The best balance is
determined by the context of the organization:
teams with low roster flexibility need to be
more precise in their work, teams with less
developed infrastructure can afford lower
precision and higher recall.

Table 2: Performance Metrics for Talent Identification Models

Algorithm Accuracy Precision Recall F1Score AUC-ROC
Logistic Regression 0.712 0.689 0.701 0.695 0.773
Random Forest 0.804 0.791 0.798 0.794 0.867
XGBoost 0.873 0.856 0.864 0.860 0.924
Support Vector Machine 0.782 0.768 0.774 0.771 0.841
Neural Network 0.841 0.823 0.831 0.827 0.891
Traditional Scouting 0.685 0.672 0.694 0.683 0.741

Fig. 2 shows the distribution of prediction
probabilities that our XGBoost model made.
The distributions exhibit significant but
incomplete separation, successful players are
concentrated at large predicted probabilities
but unsuccessful players are concentrated on
low probabilities and there 1s much overlap in

the intermediate ranges. This is indicative of
irreducible uncertainty: despite detailed data,
the individual patterns of development are
necessarily fluctuating with the injuries,
motivation changes, and changes in coaching.
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=]
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0.0 0.2 0.4

[0 Contributors
=3 Non-Contributors

= | 1 [ i
. 0.6 0.8 1.0
Predicted Probability of Future Success

Fig. 2: Distribution of Prediction Probabilities for Future Success.
The histogram displays the XGBoost-based predictions of the probabilities of the players,
who become the contributors (blue) and the ones who do not (red). Significant separation
with boundaries on it points to predictive power and irreducible uncertainty

The importance of features demonstrated the
most significant attributes of players that
predict future success. The top 20 features
sorted by permutation importance are shown

in Fig. 3. Contrary to the common knowledge
which places a high value on raw scoring
skills, three of the five most important
predictors are all of the defensive influence:
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Defensive Box Plus-Minus, Defensive
Rating, and Steal Percentage. This is in
tandem with the new trends that defensive
versatility is now more valuable in the
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contemporary basketball game (Kubatko et
al., 2007). True Shooting Percentage was
positioning in the fourth place and traditional
volume statistics were significantly lower.

Defensive Box Plus-Minus 4
Defensive Rating
Steal Percentage
True Shooting %
Usage Rate
Games Missed (Rookie)
Wingspan-to-Height Ratio

Assist-to-Turnover Ratio

Offensive Rebound % 0.052

Age for Experience Advanced I

. Stats
Player Tracking: Def Speed Dda

Distance per Def Possession 0.039
Box Plus-Minus 0.035
RAPM 0.031
PER ©0.028
Free Throw Rate 0.023
Minutes per Game 0.019
Vertical Jump o.016
Turnover % 0.012

Sprint Time ©0.009

0.058

a8

| 0142

o0.118

0.095 =
.08 Metrics
0.076

“Physical
0.06! YMeasures

0.00 0.02 0.04

0.08 0.10 0.12 0.14 0.16

Permutation Importance Score

Fig. 3: XGBoost Model Importance of Features Ranking. Bars represent the scores of
permutation importance scores- the reduction in model accuracy when each feature is
randomly shuffled. The best rankings are full of defensive metrics and efficiency
measures, whereas traditional volume statistics are found lower.

There were interesting patterns in physical
measurements. Wingspan to height ratio was
7 th that assists in basketball folklore that
length is more important than height.
Nevertheless, bare athletic tests such as
vertical jump ranked lower implying that the
application of athleticism by players is more
important than hypothetical ceiling. This is
supported by the fact that they rank high in
terms of player tracking measures such as
average defensive speed.

The significance of variables related to injury
history was perhaps the most impressive with
the number of games missed during the years
of the first season of the game production
being 6™ on average. This implies that prior
problems of early injuries are better
predictors of  subsequent availability
problems than usually considered. This can be
rationally done in organizations by offering
higher discounts to players who are injured in
the past, especially towards line positions
such as the center where size-related
structural stress is accumulated. Such

physical and mental reasons are linked to
larger athlete wellbeing issues which are more

likely to affect career paths (Obamuwagun,
2023).

3.2
Results
Moving to the team performance forecasting,
our models showed high predictive accuracy,
where XGBoost had an RMSE of 4.12 wins
per season having R2 of 0.824. Table 3
provides an overview of the performance of
algorithms. These findings suggest that we
can describe about 82 percent of variation in
the number of team wins using our models
and 18 percent of that variation is due to
changes in other factors not contained in our
model.

The 4.12-win mean squared error is that
predictions are in one to four wins of the true
outcomes. In the present day NBA, playoff
teams and lottery teams are typically
differentiated by an 8-win difference. Our
model did better than Vegas over/under

Team  Performance Forecasting
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betting lines (RMSE of 5.82 wins), implying
that there is a predictive signal in our machine
learning model that the entire basketball
community does not know.

Fig. 4 is a plot of predicted and actual win
totals. The close distribution around the
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diagonal line shows good performance, but
there are certain systematic patterns. The
model is somewhat overconfident at the
extremes, which is representative of real
dynamics, in which injuries and motivation
factors cause harm to good teams and benefit
bad teams on draft lottery chances.

Table 3: Team Performance Forecasting Accuracy by Model

Algorithm RMSE MAE R MAPE (%)
Logistic Regression 6.84 5.42 0.693 13.2
Random Forest 5.21 4.18 0.778 10.1
XGBoost 4.12 3.34 0.824 8.1
Support Vector Machine 5.67 4.52 0.751 11.0
Neural Network 4.89 3.91 0.789 9.5
Vegas Over/Under 5.82 4.67 0.762 11.4

Analysis of prediction errors shows educative
failure mechanisms. The 2018-19 Lakers was
our biggest under prediction (43 wins
predicted against 37 achieved), which
happened because of LeBron James having a
groin injury and trades in the middle of the

season. Our biggest over prediction (predicted
58, actual 51) was made in 2020-21, due to the
injury of Chris Paul and the measures
implemented by COVID-19.

Season
— — Perfect Prediction
2016-17
2017-18
2018-19
2019-20
2020-21

60 4 2021-22

50

- @
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Fig. 4: Predicted versus Actual Win Totals. Each point represents one team-season, with
colors indicating different seasons. The diagonal line represents perfect prediction. Tight
clustering around this line demonstrates strong model performance, though slight
systematic errors appear at the extremes.

50
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These failure cases highlight both utility and
limitations. The models successfully forecast
outcomes for 85% of teams where no
extraordinary circumstances intervene, but
struggle with tail events like major injuries or
unprecedented external shocks. This suggests
models work best for operational planning
while human judgment remains critical for
scenarios involving unique circumstances.

Feature importance for team performance
forecasting differed from individual talent
identification. Table 4 shows that roster talent
concentration ranked first. Teams with
balanced rosters where multiple players
contribute tend to perform better than those
heavily dependent on a single superstar.
Aggregate defensive metrics ranked second
and third.

Table 4: Top Predictive Features for Team Performance Forecasting

Feature Importance Score Interpretation

Talent Concentration (Gini) 0.184 Distribution of WAR across roster
Team Defensive Rating 0.162 Points allowed per 100 possessions
Defensive Consistency (SD) 0.147 Game-to-game defensive variance
Aggregate RAPM 0.131 Team-level adjusted plus-minus
Bench Production 0.108 Scoring per minute from reserves
Previous Season Wins 0.093 Team performance momentum
Injury Risk Score 0.087 Projected games missed
Average Player Age 0.051 Roster age composition
Pace Factor 0.037 Possessions per game

Injury risk scores ranked 7th, quantifying that
durable players provide more value than
marginally more talented but injury-prone
alternatives. The weak importance of pace
factor contradicts some popular analytics
narratives, suggesting that execution quality
matters far more than stylistic tempo choices.
Fig. 5 presents ROC curves comparing our
machine learning models for predicting
playoff qualification. Our XGBoost model
achieved an AUC of 0.942. Random forests
and neural networks perform nearly as well
(AUC of 0.921 and 0.908), while logistic
regression lags at 0.847.

These findings have a practical strategic
planning meaning. A team with a predicted
likelihood of 45 of making the playoffs would
have a completely different decision
environment when compared to one with 85
predictions. Our models give such probability
estimates very well to make such decisions.
3.3 Temporal validation and model
Stability

A very important issue is that of a time
stability: to what extent do trends based on

historical data persist as the game changes?
Fig. 6 is a plot of model accuracy versus time
which attests to encouraging though not ideal
temporal stability. Accuracy in talent
identification reduces slightly (89.2 per cent
in 201617 to 84.1 per cent in 202122)
indicating that there is some deterioration as
training data becomes older.

Team performance forecasting shows greater
stability, with R2 ranging from 0.837 in early
years to 0.809 in later years. This makes
sense: team-level patterns driven by talent
aggregation likely change more slowly than
individual development patterns. The relative
stability suggests our models capture
fundamental aspects of  basketball
performance rather than merely fitting
superficial patterns.

3.6 Theoretical and Practical
Implications

These findings carry both theoretical
implications  for  sport = management
scholarship and practical implications for
organizations. From a theoretical perspective,
our results validate the resource-based view’s
emphasis on systematic talent identification
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as a source of competitive advantage. Teams
that adopt sophisticated analytics capabilities
can identify talent more reliably than
competitors. However, the advantage appears

1.0
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bounded: even our best models achieve only
87% accuracy, leaving considerable room for
scouting expertise to influence outcomes.

Vo

haf Point
(EPR<0.12, TPR=0.79)
~

True Positive Rate

0.2 ”

Random Classifier (AUC = 0.500)
XGBoost (AUC = 0.942)

Random Forest (AUC = 0.921)
Neural Network (AUC = 0.908)
SVM (AUC = 0.841)

Logistic Regression (AUC = 0.847)

T
0.4

T
0.8 1.0

False Positive Rate
Fig. 5: ROC Curves for Playoff Qualification Prediction. Each curve shows the tradeoff
between true positive and false positive rates at different classification thresholds.
XGBoost achieves the highest AUC (0.942), substantially outperforming baseline methods

;

Talent Identification Accuracy

-@- Talent Identification Accuracy
Team Performance R?

Modest decline reflects

* Evolving game dynamics
* Three-point revolution

* Training data aging

* Model drift over time
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Fig. 6: Accuracy of model in time of Talent identification (blue) and Team performance
forecasting (orange). The x-axis indicates the target season of prediction and the y an
accuracy of models. Small change in the long run implies that there is a degradation of
the model over time along with performance that is good all the way through.
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The difference between the model predictions
and the outcomes casts some light on the
constraints of data driven decision making.
Basketball continues to be a social scene that
success depends on motivation, leadership,
and interplay of people, which are often
impossible to be quantified. Our models are
good at physical capability factors that are
hard, but they are poor at soft factors such as
coachability and cultural fit. This indicates
that analytics is better suited to the section of
work that deals with objective criteria of
candidates; human judgment will narrow this
down to those who seem to fit within the
organization.

Practically, these findings provide a number
of practical insights. First, the surpassing of
the ensemble techniques imply that
investments in data science talent have real
benefits. The organizations do not have to
come up with completely new solutions
having existing algorithms with meticulous
feature  engineering  provide  results
significantly better than the traditional
methods. Second, defensive metrics and
efficiency statistics mean that these variables
should be prioritized more in the teams and
the wvariables might help reveal all the
inefficiencies in the markets.

Third, the results of the injury history indicate
that durability should be given more priority
during the assessment of the players. There
may be rational arrangements of the contracts
of teams where the incentives are more
incentive-driven by the games. Fourthly, the
findings of the team performance forecast
show that the roster balance is more
significant than mere talent accumulation.
Instead of chasing superstars at all costs, the
teams can learn to get more out of creating
rosters of above-average players.

There are non-trivial issues in the
organizational application of such insights.
Money may not solve all problems; by merely
engaging data scientists, companies will not
be able to make better decisions, and may
even need to reorganize their work to balance
between  algorithmic  knowledge and
conventional experience. The rebuilding by
Philadelphia 76ers is a vivid example of the
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opportunities and risks of
management (Bontemps, 2021).
In addition, it needs management of culture
change to be in place. Intuitive judgment
scouts might be resistant to the
recommendations of algorithms in that they
make their careers out of conducting research
with intuition. Intelligent organizations make
analytics appear to serve as decision support
and not decision automation. It seems
especially useful to establish forums where
analysts and scouts will speak about what
they are predicting.

4.0 Conclusion

Gradient boosting algorithms, in particular,
machine learning techniques, significantly
enhance talent discovery and prediction of
team performance in professional basketball
than conventional methods. Our XGBoost
models were also able to predict which young
players would become above-average
contributors with 87.3% accuracy and also
characterized 82.4% of the variance in win
totals on teams. Analysis of importance of
features indicated defensive measures,
efficiency measures, and injury record are
stronger predictors than the conventional
volume measures, indicating  market
inefficiencies that can be used by smart
organisations. Nevertheless, the difference
between theoretical forecasts and reality
indicates the weakness of solely algorithmic
models in which non-quantifiable aspects
such as leadership and motivation are difficult
to measure. The effective application needs to
think of machine learning as the support of a
decision-making process and not the
substitute of human knowledge.

The results have both practical implications to
player evaluation models and resource
allocation choices as well as methodological
commentary of the temporality validation and
the algorithm choice that contribute to the
general sports analytics literature. As
professional sports are becoming more
competitive and analytical, companies that
carefully apply machine learning-based
resources and ensure proper humility when it
comes to their capacities will gain significant

analytics
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benefits in the current battle of talent and
titles.
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