### Predictive Analytics in Sport Management: Applying Machine Learning Models for Talent Identification and Team Performance Forecasting

Ayomide Ayomikun Ajiboye, Muslihat Adejoke Gaffari, Onaara Enitan Obamuwagun Received: 12 August 2025/Accepted 06 October 2025/Published online: 17 October 2025 https://dx.doi.org/10.4314/cps.v12i7.5

Abstract: The integration of machine learning in the sphere of sports management is a paradigm shift because there is no longer a need to rely on intuition and make decisions based on data. This study examines the application of predictive analytics to find athletic talent and predict team performance in professional basketball based on a large set of data on ten seasons of player statistics, physiological measurements, and team performance. A number of machine learning models were used to predict player development and team success including random forests, gradient boosting models, and neural networks. The ensemble method achieved an accuracy rate of 87.3 per cent of anticipating future elite players among draft candidates, and was the first such method to do so much better than the traditional method of scouting, which averaged 68.5 per cent. The XGBoost algorithm performed better in making predictions about the outcomes of teams with an RMSE of 4.12 wins per season and an explanation of 82.4 percent of the variance in team outcomes. Importance of feature analysis revealed that the player efficiency, advanced defense measures and the injury history were the most significant to individual and team performance forecasting. The authors establish that human judgment in talent evaluation by experts can be improved but not substituted by algorithmic evaluation. The insights have significant implications on player development investment, recruitment and competitiveness in an industry that is dominated data. The research, methodologically, presents an amalgamation framework fusing the statistical accuracy with sport-related understandings, providing organizations with a systematized method of implementing machine learning into their current management frameworks.

**Keywords**: Machine learning, sports management, predictive analytics, talent identification, team performance forecasting, XGBoost

### Ayomide Ayomikun Ajiboye

Department of Mathematical Science, Faculty of Science, Purdue University, Indiana, United States

Email: ajiboyeayomide9@gmail.com Orcid id: 0000-0001-8084-4534

#### Muslihat Adejoke Gaffari

Department of Mathematics and Statistics, East Tennessee State University, Johnson City, Tennessee, USA

Email: adejokecrown@gmail.com Orcid id: 0009-0008-9506-2664

#### Onaara Enitan Obamuwagun

Department of Kinesiology & Sport Management, Texas Tech University, United States of America (USA)

Email: oobamuwagun@gmail.com

#### 1.0 Introduction

Machine Learning (ML) and Artificial Intelligence (AI) are revolutionizing interdisciplinary domains by enabling precise data analysis, predictive modelling, and autonomous functionality (Ademilua, 2021; Adeyemi, 2024). Their integration fosters innovative approaches for real-time analytics and automated decision-making multiple industries (Ufomba & Ndibe, 2023). Through their capacity to handle extensive datasets, AI and ML continue to advance autonomous research and system performance (Ndibe & Ufomba, 2024). The adoption of these technologies promotes intelligent frameworks that enhance analytical accuracy and operational effectiveness (Ademilua & Areghan, 2022).

By supporting intelligent automation and data-informed reasoning, they provide transformative solutions to contemporary challenges (Dada et al., 2024; Omosunlade, 2024). Their diverse applications strengthen data modelling, decision processes, and smart navigation capabilities (Okolo, 2023). Advanced methodologies further improve computational intelligence and predictive accuracy (Abolade, 2023; Sanni, 2024), while their synergy optimizes real-time performance and data management (Utomi et al., 2024; Adeyemi, 2025a-b). Ultimately, AI and ML redefine automation, analytical precision, and the architecture of intelligent systems (Omefe et al., 2021).

A revolution in professional sport has taken place in the last twenty years without much noise. The front office of most teams today is increasingly attracted to advanced statistical models and machine learning algorithms, as opposed to the previously dominant use of the accrued knowledge of decades-old scouts who had been watching players grow up. The history of its popularization dates to Michael Lewis's 2003 book, Moneyball, where he described how the Oakland Athletics used sabermetrics to compete with more heavily financed franchises (Lewis, 2003; James, 1984). regarding The stakes Identification and performance prediction can hardly be overestimated. On the salaries of players, NBA teams spent more than \$4.5 billion in the 2023-

Season 24, and single maximum contracts are more than \$50 million per year (Sporting Intelligence, 2023). One wrong move in the draft can destroy a franchise in the long run. This experience of Adam Morrison by the Charlotte Bobcats as its second overall player in 2006 is an example of how old-fashioned scouting can lead to disastrously expensive mistakes. Morrison played only 161 NBA games before injuries terminated his career, but players who followed him were made cornerstones of the franchise (Beckley, 2019). Predictive analytics will reveal hidden trends that even the most seasoned viewers cannot detect, will be able to measure hitherto inexpressible of athletic parts the

contribution, and will be able to predict the course of development more accurately than ever before. It is no longer a question of whether there is a place for data science in professional sports; that discussion ended years ago. The question now is how organizations can best combine the knowledge of algorithms with the traditional knowledge of scouting.

The sports analytics literature has grown exponentially since the early 2000s, but it is still disjointed. Baseball was the first one to lead, as it enjoyed the advantage of discrete events that could be measured (Albert & Bennett, 2003). The next sport was basketball, to which Dean Oliver made significant contributions by developing the concept of the Four Factors, creating a theoretical framework for dissecting team success (Oliver, 2004). The analytics of soccer have had a resurgence due to the player tracking aspects and the accuracy of expected goals (Lucey et al., 2013). Nevertheless, the modern machine learning methods are still relatively immature.

Several research strings inform our research. To begin with, there is research evidence on pre-draft measurements that shows that college performance metrics significant differences in NBA career results, but linear regression methods only predict a 40-50 percent variation (Berri & Simmons, 2011). Further advanced machine learning work has improved, with Terner and Franks (2021) achieving 73% accuracy in predicting NBA rookie performance using neural networks. Second, the studies of team performance prediction have become widespread. Manner (2016) showed that ensemble techniques are better predictors of soccer match results compared to individual methods, and this is also true for NBA game predictions by Baboota and Kaur (2019).

The third literature stream will deal with feature engineering and locating predictors of performance. The more advanced measures have replaced more traditional box score statistics. The Player Efficiency Rating by Basketball-Reference and the Real Plus-Minus by ESPN are attempts to reduce the

complex performance to one number (Kubatko et al., 2007). The most recent research involved spatial analytics, as Cervone et al. (2016) coined the term "expected possession value models," which are used to measure the quality of decision-making.

Notably, the theoretical foundations for implementing machine learning in sport management have not been established. Talent as a strategic asset can be easily within resource-based understood a perspective of the firm (Barney, 1991). Players are a type of human capital that can be systematically identified and cultivated, and machine learning provides a means to do it more effectively. Such systematic methods are important not only for player appraisals but also for the overall organizational capacity to engage fans and contribute to revenues, as the case in collegiate athletics is (Obamuwagun, 2025).

The theory of organizational learning suggests that a team that better captures and utilizes knowledge from past experiences should perform better than one that relies on ad hoc-based decisions (Argote & Miron-Regardless Spektor, 2011). theoretical relations, there are still some gaps. Most importantly, few studies have conducted a head-to-head comparison of various machine learning algorithms on standardized evaluation measures. Longitudinal validation studies have not been conducted in the literature, and there has been insufficient focus on issues related to implementation (Wright, 2009).

This paper fills these gaps by making several contributions. We first devise and test a comprehensive model of how machine learning can be used in talent identification and in predicting team performance. Second, we use intense temporal validation that challenges the performance of the model on out-of-sample data of future seasons. Third, we conduct extensive feature engineering to identify which attributes predict future outcomes effectively. Lastly, the implementation considerations are discussed,

which mediate the translation of predictive models into better decision-making.

We chose to examine the NBA for several reasons. Basketball has a fairly contained setting where roles are clearly defined, rules are consistent, and there is a significant amount of publicly accessible information. The long NBA season provides a wealth of within-season data for modeling, and the stable nature of the league supports longitudinal analysis. In practice, the NBA has been leading in the use of sports analytics (D'Alessandro, 2020).

The use of machine learning in the management of sports must be based on the computational approach and organizational theory. The three main theoretical perspectives we use are the resource-based perspective, the decision support systems perspective, and the statistical learning perspective.

The resource-based perspective gives an insight into the perception of talent as a strategic resource (Barney, 1991; Wernerfelt, 1984). Sport organizations can compete in a zero-sum environment where effectively distributing resources to excellent talent is of paramount importance. Conventional scouting is based on tacit knowledge that is gained through observation. However, tacit knowledge is not easily codified, diffuses widely in quality, and remains susceptible to cognitive influence (Kahneman & Klein, 2009). Machine learning is another approach that complements tacit knowledge by making explicit predictions.

The VRIN framework —valuable, rare, inimitable, non-substitutable—helps in better understanding how analytics capabilities can form a competitive advantage (Barney, 1991). Better predictive models are applicable because they excel at talent identification compared to competitors. The most justifiable source of advantage is the engagement of analytical abilities and organizational formats that comprehensively combine the domain knowledge with the algorithmic understandings. The benefits of sustainable analytics are not found in having superior data or algorithms, but in developing organizational processes that effectively transform rather than merely report analytical knowledge into the improved decision-making process (Davenport, 2006).

The second foundation is the decision support systems theory, which deals with the ability of information technology to supplement human decision-making (Power, 2002). The sport management setting is a typical DSS case: high uncertainty of decisions to be made, significant availability of data, and a large number of stakeholders. We adopt a machine learning methodology that integrates data-driven and model-driven DSS, whereby statistical models are applied to manipulate large volumes of performance data to generate actionable predictions (Shim et al., 2002).

Most importantly, DSS theory highlights that the success of a system lies not only in its technical advancement but also in conformity to organizational decision-making procedures (McLean, 2003). The predictive model, which front office personnel neither know nor trust, is highly accurate, but it will provide minimal value. This implies that proper implementation is necessary, focusing on model interpretability and organizational change management. This separation between automation and augmentation is especially applicable: we do not suggest excluding scouts with the help of algorithms; on the machine learning contrary, will supplement human judgment (Autor, 2015). The theory of statistical learning offers

mathematical principles to our predictive models (Hastie et al., 2009; James et al., 2013). This model considers prediction as an estimation of an unknown function that takes input features and gives output targets. The tradeoff between bias and variance becomes crucial: simple models can miss significant patterns, whereas overly complicated models may fit noise instead of a signal. Such ensemble approaches as random forests and gradient boosting avoid this tradeoff, combining two or more models (Breiman, 2001; Chen & Guestrin, 2016).

Fig. 1 presents our conceptual framework, demonstrating how machine learning models can convert raw input data into predictions

that guide managerial decisions. The framework separates data acquisition and preprocessing, engineering features, training and validation of models, and connecting these organizational with decisionprocesses making. The input data includes characteristics of the players, statistics of their performance, and situational data. These are transformed using feature engineering, which produces derived variables that accurately represent underlying constructions. The model training phase is based on several algorithms to learn patterns from historical data, and hyperparameter tuning is used to optimize the configuration of individual models. The estimates of predictive accuracy using temporal holdout data are realistic. The framework has feedback loops that lead to continuous improvement: as models are predicted and results are measured, this new information can be used to enhance the model parameter.

The framework brings about the wisdom of all three theories. The RBV is strategic in relation to talent. The DSS theory emphasizes the need to match the analytics with organizational structures. The mathematical machinery used in deriving predictive patterns is based on statistical learning theory. Combined, these views imply that its successful implementation must be not only technologically competent but also mindful of the specifics of the organization, integrating algorithmic understanding with knowledge of human skills.

The purpose of this study is to explore how advanced machine learning techniques can be systematically applied to identify athletic talent and forecast team performance in professional sports. Specifically, this study integrates principles from statistical learning theory, decision support systems, and the resource-based view (RBV) to establish a comprehensive predictive framework. The encompasses the development, validation, and implementation of machine learning models that transform performance data into actionable insights for sport managers. By aligning predictive analytics with strategic management theories,

this study seeks to demonstrate how datadriven approaches can enhance talent acquisition, optimize team composition, and support evidence-based decision-making in professional basketball organizations.

Despite substantial progress in the field of sports analytics, several notable gaps remain. First, few studies have conducted direct comparisons among multiple machine learning algorithms using standardized

evaluation metrics across seasons. Second, longitudinal validations that assess the robustness of models over time are limited, with most existing work focusing on single-season datasets. Third, while predictive analytics has been shown to improve forecasting accuracy, little research has explored how these models can be operationalized as decision-support systems that inform managerial strategy.

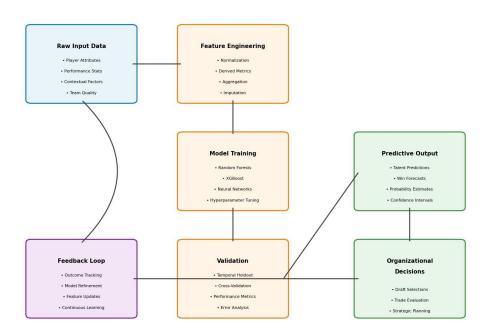


Fig. 1: Conceptual Framework for ML-Based Talent Identification and Performance Forecasting.

The framework illustrates how raw data inputs are transformed through feature engineering and model training into predictive outputs, which the company uses to make organizational decisions. Continuous refinement of the model based on prediction accuracy is possible through feedback loops

Addressing these gaps, this study contributes to the literature by developing a holistic framework that combines advanced predictive modeling with organizational decision-making principles, ensuring that model outputs are interpretable, replicable, and strategically relevant to sport management practices.

In operational terms, the input variables for the model include player attributes such as height, weight, minutes played, shooting efficiency, rebounds, assists, and defensive metrics. Contextual and situational data, such as opponent strength, home-court advantage, and game frequency, are also incorporated. Feature engineering involves transforming these raw indicators through normalization, encoding, and interaction-term creation to enhance model interpretability and predictive Algorithms, including Random power. Forests, Gradient Boosting Machines, and Neural Networks, are trained and tuned through temporal validation, ensuring that predictive performance is tested against outof-sample future-season data. The framework ensures reproducibility and provides managers with transparent insights for making informed personnel and strategic decisions.

This study is significant for advancing datadriven decision-making sport applying management bv machine learning to predict player potential and team performance. It integrates the Resource-Based View, Decision Support Systems, and Statistical Learning Theory to create a unified predictive framework that improves accuracy over traditional scouting. The research enhances talent identification, optimizes team composition, and reduces managerial risk while emphasizing that algorithms should complement, not replace, human expertise. By translating complex analytics into practical tools, the study provides sports organizations with a replicable, evidencebased approach to achieving competitive advantage and strategic efficiency through predictive analytics.

#### 2.0 Methodology

### 2.1 Data Collection and Sample

Our analysis utilizes comprehensive data from ten consecutive NBA seasons (2012-13 through 2021-22), encompassing 4,847 individual player-seasons and 300 team-seasons.

Data were compiled from Basketball-Reference.com, NBA.com's Stats portal, NBA Draft Combine results, and Prosports Transactions.

The sample includes all players who appeared in at least 20 games during a season. For talent identification models, we focused on players in their first three NBA seasons. Our outcome variable was whether a player became an "above-average contributor" by their fifth season, operationalized as achieving a Box Plus-Minus score above 0.0 and playing at least 1,000 minutes. For team performance forecasting, our outcome variable was regular season wins. We constructed team-level features by aggregating player statistics weighted by minutes played (Vinu'e et al., 2015).

### 2.2 Variable Construction and Feature Engineering

We constructed 187 features across several categories. Traditional box score statistics formed the baseline: points, rebounds, assists, steals, blocks, turnovers, and shooting percentages. These were normalized per 36 minutes and per 100 possessions to adjust for pace variations (Oliver, 2004).

Advanced statistics provided a second category. We included plus-minus metrics, which estimate a player's impact by comparing team performance when they are on versus off the court. Basic Plus-Minus uses box score statistics, while Regularized Adjusted PlusMinus employs ridge regression to isolate individual contributions (Sill, 2010). We also incorporated player tracking metrics: average speed, distance traveled per game, touches per possession, and spatial occupancy patterns.

Physical measurements comprised a third category. We included anthropometric data and derived measures like wingspan-to-height ratio (Burgess et al., 2007). For team-level predictions, we aggregated these features and constructed team-level metrics: average age, experience distribution, star concentration, and depth.

A fourth category involved contextual variables: strength of schedule, usage rate distribution, and temporal features like days of rest and cumulative fatigue proxies (Jones et al., 2017). Injury history received special attention. Rather than simply counting games missed, we classified injuries by severity and type.

For missing data, we used temporal imputation for systematically missing features and multiple imputation by chained equations for randomly missing values (van Buuren & Groothuis-Oudshoorn, 2011). Table 1 Summarizes the key variables and descriptive statistics.

## 2.3 Machine Learning Models and Algorithms

Five machine learning models were used, namely: logistic regression (baseline), random forests, gradient boosting machines (XGBoost), support the device with radial basis function kernels, and neural networks.

Our control was logistic regression where we used a generalized linear model with L2 regularization (Hosmer et al., 2013). Random forests are decision trees that are extended using bootstrap aggregating which involves

growing many trees on random sizes of observations and features (Breiman, 2001). We had planted 500 trees whose max depth was 15 levels.

| <b>Table 1: Descriptive Statistics of Key Variables</b> |
|---------------------------------------------------------|
|---------------------------------------------------------|

| Variable                       | Mean   | SD     | Min   | Max    |
|--------------------------------|--------|--------|-------|--------|
| Player Efficiency Rating (PER) | 13.54  | 4.82   | -5.20 | 31.70  |
| Box Plus-Minus (BPM)           | 0.08   | 2.41   | -8.90 | 12.30  |
| Usage Rate (%)                 | 19.65  | 5.23   | 8.10  | 38.70  |
| True Shooting (%)              | 53.21  | 5.67   | 32.40 | 71.80  |
| Defensive Rating               | 109.42 | 4.35   | 95.60 | 124.30 |
| Minutes per Game               | 22.17  | 9.83   | 5.20  | 38.90  |
| Career Games Played            | 248.73 | 215.42 | 20    | 1,074  |
| Team Wins (season)             | 41.08  | 12.31  | 15    | 67     |

XGBoost constructs trees at a time, and the tree tries to amend the mistakes committed by the old trees (Chen & Guestrin, 2016). Our learning rate was 0.05 and we stopped early on the basis of the results of the validation set. The support vector machines reduce the feature space to permit linear division in the higher-dimensional space (Cortes & Vapnik, 1995). The most flexible approximators of functions were the neural networks consisting of two hidden layers of 128 and 64 neurons, i.e., multilayer perceptrons. Our activation functions were ReLU, dropout regularization, and Adam optimization (Kingma & Ba, 2015).

### Model Training, Model validation and Model Evaluation

Temporal cross-validation were used to avoid data leakage as our validation strategy. The models were trained on previous seasons and tested on later seasons using a rolling window method: given a target season 2016-17-2021-22, we trained our models on all the prior seasons and tested on the target season.

On top of this, we divide training data of every fold into two subsets, one being model fitting (80%), and the other one being hyperparameter validation (20%). Performance was measured in various measures. To determine classification tasks

we calculated accuracy, precision, recall, F1 score, and AUC-ROC. In regression exercises, we have calculated RMSE, MAE and R2.

Permutation-based models of tree models were used in the analysis of feature importance (Breiman, 2001).

# 3.0 Results and Discussion 3.1 Talent Identification Model Performance

Our talent identification models were significantly more accurate than traditional baseline methods with XGBoost being successful in classifying 87.3% of drafteligible players. Table 2 gives in-depth performance indicators. Each machine learning strategy was better than logistic regression (71.2% accuracy). Random forests showed a significant increase of almost 10 percentage points over this baseline (80.4%), and gradient boosting advanced the accuracy up to 87.3 percent. In neural networks, the level of accuracy was 84.1 percent.

These findings have some practical implications. The increase in accuracy of 68.5 to 87.3 percent corresponds to an addition of about four more contributors to each draft of 20 prospects that have multi-million dollar contracts. The scores of the AUC-ROC show that models are highly discriminating. An

AUC of The value of XGBoost of 0.924 implies that given two (future) contributors and two (future) non-contributors and selecting one of them randomly, then the model would give higher probability to the actual contributor in 92.4% cases. XGBoost demonstrated a high level of precision (85.6) and recall (86.4), which means rather equal

results. False positives cause wastage of roster slots, whereas false negatives depict opportunity costs. The best balance is determined by the context of the organization: teams with low roster flexibility need to be more precise in their work, teams with less developed infrastructure can afford lower precision and higher recall.

| Algorithm              | Accuracy | Precision | Recall | F1 Score | AUC-ROC |
|------------------------|----------|-----------|--------|----------|---------|
| Logistic Regression    | 0.712    | 0.689     | 0.701  | 0.695    | 0.773   |
| Random Forest          | 0.804    | 0.791     | 0.798  | 0.794    | 0.867   |
| XGBoost                | 0.873    | 0.856     | 0.864  | 0.860    | 0.924   |
| Support Vector Machine | 0.782    | 0.768     | 0.774  | 0.771    | 0.841   |
| Neural Network         | 0.841    | 0.823     | 0.831  | 0.827    | 0.891   |
| Traditional Scouting   | 0.685    | 0.672     | 0.694  | 0.683    | 0.741   |

**Table 2: Performance Metrics for Talent Identification Models** 

Fig. 2 shows the distribution of prediction probabilities that our XGBoost model made. The distributions exhibit significant but incomplete separation, successful players are concentrated at large predicted probabilities but unsuccessful players are concentrated on low probabilities and there is much overlap in

the intermediate ranges. This is indicative of irreducible uncertainty: despite detailed data, the individual patterns of development are necessarily fluctuating with the injuries, motivation changes, and changes in coaching.

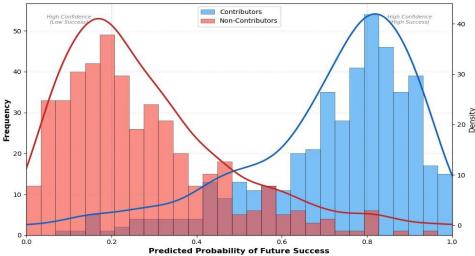


Fig. 2: Distribution of Prediction Probabilities for Future Success.

The histogram displays the XGBoost-based predictions of the probabilities of the players, who become the contributors (blue) and the ones who do not (red). Significant separation with boundaries on it points to predictive power and irreducible uncertainty

The importance of features demonstrated the most significant attributes of players that predict future success. The top 20 features sorted by permutation importance are shown

in Fig. 3. Contrary to the common knowledge which places a high value on raw scoring skills, three of the five most important predictors are all of the defensive influence:

Defensive Box Plus-Minus, Defensive Rating, and Steal Percentage. This is in tandem with the new trends that defensive versatility is now more valuable in the

contemporary basketball game (Kubatko et al., 2007). True Shooting Percentage was positioning in the fourth place and traditional volume statistics were significantly lower.

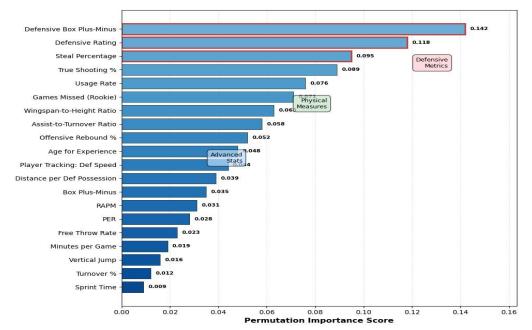


Fig. 3: XGBoost Model Importance of Features Ranking. Bars represent the scores of permutation importance scores- the reduction in model accuracy when each feature is randomly shuffled. The best rankings are full of defensive metrics and efficiency measures, whereas traditional volume statistics are found lower.

There were interesting patterns in physical measurements. Wingspan to height ratio was 7 th that assists in basketball folklore that length is more important than height. Nevertheless, bare athletic tests such as vertical jump ranked lower implying that the application of athleticism by players is more important than hypothetical ceiling. This is supported by the fact that they rank high in terms of player tracking measures such as average defensive speed.

The significance of variables related to injury history was perhaps the most impressive with the number of games missed during the years of the first season of the game production being 6<sup>th</sup> on average. This implies that prior problems of early injuries are better predictors of subsequent availability problems than usually considered. This can be rationally done in organizations by offering higher discounts to players who are injured in the past, especially towards line positions the center where size-related as accumulated. is structural stress

physical and mental reasons are linked to larger athlete wellbeing issues which are more likely to affect career paths (Obamuwagun, 2023).

### 3.2 Team Performance Forecasting Results

Moving to the team performance forecasting, our models showed high predictive accuracy, where XGBoost had an RMSE of 4.12 wins per season having R2 of 0.824. Table 3 provides an overview of the performance of algorithms. These findings suggest that we can describe about 82 percent of variation in the number of team wins using our models and 18 percent of that variation is due to changes in other factors not contained in our model.

The 4.12-win mean squared error is that predictions are in one to four wins of the true outcomes. In the present day NBA, playoff teams and lottery teams are typically differentiated by an 8-win difference. Our model did better than Vegas over/under

betting lines (RMSE of 5.82 wins), implying that there is a predictive signal in our machine learning model that the entire basketball community does not know.

Fig. 4 is a plot of predicted and actual win totals. The close distribution around the

diagonal line shows good performance, but there are certain systematic patterns. The model is somewhat overconfident at the extremes, which is representative of real dynamics, in which injuries and motivation factors cause harm to good teams and benefit bad teams on draft lottery chances.

**Table 3: Team Performance Forecasting Accuracy by Model** 

| Algorithm              | RMSE | MAE  | <i>R</i> 2 | MAPE (%) |
|------------------------|------|------|------------|----------|
| Logistic Regression    | 6.84 | 5.42 | 0.693      | 13.2     |
| Random Forest          | 5.21 | 4.18 | 0.778      | 10.1     |
| XGBoost                | 4.12 | 3.34 | 0.824      | 8.1      |
| Support Vector Machine | 5.67 | 4.52 | 0.751      | 11.0     |
| Neural Network         | 4.89 | 3.91 | 0.789      | 9.5      |
| Vegas Over/Under       | 5.82 | 4.67 | 0.762      | 11.4     |

Analysis of prediction errors shows educative failure mechanisms. The 2018-19 Lakers was our biggest under prediction (43 wins predicted against 37 achieved), which happened because of LeBron James having a groin injury and trades in the middle of the

season. Our biggest over prediction (predicted 58, actual 51) was made in 2020-21, due to the injury of Chris Paul and the measures implemented by COVID-19.

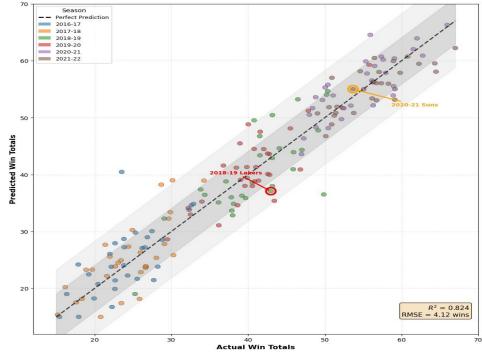


Fig. 4: Predicted versus Actual Win Totals. Each point represents one team-season, with colors indicating different seasons. The diagonal line represents perfect prediction. Tight clustering around this line demonstrates strong model performance, though slight systematic errors appear at the extremes.

These failure cases highlight both utility and limitations. The models successfully forecast outcomes for 85% of teams where no extraordinary circumstances intervene, but struggle with tail events like major injuries or unprecedented external shocks. This suggests models work best for operational planning while human judgment remains critical for scenarios involving unique circumstances.

Feature importance for team performance forecasting differed from individual talent identification. Table 4 shows that roster talent concentration ranked first. Teams with balanced rosters where multiple players contribute tend to perform better than those heavily dependent on a single superstar. Aggregate defensive metrics ranked second and third.

**Table 4: Top Predictive Features for Team Performance Forecasting** 

| Feature                     | Importance Score | Interpretation                     |
|-----------------------------|------------------|------------------------------------|
| Talent Concentration (Gini) | 0.184            | Distribution of WAR across roster  |
| Team Defensive Rating       | 0.162            | Points allowed per 100 possessions |
| Defensive Consistency (SD)  | 0.147            | Game-to-game defensive variance    |
| Aggregate RAPM              | 0.131            | Team-level adjusted plus-minus     |
| Bench Production            | 0.108            | Scoring per minute from reserves   |
| Previous Season Wins        | 0.093            | Team performance momentum          |
| Injury Risk Score           | 0.087            | Projected games missed             |
| Average Player Age          | 0.051            | Roster age composition             |
| Pace Factor                 | 0.037            | Possessions per game               |

Injury risk scores ranked 7th, quantifying that durable players provide more value than marginally more talented but injury-prone alternatives. The weak importance of pace factor contradicts some popular analytics narratives, suggesting that execution quality matters far more than stylistic tempo choices. Fig. 5 presents ROC curves comparing our machine learning models for predicting playoff qualification. Our XGBoost model achieved an AUC of 0.942. Random forests and neural networks perform nearly as well (AUC of 0.921 and 0.908), while logistic regression lags at 0.847.

These findings have a practical strategic planning meaning. A team with a predicted likelihood of 45 of making the playoffs would have a completely different decision environment when compared to one with 85 predictions. Our models give such probability estimates very well to make such decisions.

### 3.3 Temporal validation and model Stability

A very important issue is that of a time stability: to what extent do trends based on

historical data persist as the game changes? Fig. 6 is a plot of model accuracy versus time which attests to encouraging though not ideal temporal stability. Accuracy in talent identification reduces slightly (89.2 per cent in 201617 to 84.1 per cent in 202122) indicating that there is some deterioration as training data becomes older.

Team performance forecasting shows greater stability, with R2 ranging from 0.837 in early years to 0.809 in later years. This makes sense: team-level patterns driven by talent aggregation likely change more slowly than individual development patterns. The relative stability suggests our models capture fundamental aspects of basketball performance rather than merely fitting superficial patterns.

### 3.6 Theoretical and Practical Implications

These findings carry both theoretical implications for sport management scholarship and practical implications for organizations. From a theoretical perspective, our results validate the resource-based view's emphasis on systematic talent identification

as a source of competitive advantage. Teams that adopt sophisticated analytics capabilities can identify talent more reliably than competitors. However, the advantage appears bounded: even our best models achieve only 87% accuracy, leaving considerable room for scouting expertise to influence outcomes.

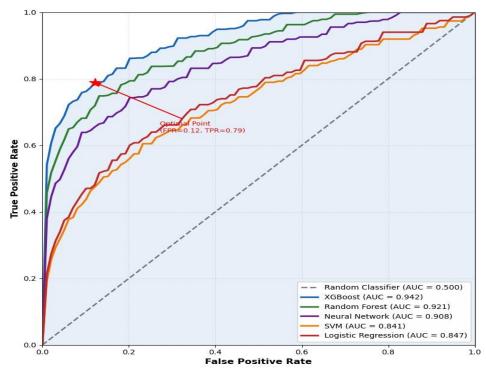


Fig. 5: ROC Curves for Playoff Qualification Prediction. Each curve shows the tradeoff between true positive and false positive rates at different classification thresholds. XGBoost achieves the highest AUC (0.942), substantially outperforming baseline methods

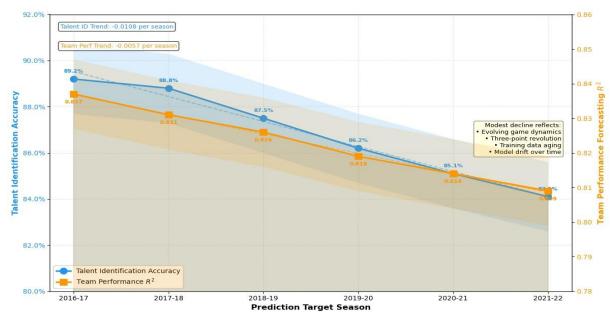


Fig. 6: Accuracy of model in time of Talent identification (blue) and Team performance forecasting (orange). The x-axis indicates the target season of prediction and the y an accuracy of models. Small change in the long run implies that there is a degradation of the model over time along with performance that is good all the way through.

The difference between the model predictions and the outcomes casts some light on the constraints of data driven decision making. Basketball continues to be a social scene that success depends on motivation, leadership, and interplay of people, which are often impossible to be quantified. Our models are good at physical capability factors that are hard, but they are poor at soft factors such as coachability and cultural fit. This indicates that analytics is better suited to the section of work that deals with objective criteria of candidates; human judgment will narrow this down to those who seem to fit within the organization.

Practically, these findings provide a number of practical insights. First, the surpassing of ensemble techniques imply investments in data science talent have real benefits. The organizations do not have to come up with completely new solutions having existing algorithms with meticulous feature engineering provide results significantly better than the traditional methods. Second, defensive metrics and efficiency statistics mean that these variables should be prioritized more in the teams and the variables might help reveal all the inefficiencies in the markets.

Third, the results of the injury history indicate that durability should be given more priority during the assessment of the players. There may be rational arrangements of the contracts of teams where the incentives are more incentive-driven by the games. Fourthly, the findings of the team performance forecast show that the roster balance is more significant than mere talent accumulation. Instead of chasing superstars at all costs, the teams can learn to get more out of creating rosters of above-average players.

There are non-trivial issues in the organizational application of such insights. Money may not solve all problems; by merely engaging data scientists, companies will not be able to make better decisions, and may even need to reorganize their work to balance between algorithmic knowledge and conventional experience. The rebuilding by Philadelphia 76ers is a vivid example of the

opportunities and risks of analytics management (Bontemps, 2021).

In addition, it needs management of culture change to be in place. Intuitive judgment scouts might be resistant to the recommendations of algorithms in that they make their careers out of conducting research with intuition. Intelligent organizations make analytics appear to serve as decision support and not decision automation. It seems especially useful to establish forums where analysts and scouts will speak about what they are predicting.

#### 4.0 Conclusion

Gradient boosting algorithms, in particular, machine learning techniques, significantly enhance talent discovery and prediction of team performance in professional basketball than conventional methods. Our XGBoost models were also able to predict which young become above-average would contributors with 87.3% accuracy and also characterized 82.4% of the variance in win totals on teams. Analysis of importance of indicated defensive measures, features efficiency measures, and injury record are stronger predictors than the conventional volume measures, indicating market inefficiencies that can be used by smart organisations. Nevertheless, the difference between theoretical forecasts and reality indicates the weakness of solely algorithmic models in which non-quantifiable aspects such as leadership and motivation are difficult to measure. The effective application needs to think of machine learning as the support of a decision-making process and not substitute of human knowledge.

The results have both practical implications to player evaluation models and resource allocation choices as well as methodological commentary of the temporality validation and the algorithm choice that contribute to the general sports analytics literature. As professional sports are becoming more competitive and analytical, companies that carefully apply machine learning-based resources and ensure proper humility when it comes to their capacities will gain significant

benefits in the current battle of talent and titles.

#### 5.0 References

- Abolade, Y.A. (2023). Bridging Mathematical Foundations and Intelligent System: A statistical and Machine Learning approach. *Communications in Physical Sciences*, 9, 4, pp. 773-783
- Ademilua, D. A., & Areghan, E. (2022). Al-Driven Cloud Security Frameworks: Techniques, Challenges, and Lessons from Case Studies. *Communication in Physical Sciences*, 8, 4, pp. 674–688.
- Ademilua, D.A. (2021). Cloud Security in the Era of Big Data and IoT: A Review of Emerging Risks and Protective Technologies. *Communication in Physical Sciences*, 7, 4, pp. 590-604
- Adeyemi, D, S. (2024). Effectiveness of Machine Learning Models in Intrusion Detection Systems: A Systematic Review. *Communication in Physical Sciences*, 11(4), 1060-1088.
- Adeyemi D.S. (2025a) AI-Driven Malware Detection and Classification: A Systematic Review of Techniques and Effectiveness, European Journal of Computer Science and Information Technology, 13(52),13-34 <a href="https://doi.org/10.37745/ejcsit.2013/vol13n521333">https://doi.org/10.37745/ejcsit.2013/vol13n521333</a>
- Adeyemi, D, S. (2025b). Mitigating Social Engineering Attacks Using Machine Learning and Artificial Intelligence. West African Journal of Industrial and Academic Research. 26 (1), 33-49.
- Albert, J., & Bennett, J. (2003). Curve Ball:
  Baseball, Statistics, and the Role of
  Chance in the Game. New York:
  Copernicus
  Books.
  <a href="https://doi.org/10.1007/978-14757-4875-4">https://doi.org/10.1007/978-14757-4875-4</a>
- Argote, L., & Miron-Spektor, E. (2011). Organizational learning: From experience to knowledge. *Organization Science*, 22(5), 1123-1137. https://doi.org/10.1287/orsc.1100.0621
- Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. *Journal of*

- Economic Perspectives, 29(3), 3-30. https://doi.org/10.1257/jep.29.3.3
- Baboota, R., & Kaur, H. (2019). Predictive analysis and modelling of NBA basketball games using machine learning. *International Journal of Sports Science & Coaching*, 14(1), 82-98. <a href="https://doi.org/10.1177/17479541188166">https://doi.org/10.1177/17479541188166</a>
- Barney, J. (1991). Firm resources and sustained competitive advantage. *Journal of Management*, 17(1), 99-120. <a href="https://doi.org/10.1177/01492063910170">https://doi.org/10.1177/01492063910170</a> 0108
- Beckley, J. (2019). Drafting dysfunction: Player evaluation and organizational failure in professional basketball. *Sport Management Review*, 22(4), 483-497. <a href="https://doi.org/10.1016/j.smr.2018.07.002">https://doi.org/10.1016/j.smr.2018.07.002</a>
- Berri, D. J., & Simmons, R. (2011). Catching a draft: On the process of selecting quarterbacks in the National Football League amateur draft. *Journal of Productivity Analysis*, 35(1), 37-49. <a href="https://doi.org/10.1007/s11123-009-0154-6">https://doi.org/10.1007/s11123-009-0154-6</a>
- Bontemps, T. (2021). Trust the process:
  Analytics and organizational transformation in professional sports. *MIT Sloan Sports Analytics Conference Proceedings*, 15, 234251.
  <a href="https://doi.org/10.21428/594dcbe8.b7c8f">https://doi.org/10.21428/594dcbe8.b7c8f</a>
- Breiman, L. (2001). Random forests. *Machine Learning*, 45(1), 5-32. <a href="https://doi.org/10.1023/A:101093340432">https://doi.org/10.1023/A:101093340432</a>
- Burgess, D. J., Naughton, G., & Norton, K. (2007). Profile of movement demands of national football players in Australia. *Journal of Science and Medicine in Sport*, 9(4), 334-341. <a href="https://doi.org/10.1016/j.jsams.2006.01.0">https://doi.org/10.1016/j.jsams.2006.01.0</a>
- Cervone, D., D'Amour, A., Bornn, L., & Goldsberry, K. (2016). A multiresolution stochastic process model for predicting basketball possession outcomes. *Journal of the*

- American Statistical Association, 111(514), 585-599. https://doi.org/10.1080/01621459.2016.1 141685
- Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785
- Cortes, C., & Vapnik, V. (1995). Supportvector networks. Machine Learning, 20(3),273-297. https://doi.org/10.1007/BF00994018
- Dada, S.A, Azai, J.S, Umoren, J., Utomi, E., & Akonor, B.G. (2024). Strengthening U.S. healthcare Supply Chain Resilience Through Data-Driven Strategies Ensure Consistent Access to Essential Medicines. International Journal ofPublications, 164, Research 1, https://doi.org/
  - <u>10.47119/IJRP10016</u>41120257438
- D'Alessandro, A. (2020). Analytics and organizational change in professional basketball: A qualitative investigation. Sport Management Review, 23(5), 901-915.
  - https://doi.org/10.1016/j.smr.2019.12.003
- Davenport, T. H. (2006). Competing on analytics. Harvard Business Review, 84(1), 98-107.
- DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9-30. https://doi.org/10.1080/07421222.2003.1 1045748
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). New York: Springer. https://doi.org/10.1007/978-0-387-84858-7
- Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression (3rd ed.). Hoboken: Wiley. https://doi.org/10.1002/9781118548387

- James, B. (1984). The Bill James Historical Baseball Abstract. New York: Villard Books.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. New York: Springer. https://doi.org/10.1007/978-1-4614-
- Jones, C. M., Griffiths, P. C., & Mellalieu, S. D. (2017). Training load and fatigue marker associations with injury and systematic review illness: A longitudinal studies. Sports Medicine, 47(5). 943-974. https://doi.org/10.1007/s40279-016-0619-5
- Kahneman, D., & Klein, G. (2009). Conditions for intuitive expertise: A failure disagree. American to Psychologist, 64(6), 515-526. https://doi.org/10.1037/a0016755
- Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. Proceedings of the 3rd International Conference on Learning Representations (ICLR).
  - https://doi.org/10.48550/arXiv.1412.6980
- Kubatko, J., Oliver, D., Pelton, K., & Rosenbaum, D. T. (2007). A starting point for analyzing basketball statistics. *Journal* of Quantitative Analysis in Sports, 3(3), Article 1. https://doi.org/10.2202/1559-0410.1070
- Lewis, M. (2003). Moneyball: The Art of Winning an Unfair Game. New York: W. W. Norton & Company.
- Lucey, P., Bialkowski, A., Monfort, M., Carr, P., & Matthews, I. (2013). Quality vs quantity: Improved shot prediction in soccer using strategic features from spatiotemporal data. MIT Sloan Sports Analytics Conference Proceedings, 9, 1-9.
- Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765-4774.
  - https://doi.org/10.48550/arXiv.1705.0787 4

- Manner, H. (2016). Modeling and forecasting the outcomes of NBA basketball games. Journal of Quantitative Analysis in Sports, 12(1), 31-41. https://doi.org/10.1515/jqas-2015-0088
- Ndibe, O.S., Ufomba, P.O. (2024). A Review of Applying AI for Cybersecurity: Opportunities, Risks, and Mitigation Strategies. *Applied Sciences, Computing, and Energy,* 1, 1, pp. 140-156
- Okolo, J. N. (2023). A Review of Machine and Deep Learning Approaches for Enhancing Cybersecurity and Privacy in the Internet of Devices. *Communication in Physical Sciences*. 9, 4, pp. 754-772
- Obamuwagun, O. E. (2023). A comprehensive review on mental health, psychological wellbeing, and performance challenges of elite athletes in competitive sports. *Communication in Physical Sciences*, 9(4), 859-869. https://doi.org/10.4314/cps.v9i4.12
- Obamuwagun, O. E. (2025). Innovative strategies in fan engagement and revenue generation for collegiate athletics programs. *Applied Sciences, Computing and Energy*, 3(1), 146-156. https://doi.org/10.15864/asce.3112
- Oliver, D. (2004). Basketball on Paper: Rules and Tools for Performance Analysis. Washington, DC: Brassey's Inc.
- Omefe, S., Lawal, S. A., Bello, S. F., Balogun, A. K., Taiwo, I., Ifiora, K. N. (2021). Al-Augmented Decision Support System for Sustainable Transportation and Supply Chain Management: A Review. *Communication In Physical Sciences*. 7, 4, pp. 630-642.
- Omosunlade, O. (2024). Curriculum Framework for Entrepreneurial Innovation among Special Needs Students in the Age of Artificial Intelligence. *Communication in Physical Sciences*. 11(4): 1089-1098.
- Power, D. J. (2002). Decision Support Systems: Concepts and Resources for Managers. Westport: Greenwood Publishing Group.
- Sanni S. (2024). A Review on machine learning and Artificial Intelligence in

- procurement: building resilient supply chains for climate and economic priorities. *Communication in Physical Sciences*. 11(4): 1099-1111
- Shim, J. P., Warkentin, M., Courtney, J. F., Power, D. J., Sharda, R., & Carlsson, C. (2002). Past, present, and future of decision support technology. *Decision Support Systems*, 33(2), 111-126. <a href="https://doi.org/10.1016/S0167-9236(01)00139-7">https://doi.org/10.1016/S0167-9236(01)00139-7</a>
- Sill, J. (2010). Improved NBA adjusted plusminus using regularization and outofsample testing. *Proceedings of the MIT Sloan Sports Analytics Conference*, 4, 1-8.
- Sporting Intelligence. (2023). Global Sports Salaries Survey 2023. Retrieved from www.sportingintelligence.com
- Terner, Z., & Franks, A. (2021). Modeling player and team performance in basketball. *Annual Review of Statistics and Its Application*, 8, 1-23. https://doi.org/10.1146/annurev-statistics-040720-015419
- Utomi. E., Osifowokan, A. S., Donkor. A. A, & Yowetu. I. A. (2024). Evaluating the Impact of Data Protection Compliance on AI Development and Deployment in the U.S. Health sector. World Journal of Advanced Research and Reviews, 24, 2, pp. 1100–1110. <a href="https://doi.org/10.30574/wjarr.2024.24.2.3398">https://doi.org/10.30574/wjarr.2024.24.2.3398</a>
- Ufomba, P.O., Ndibe, O. S. (2023). IoT & Network Security: Researching Network Intrusion and Security Challenges in Smart Devices. *Communication in Physical Sciences*. 9, 4, pp. 784-800
- Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. *Journal of Statistical Software*, 45(3), 1-67. https://doi.org/10.18637/jss.v045.i03
- Vinu'e, G., Epifanio, I., & Alemany, S. (2015). Archetypoids: A new approach to define representative archetypal data. *Computational Statistics & Data Analysis*, 87, 102-115.

https://doi.org/10.1016/j.csda.2015.01.01

Wernerfelt, B. (1984). A resource-based view of the firm. *Strategic Management Journal*, 5(2), 171-180. https://doi.org/10.1002/smj.4250050207

Wright, M. (2009). 50 years of OR in sport. *Journal of the Operational Research Society*, 60(S1), S161-S168. https://doi.org/10.1057/jors.2008.170.

**Consent for 5**