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Abstract: The integration of machine 

learning in the sphere of sports management 

is a paradigm shift because there is no longer 

a need to rely on intuition and make decisions 

based on data. This study examines the 

application of predictive analytics to find 

athletic talent and predict team performance 

in professional basketball based on a large set 

of data on ten seasons of player statistics, 

physiological measurements, and team 

performance. A number of machine learning 

models were used to predict player 

development and team success including 

random forests, gradient boosting models, 

and neural networks. The ensemble method 

achieved an accuracy rate of 87.3 per cent of 

anticipating future elite players among draft 

candidates, and was the first such method to 

do so much better than the traditional method 

of scouting, which averaged 68.5 per cent. 

The XGBoost algorithm performed better in 

making predictions about the outcomes of 

teams with an RMSE of 4.12 wins per season 

and an explanation of 82.4 percent of the 

variance in team outcomes. Importance of 

feature analysis revealed that the player 

efficiency, advanced defense measures and 

the injury history were the most significant to 

individual and team performance forecasting. 

The authors establish that human judgment in 

talent evaluation by experts can be improved 

but not substituted by algorithmic evaluation. 

The insights have significant implications on 

player development investment, recruitment 

and competitiveness in an industry that is 

dominated by data. The research, 

methodologically, presents an amalgamation 

framework fusing the statistical accuracy 

with sport-related understandings, providing 

organizations with a systematized method of 

implementing machine learning into their 

current management frameworks. 
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1.0   Introduction 
 

Machine Learning (ML) and Artificial 

Intelligence (AI) are revolutionizing 

interdisciplinary domains by enabling precise 

data analysis, predictive modelling, and 

autonomous functionality (Ademilua, 2021; 

Adeyemi, 2024). Their integration fosters 

innovative approaches for real-time analytics 

and automated decision-making across 

multiple industries (Ufomba & Ndibe, 2023). 

Through their capacity to handle extensive 

datasets, AI and ML continue to advance 

research and autonomous system 

performance (Ndibe & Ufomba, 2024). The 

broad adoption of these technologies 

promotes intelligent frameworks that enhance 

analytical accuracy and operational 

effectiveness (Ademilua & Areghan, 2022). 
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By supporting intelligent automation and 

data-informed reasoning, they provide 

transformative solutions to contemporary 

challenges (Dada et al., 2024; Omosunlade, 

2024). Their diverse applications strengthen 

data modelling, decision processes, and smart 

navigation capabilities (Okolo, 2023). 

Advanced methodologies further improve 

computational intelligence and predictive 

accuracy (Abolade, 2023; Sanni, 2024), while 

their synergy optimizes real-time 

performance and data management (Utomi et 

al., 2024; Adeyemi, 2025a-b). Ultimately, AI 

and ML redefine automation, analytical 

precision, and the architecture of intelligent 

systems (Omefe et al., 2021). 

A revolution in professional sport has taken 

place in the last twenty years without much 

noise. The front office of most teams today is 

increasingly attracted to advanced statistical 

models and machine learning algorithms, as 

opposed to the previously dominant use of the 

accrued knowledge of decades-old scouts 

who had been watching players grow up. The 

history of its popularization dates to Michael 

Lewis's 2003 book, Moneyball, where he 

described how the Oakland Athletics used 

sabermetrics to compete with more heavily 

financed franchises (Lewis, 2003; James, 

1984). The stakes regarding talent 

Identification and performance prediction can 

hardly be overestimated. On the salaries of 

players, NBA teams spent more than $4.5 

billion in the 2023- 

Season 24, and single maximum contracts are 

more than $50 million per year (Sporting 

Intelligence, 2023). One wrong move in the 

draft can destroy a franchise in the long run. 

This experience of Adam Morrison by the 

Charlotte Bobcats as its second overall player 

in 2006 is an example of how old-fashioned 

scouting can lead to disastrously expensive 

mistakes. Morrison played only 161 NBA 

games before injuries terminated his career, 

but players who followed him were made 

cornerstones of the franchise (Beckley, 2019). 

Predictive analytics will reveal hidden trends 

that even the most seasoned viewers cannot 

detect, will be able to measure hitherto 

inexpressible parts of the athletic 

contribution, and will be able to predict the 

course of development more accurately than 

ever before. It is no longer a question of 

whether there is a place for data science in 

professional sports; that discussion ended 

years ago. The question now is how 

organizations can best combine the 

knowledge of algorithms with the traditional 

knowledge of scouting. 

The sports analytics literature has grown 

exponentially since the early 2000s, but it is 

still disjointed. Baseball was the first one to 

lead, as it enjoyed the advantage of discrete 

events that could be measured (Albert & 

Bennett, 2003). The next sport was basketball, 

to which Dean Oliver made significant 

contributions by developing the concept of 

the Four Factors, creating a theoretical 

framework for dissecting team success 

(Oliver, 2004). The analytics of soccer have 

had a resurgence due to the player tracking 

aspects and the accuracy of expected goals 

(Lucey et al., 2013). Nevertheless, the modern 

machine learning methods are still relatively 

immature. 

Several research strings inform our research. 

To begin with, there is research evidence on 

pre-draft measurements that shows that 

college performance metrics predict 

significant differences in NBA career results, 

but linear regression methods only predict a 

40-50 percent variation (Berri & Simmons, 

2011). Further advanced machine learning 

work has improved, with Terner and Franks 

(2021) achieving 73% accuracy in predicting 

NBA rookie performance using neural 

networks. Second, the studies of team 

performance prediction have become 

widespread. Manner (2016) showed that 

ensemble techniques are better predictors of 

soccer match results compared to individual 

methods, and this is also true for NBA game 

predictions by Baboota and Kaur (2019). 

The third literature stream will deal with 

feature engineering and locating predictors of 

performance. The more advanced measures 

have replaced more traditional box score 

statistics. The Player Efficiency Rating by 

Basketball-Reference and the Real Plus-

Minus by ESPN are attempts to reduce the 
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complex performance to one number 

(Kubatko et al., 2007). The most recent 

research involved spatial analytics, as 

Cervone et al. (2016) coined the term 

"expected possession value models," which 

are used to measure the quality of decision-

making. 

Notably, the theoretical foundations for 

implementing machine learning in sport 

management have not been established. 

Talent as a strategic asset can be easily 

understood within a resource-based 

perspective of the firm (Barney, 1991). 

Players are a type of human capital that can be 

systematically identified and cultivated, and 

machine learning provides a means to do it 

more effectively. Such systematic methods 

are important not only for player appraisals 

but also for the overall organizational capacity 

to engage fans and contribute to revenues, as 

is the case in collegiate athletics 

(Obamuwagun, 2025). 

The theory of organizational learning 

suggests that a team that better captures and 

utilizes knowledge from past experiences 

should perform better than one that relies on 

ad hoc-based decisions (Argote & Miron-

Spektor, 2011). Regardless of these 

theoretical relations, there are still some gaps. 

Most importantly, few studies have conducted 

a head-to-head comparison of various 

machine learning algorithms on standardized 

evaluation measures. Longitudinal validation 

studies have not been conducted in the 

literature, and there has been insufficient 

focus on issues related to implementation 

(Wright, 2009). 

This paper fills these gaps by making several 

contributions. We first devise and test a 

comprehensive model of how machine 

learning can be used in talent identification 

and in predicting team performance. Second, 

we use intense temporal validation that 

challenges the performance of the model on 

out-of-sample data of future seasons. Third, 

we conduct extensive feature engineering to 

identify which attributes predict future 

outcomes effectively. Lastly, the 

implementation considerations are discussed, 

which mediate the translation of predictive 

models into better decision-making. 

We chose to examine the NBA for several 

reasons. Basketball has a fairly contained 

setting where roles are clearly defined, rules 

are consistent, and there is a significant 

amount of publicly accessible information. 

The long NBA season provides a wealth of 

within-season data for modeling, and the 

stable nature of the league supports 

longitudinal analysis. In practice, the NBA 

has been leading in the use of sports analytics 

(D’Alessandro, 2020). 
 

 
 

 

The use of machine learning in the 

management of sports must be based on the 

computational approach and organizational 

theory. The three main theoretical 

perspectives we use are the resource-based 

perspective, the decision support systems 

perspective, and the statistical learning 

perspective. 

The resource-based perspective gives an 

insight into the perception of talent as a 

strategic resource (Barney, 1991; Wernerfelt, 

1984). Sport organizations can compete in a 

zero-sum environment where effectively 

distributing resources to excellent talent is of 

paramount importance. Conventional 

scouting is based on tacit knowledge that is 

gained through observation. However, tacit 

knowledge is not easily codified, diffuses 

widely in quality, and remains susceptible to 

cognitive influence (Kahneman & Klein, 

2009). Machine learning is another approach 

that complements tacit knowledge by making 

explicit predictions. 

The VRIN framework —valuable, rare, 

inimitable, non-substitutable—helps in better 

understanding how analytics capabilities can 

form a competitive advantage (Barney, 1991). 

Better predictive models are applicable 

because they excel at talent identification 

compared to competitors. The most justifiable 

source of advantage is the engagement of 

analytical abilities and organizational formats 

that comprehensively combine the domain 

knowledge with the algorithmic 

understandings. The benefits of sustainable 

analytics are not found in having superior data 

or algorithms, but in developing 
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organizational processes that effectively 

transform rather than merely report analytical 

knowledge into the improved decision-

making process (Davenport, 2006). 

The second foundation is the decision support 

systems theory, which deals with the ability of 

information technology to supplement human 

decision-making (Power, 2002). The sport 

management setting is a typical DSS case: 

high uncertainty of decisions to be made, 

significant availability of data, and a large 

number of stakeholders. We adopt a machine 

learning methodology that integrates data-

driven and model-driven DSS, whereby 

statistical models are applied to manipulate 

large volumes of performance data to generate 

actionable predictions (Shim et al., 2002). 

Most importantly, DSS theory highlights that 

the success of a system lies not only in its 

technical advancement but also in its 

conformity to organizational decision-making 

procedures (McLean, 2003). The predictive 

model, which front office personnel neither 

know nor trust, is highly accurate, but it will 

provide minimal value. This implies that 

proper implementation is necessary, focusing 

on model interpretability and organizational 

change management. This separation between 

automation and augmentation is especially 

applicable: we do not suggest excluding 

scouts with the help of algorithms; on the 

contrary, machine learning will help 

supplement human judgment (Autor, 2015). 

The theory of statistical learning offers 

mathematical principles to our predictive 

models (Hastie et al., 2009; James et al., 

2013). This model considers prediction as an 

estimation of an unknown function that takes 

input features and gives output targets. The 

tradeoff between bias and variance becomes 

crucial: simple models can miss significant 

patterns, whereas overly complicated models 

may fit noise instead of a signal. Such 

ensemble approaches as random forests and 

gradient boosting avoid this tradeoff, 

combining two or more models (Breiman, 

2001; Chen & Guestrin, 2016). 

Fig. 1 presents our conceptual framework, 

demonstrating how machine learning models 

can convert raw input data into predictions 

that guide managerial decisions. The 

framework separates data acquisition and pre-

processing, engineering features, training and 

validation of models, and connecting these 

processes with organizational decision-

making. The input data includes the 

characteristics of the players, statistics of their 

performance, and situational data. These are 

transformed using feature engineering, which 

produces derived variables that more 

accurately represent underlying constructions. 

The model training phase is based on several 

algorithms to learn patterns from historical 

data, and hyperparameter tuning is used to 

optimize the configuration of individual 

models. The estimates of predictive accuracy 

using temporal holdout data are realistic. The 

framework has feedback loops that lead to 

continuous improvement: as models are 

predicted and results are measured, this new 

information can be used to enhance the model 

parameter.   

The framework brings about the wisdom of all 

three theories. The RBV is strategic in relation 

to talent. The DSS theory emphasizes the need 

to match the analytics with organizational 

structures. The mathematical machinery used 

in deriving predictive patterns is based on 

statistical learning theory. Combined, these 

views imply that its successful 

implementation must be not only 

technologically competent but also mindful of 

the specifics of the organization, integrating 

algorithmic understanding with knowledge of 

human skills. 

The purpose of this study is to explore how 

advanced machine learning techniques can be 

systematically applied to identify athletic 

talent and forecast team performance in 

professional sports. Specifically, this study 

integrates principles from statistical learning 

theory, decision support systems, and the 

resource-based view (RBV) to establish a 

comprehensive predictive framework. The 

scope encompasses the development, 

validation, and implementation of machine 

learning models that transform raw 

performance data into actionable insights for 

sport managers. By aligning predictive 

analytics with strategic management theories, 
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this study seeks to demonstrate how data-

driven approaches can enhance talent 

acquisition, optimize team composition, and 

support evidence-based decision-making in 

professional basketball organizations. 

Despite substantial progress in the field of 

sports analytics, several notable gaps remain. 

First, few studies have conducted direct 

comparisons among multiple machine 

learning algorithms using standardized  

evaluation metrics across seasons. Second, 

longitudinal validations that assess the 

robustness of models over time are limited, 

with most existing work focusing on single-

season datasets. Third, while predictive 

analytics has been shown to improve 

forecasting accuracy, little research has 

explored how these models can be 

operationalized as decision-support systems 

that inform managerial strategy. 

 

 
Fig. 1: Conceptual Framework for ML-Based Talent Identification and Performance 

Forecasting.  

The framework illustrates how raw data inputs are transformed through feature 

engineering and model training into predictive outputs, which the company uses to make 

organizational decisions. Continuous refinement of the model based on prediction 

accuracy is possible through feedback loops
 
 
 

 

 

Addressing these gaps, this study contributes 

to the literature by developing a holistic 

framework that combines advanced 

predictive modeling with organizational 

decision-making principles, ensuring that 

model outputs are interpretable, replicable, 

and strategically relevant to sport 

management practices. 

In operational terms, the input variables for 

the model include player attributes such as 

height, weight, minutes played, shooting 

efficiency, rebounds, assists, and defensive 

metrics. Contextual and situational data, such 

as opponent strength, home-court advantage, 

and game frequency, are also incorporated. 

Feature engineering involves transforming 

these raw indicators through normalization, 

encoding, and interaction-term creation to 

enhance model interpretability and predictive 

power. Algorithms, including Random 

Forests, Gradient Boosting Machines, and 

Neural Networks, are trained and tuned 

through temporal validation, ensuring that 

predictive performance is tested against out-

of-sample future-season data. The framework 

ensures reproducibility and provides 
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managers with transparent insights for 

making informed personnel and strategic 

decisions. 

This study is significant for advancing data-
driven decision-making in sport 
management by applying machine 
learning to predict player potential and 
team performance. It integrates the 
Resource-Based View, Decision Support 
Systems, and Statistical Learning Theory to 
create a unified predictive framework that 
improves accuracy over traditional 
scouting. The research enhances talent 
identification, optimizes team 
composition, and reduces managerial risk 
while emphasizing that algorithms should 
complement, not replace, human expertise. 
By translating complex analytics into 
practical tools, the study provides sports 
organizations with a replicable, evidence-
based approach to achieving competitive 
advantage and strategic efficiency through 
predictive analytics. 
2.0 Methodology 

2.1 Data Collection and Sample 

Our analysis utilizes comprehensive data from 

ten consecutive NBA seasons (2012-13 

through 2021-22), encompassing 4,847 

individual player-seasons and 300 team-

seasons. 

Data were compiled from Basketball-

Reference.com, NBA.com’s Stats portal, 

NBA Draft Combine results, and Prosports 

Transactions. 

The sample includes all players who appeared 

in at least 20 games during a season. For talent 

identification models, we focused on players 

in their first three NBA seasons. Our outcome 

variable was whether a player became an 

”above-average contributor” by their fifth 

season, operationalized as achieving a Box 

Plus-Minus score above 0.0 and playing at 

least 1,000 minutes. For team performance 

forecasting, our outcome variable was regular 

season wins. We constructed team-level 

features by aggregating player statistics 

weighted by minutes played (Vinu´e et al., 

2015). 

2.2 Variable Construction and Feature 

Engineering 

We constructed 187 features across several 

categories. Traditional box score statistics 

formed the baseline: points, rebounds, assists, 

steals, blocks, turnovers, and shooting 

percentages. These were normalized per 36 

minutes and per 100 possessions to adjust for 

pace variations (Oliver, 2004). 

Advanced statistics provided a second 

category. We included plus-minus metrics, 

which estimate a player’s impact by 

comparing team performance when they are 

on versus off the court. Basic Plus-Minus uses 

box score statistics, while Regularized 

Adjusted PlusMinus employs ridge regression 

to isolate individual contributions (Sill, 2010). 

We also incorporated player tracking metrics: 

average speed, distance traveled per game, 

touches per possession, and spatial occupancy 

patterns. 

Physical measurements comprised a third 

category. We included anthropometric data 

and derived measures like wingspan-to-height 

ratio (Burgess et al., 2007). For team-level 

predictions, we aggregated these features and 

constructed team-level metrics: average age, 

experience distribution, star concentration, 

and depth. 

A fourth category involved contextual 

variables: strength of schedule, usage rate 

distribution, and temporal features like days 

of rest and cumulative fatigue proxies (Jones 

et al., 2017). Injury history received special 

attention. Rather than simply counting games 

missed, we classified injuries by severity and 

type. 

For missing data, we used temporal 

imputation for systematically missing features 

and multiple imputation by chained equations 

for randomly missing values (van Buuren & 

Groothuis-Oudshoorn, 2011). Table 1 
Summarizes the key variables and descriptive 

statistics. 

2.3 Machine Learning Models and 

Algorithms 
 

Five machine learning models were used, 

namely: logistic regression (baseline), 

random forests, gradient boosting machines 

(XGBoost), support the device with radial 

basis function kernels, and neural networks. 
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Our control was logistic regression where we 

used a generalized linear model with L2 

regularization (Hosmer et al., 2013). Random 

forests are decision trees that are extended 

using bootstrap aggregating which involves 

growing many trees on random sizes of 

observations and features (Breiman, 2001). 

We had planted 500 trees whose max depth 

was 15 levels. 
 

 

Table 1: Descriptive Statistics of Key Variables 
 

Variable Mean SD Min Max 

Player Efficiency Rating (PER) 13.54 4.82 -5.20 31.70 

Box Plus-Minus (BPM) 0.08 2.41 -8.90 12.30 

Usage Rate (%) 19.65 5.23 8.10 38.70 

True Shooting (%) 53.21 5.67 32.40 71.80 

Defensive Rating 109.42 4.35 95.60 124.30 

Minutes per Game 22.17 9.83 5.20 38.90 

Career Games Played 248.73 215.42 20 1,074 

Team Wins (season) 41.08 12.31 15 67 

XGBoost constructs trees at a time, and the 

tree tries to amend the mistakes committed by 

the old trees (Chen & Guestrin, 2016). Our 

learning rate was 0.05 and we stopped early 

on the basis of the results of the validation set. 

The support vector machines reduce the 

feature space to permit linear division in the 

higher-dimensional space (Cortes & Vapnik, 

1995). The most flexible approximators of 

functions were the neural networks consisting 

of two hidden layers of 128 and 64 neurons, 

i.e., multilayer perceptrons. Our activation 

functions were ReLU, dropout regularization, 

and Adam optimization (Kingma & Ba, 

2015). 
 

Model Training, Model validation and 

Model Evaluation 
 

Temporal cross-validation were used to avoid 

data leakage as our validation strategy. The 

models were trained on previous seasons and 

tested on later seasons using a rolling window 

method: given a target season 2016-17-2021-

22, we trained our models on all the prior 

seasons and tested on the target season. 

On top of this, we divide training data of every 

fold into two subsets, one being model fitting 

(80%), and the other one being 

hyperparameter validation (20%). 

Performance was measured in various 

measures. To determine classification tasks 

we calculated accuracy, precision, recall, F1 

score, and AUC-ROC. In regression 

exercises, we have calculated RMSE, MAE 

and R2. 

Permutation-based models of tree models 

were used in the analysis of feature 

importance (Breiman, 2001). 
 

3.0 Results and Discussion 

3.1 Talent Identification Model 

Performance 
 

Our talent identification models were 

significantly more accurate than our 

traditional baseline methods with XGBoost 

being successful in classifying 87.3% of draft-

eligible players. Table 2 gives in-depth 

performance indicators. Each machine 

learning strategy was better than logistic 

regression (71.2% accuracy). Random forests 

showed a significant increase of almost 10 

percentage points over this baseline (80.4%), 

and gradient boosting advanced the accuracy 

up to 87.3 percent. In neural networks, the 

level of accuracy was 84.1 percent. 

These findings have some practical 

implications. The increase in accuracy of 68.5 

to 87.3 percent corresponds to an addition of 

about four more contributors to each draft of 

20 prospects that have multi-million dollar 

contracts. The scores of the AUC-ROC show 

that models are highly discriminating. An 
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AUC of The value of XGBoost of 0.924 

implies that given two (future) contributors 

and two (future) non-contributors and 

selecting one of them randomly, then the 

model would give higher probability to the 

actual contributor in 92.4% cases. XGBoost 

demonstrated a high level of precision (85.6) 

and recall (86.4), which means rather equal  

results. False positives cause wastage of roster 

slots, whereas false negatives depict 

opportunity costs. The best balance is 

determined by the context of the organization: 

teams with low roster flexibility need to be 

more precise in their work, teams with less 

developed infrastructure can afford lower 

precision and higher recall. 
 

Table 2: Performance Metrics for Talent Identification Models 

 

Algorithm Accuracy Precision Recall F1 Score AUC-ROC 

Logistic Regression 0.712 0.689 0.701 0.695 0.773 

Random Forest 0.804 0.791 0.798 0.794 0.867 

XGBoost 0.873 0.856 0.864 0.860 0.924 

Support Vector Machine 0.782 0.768 0.774 0.771 0.841 

Neural Network 0.841 0.823 0.831 0.827 0.891 

Traditional Scouting 0.685 0.672 0.694 0.683 0.741 

Fig. 2 shows the distribution of prediction 

probabilities that our XGBoost model made. 

The distributions exhibit significant but 

incomplete separation, successful players are 

concentrated at large predicted probabilities 

but unsuccessful players are concentrated on 

low probabilities and there is much overlap in 

the intermediate ranges. This is indicative of 

irreducible uncertainty: despite detailed data, 

the individual patterns of development are 

necessarily fluctuating with the injuries, 

motivation changes, and changes in coaching. 

 

 
Fig. 2: Distribution of Prediction Probabilities for Future Success. 

The histogram displays the XGBoost-based predictions of the probabilities of the players, 

who become the contributors (blue) and the ones who do not (red). Significant separation 

with boundaries on it points to predictive power and irreducible uncertainty 
 

The importance of features demonstrated the 

most significant attributes of players that 

predict future success. The top 20 features 

sorted by permutation importance are shown 

in Fig. 3. Contrary to the common knowledge 

which places a high value on raw scoring 

skills, three of the five most important 

predictors are all of the defensive influence:  
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Defensive Box Plus-Minus, Defensive 

Rating, and Steal Percentage. This is in 

tandem with the new trends that defensive 

versatility is now more valuable in the 

contemporary basketball game (Kubatko et 

al., 2007). True Shooting Percentage was 

positioning in the fourth place and traditional 

volume statistics were significantly lower. 

 

 
Fig. 3: XGBoost Model Importance of Features Ranking. Bars represent the scores of 

permutation importance scores- the reduction in model accuracy when each feature is 

randomly shuffled. The best rankings are full of defensive metrics and efficiency 

measures, whereas traditional volume statistics are found lower. 

There were interesting patterns in physical 

measurements. Wingspan to height ratio was 

7 th that assists in basketball folklore that 

length is more important than height. 

Nevertheless, bare athletic tests such as 

vertical jump ranked lower implying that the 

application of athleticism by players is more 

important than hypothetical ceiling. This is 

supported by the fact that they rank high in 

terms of player tracking measures such as 

average defensive speed. 

The significance of variables related to injury 

history was perhaps the most impressive with 

the number of games missed during the years 

of the first season of the game production 

being 6th on average. This implies that prior 

problems of early injuries are better 

predictors of subsequent availability 

problems than usually considered. This can be 

rationally done in organizations by offering 

higher discounts to players who are injured in 

the past, especially towards line positions 

such as the center where size-related 

structural stress is accumulated. Such 

physical and mental reasons are linked to 

larger athlete wellbeing issues which are more 

likely to affect career paths (Obamuwagun, 

2023). 
 

3.2 Team Performance Forecasting 

Results 
 

Moving to the team performance forecasting, 

our models showed high predictive accuracy, 

where XGBoost had an RMSE of 4.12 wins 

per season having R2 of 0.824. Table 3 

provides an overview of the performance of 

algorithms. These findings suggest that we 

can describe about 82 percent of variation in 

the number of team wins using our models 

and 18 percent of that variation is due to 

changes in other factors not contained in our 

model. 

The 4.12-win mean squared error is that 

predictions are in one to four wins of the true 

outcomes. In the present day NBA, playoff 

teams and lottery teams are typically 

differentiated by an 8-win difference. Our 

model did better than Vegas over/under 
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betting lines (RMSE of 5.82 wins), implying 

that there is a predictive signal in our machine 

learning model that the entire basketball 

community does not know. 

Fig. 4 is a plot of predicted and actual win 

totals. The close distribution around the  

diagonal line shows good performance, but 

there are certain systematic patterns. The 

model is somewhat overconfident at the 

extremes, which is representative of real 

dynamics, in which injuries and motivation 

factors cause harm to good teams and benefit 

bad teams on draft lottery chances. 

Table 3: Team Performance Forecasting Accuracy by Model 
 

Algorithm RMSE MAE R2 MAPE (%) 

Logistic Regression 6.84 5.42 0.693 13.2 

Random Forest 5.21 4.18 0.778 10.1 

XGBoost 4.12 3.34 0.824 8.1 

Support Vector Machine 5.67 4.52 0.751 11.0 

Neural Network 4.89 3.91 0.789 9.5 

Vegas Over/Under 5.82 4.67 0.762 11.4 

Analysis of prediction errors shows educative  

failure mechanisms. The 2018-19 Lakers was 

our biggest under prediction (43 wins 

predicted against 37 achieved), which 

happened because of LeBron James having a 

groin injury and trades in the middle of the 

season. Our biggest over prediction (predicted 

58, actual 51) was made in 2020-21, due to the 

injury of Chris Paul and the measures 

implemented by COVID-19. 

 

 
Fig. 4: Predicted versus Actual Win Totals. Each point represents one team-season, with 

colors indicating different seasons. The diagonal line represents perfect prediction. Tight 

clustering around this line demonstrates strong model performance, though slight 

systematic errors appear at the extremes. 
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These failure cases highlight both utility and 

limitations. The models successfully forecast 

outcomes for 85% of teams where no 

extraordinary circumstances intervene, but 

struggle with tail events like major injuries or 

unprecedented external shocks. This suggests 

models work best for operational planning 

while human judgment remains critical for 

scenarios involving unique circumstances. 

Feature importance for team performance 

forecasting differed from individual talent 

identification. Table 4 shows that roster talent 

concentration ranked first. Teams with 

balanced rosters where multiple players 

contribute tend to perform better than those 

heavily dependent on a single superstar. 

Aggregate defensive metrics ranked second 

and third. 
 

Table 4: Top Predictive Features for Team Performance Forecasting 
 

Feature Importance Score Interpretation 

Talent Concentration (Gini) 0.184 Distribution of WAR across roster 

Team Defensive Rating 0.162 Points allowed per 100 possessions 

Defensive Consistency (SD) 0.147 Game-to-game defensive variance 

Aggregate RAPM 0.131 Team-level adjusted plus-minus 

Bench Production 0.108 Scoring per minute from reserves 

Previous Season Wins 0.093 Team performance momentum 

Injury Risk Score 0.087 Projected games missed 

Average Player Age 0.051 Roster age composition 

Pace Factor 0.037 Possessions per game 

Injury risk scores ranked 7th, quantifying that 

durable players provide more value than 

marginally more talented but injury-prone 

alternatives. The weak importance of pace 

factor contradicts some popular analytics 

narratives, suggesting that execution quality 

matters far more than stylistic tempo choices. 

Fig. 5 presents ROC curves comparing our 

machine learning models for predicting 

playoff qualification. Our XGBoost model 

achieved an AUC of 0.942. Random forests 

and neural networks perform nearly as well 

(AUC of 0.921 and 0.908), while logistic 

regression lags at 0.847. 

These findings have a practical strategic 

planning meaning. A team with a predicted 

likelihood of 45 of making the playoffs would  

have a completely different decision 

environment when compared to one with 85 

predictions. Our models give such probability 

estimates very well to make such decisions. 
 

3.3 Temporal validation and model 

Stability 
 

A very important issue is that of a time 

stability: to what extent do trends based on 

historical data persist as the game changes? 

Fig. 6 is a plot of model accuracy versus time 

which attests to encouraging though not ideal 

temporal stability. Accuracy in talent 

identification reduces slightly (89.2 per cent 

in 201617 to 84.1 per cent in 202122) 

indicating that there is some deterioration as 

training data becomes older. 

Team performance forecasting shows greater 

stability, with R2 ranging from 0.837 in early 

years to 0.809 in later years. This makes 

sense: team-level patterns driven by talent 

aggregation likely change more slowly than 

individual development patterns. The relative 

stability suggests our models capture 

fundamental aspects of basketball 

performance rather than merely fitting 

superficial patterns. 

3.6 Theoretical and Practical 

Implications 
 

These findings carry both theoretical 

implications for sport management 

scholarship and practical implications for 

organizations. From a theoretical perspective, 

our results validate the resource-based view’s 

emphasis on systematic talent identification 



Communication in Physical Sciences, 2025, 12(7):2032-2048 2043 
 

 

as a source of competitive advantage. Teams 

that adopt sophisticated analytics capabilities 

can identify talent more reliably than 

competitors. However, the advantage appears  

bounded: even our best models achieve only 

87% accuracy, leaving considerable room for 

scouting expertise to influence outcomes. 

 

 

 

 
Fig. 5: ROC Curves for Playoff Qualification Prediction. Each curve shows the tradeoff 

between true positive and false positive rates at different classification thresholds. 

XGBoost achieves the highest AUC (0.942), substantially outperforming baseline methods 
 

  

 
Fig. 6: Accuracy of model in time of Talent identification (blue) and Team performance 

forecasting (orange). The x-axis indicates the target season of prediction and the y an 

accuracy of models. Small change in the long run implies that there is a degradation of 

the model over time along with performance that is good all the way through. 
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The difference between the model predictions 

and the outcomes casts some light on the 

constraints of data driven decision making. 

Basketball continues to be a social scene that 

success depends on motivation, leadership, 

and interplay of people, which are often 

impossible to be quantified. Our models are 

good at physical capability factors that are 

hard, but they are poor at soft factors such as 

coachability and cultural fit. This indicates 

that analytics is better suited to the section of 

work that deals with objective criteria of 

candidates; human judgment will narrow this 

down to those who seem to fit within the 

organization. 

Practically, these findings provide a number 

of practical insights. First, the surpassing of 

the ensemble techniques imply that 

investments in data science talent have real 

benefits. The organizations do not have to 

come up with completely new solutions 

having existing algorithms with meticulous 

feature engineering provide results 

significantly better than the traditional 

methods. Second, defensive metrics and 

efficiency statistics mean that these variables 

should be prioritized more in the teams and 

the variables might help reveal all the 

inefficiencies in the markets. 

Third, the results of the injury history indicate 

that durability should be given more priority 

during the assessment of the players. There 

may be rational arrangements of the contracts 

of teams where the incentives are more 

incentive-driven by the games. Fourthly, the 

findings of the team performance forecast 

show that the roster balance is more 

significant than mere talent accumulation. 

Instead of chasing superstars at all costs, the 

teams can learn to get more out of creating 

rosters of above-average players. 

There are non-trivial issues in the 

organizational application of such insights. 

Money may not solve all problems; by merely 

engaging data scientists, companies will not 

be able to make better decisions, and may 

even need to reorganize their work to balance 

between algorithmic knowledge and 

conventional experience. The rebuilding by 

Philadelphia 76ers is a vivid example of the 

opportunities and risks of analytics 

management (Bontemps, 2021). 

In addition, it needs management of culture 

change to be in place. Intuitive judgment 

scouts might be resistant to the 

recommendations of algorithms in that they 

make their careers out of conducting research 

with intuition. Intelligent organizations make 

analytics appear to serve as decision support 

and not decision automation. It seems 

especially useful to establish forums where 

analysts and scouts will speak about what 

they are predicting. 
 

4.0  Conclusion 

Gradient boosting algorithms, in particular, 

machine learning techniques, significantly 

enhance talent discovery and prediction of 

team performance in professional basketball 

than conventional methods. Our XGBoost 

models were also able to predict which young 

players would become above-average 

contributors with 87.3% accuracy and also 

characterized 82.4% of the variance in win 

totals on teams. Analysis of importance of 

features indicated defensive measures, 

efficiency measures, and injury record are 

stronger predictors than the conventional 

volume measures, indicating market 

inefficiencies that can be used by smart 

organisations. Nevertheless, the difference 

between theoretical forecasts and reality 

indicates the weakness of solely algorithmic 

models in which non-quantifiable aspects 

such as leadership and motivation are difficult 

to measure. The effective application needs to 

think of machine learning as the support of a 

decision-making process and not the 

substitute of human knowledge. 

The results have both practical implications to 

player evaluation models and resource 

allocation choices as well as methodological 

commentary of the temporality validation and 

the algorithm choice that contribute to the 

general sports analytics literature. As 

professional sports are becoming more 

competitive and analytical, companies that 

carefully apply machine learning-based 

resources and ensure proper humility when it 

comes to their capacities will gain significant 
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benefits in the current battle of talent and 

titles. 
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