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Abstract : The exponential growth of cyber
threats has necessitated a paradigm shift from
traditional signature-based security
mechanisms  to  sophisticated  artificial
intelligence-driven approaches capable of
adapting to evolving attack vectors. This study
presents a comprehensive evaluation of
contemporary Al and data science models
across four critical cybersecurity domains:
intrusion detection systems, threat analysis,
intelligent automation, and adaptive decision-
making  frameworks. We  systematically
evaluate  multiple  machine  learning
architectures including deep neural networks,
ensemble methods, and reinforcement learning
algorithms using benchmark datasets NSL-
KDD, CICIDS2017, and UNSW-NBI15. Our
empirical analysis reveals that hybrid models
combining convolutional neural networks with
long short-term memory architectures achieve
superior performance in sequential attack
pattern recognition, attaining accuracy rates
exceeding  98.3%  while  maintaining
acceptable false positive rates below 1.2%.
Furthermore,  transformer-based — models
demonstrate  remarkable capabilities in
natural language processing for threat
intelligence extraction, while reinforcement
learning agents show promising adaptability in
dynamic  response  scenarios  despite
computational overhead constraints. The
comparative framework developed herein
provides practitioners with evidence-based
guidance for model selection tailored to
specific organizational contexts, security
requirements, and computational resources.
This work bridges the gap between theoretical
Al research and practical cybersecurity
implementation, offering actionable insights
for security operations centers facing real-
world deployment challenges in increasingly
hostile digital environments.

745

Keywords: Artificial Intelligence,
Cybersecurity, Intrusion Detection Systems,
Threat Analysis, Machine Learning, Network
Security, Adaptive Decision-Making

Olaleye Ibiyeye

Department of Computer and Information
Science, Western Illinois University, Macomb,
Illinois, USA

Email: Ifedlv@gmail.com

Orecid id: 0009-0002-2448-6079

Joy Nnenna Okolo

Department of Computer and Information
Science, Western Illinois University, Macomb,
Illinois, USA

Email: okolojoy2704@gmail.com

Orcid id: 0009-0002-0283-4052

Samuel Adetayo Adeniji

Department of Computer and Information
Science, Western Illinois University, Macomb,
Illinois, USA

Email: Sa-adeniji@wiu.edu

Orecid id: 0009-0006-9103-7934

1.0 Introduction

Artificial Intelligence (AI) and Machine
Learning (ML) are transforming
interdisciplinary fields by creating advanced
systems  that enable accurate data
interpretation, predictive analytics, and
autonomous operations (Ademilua, 2021). The
increasing integration of these technologies
supports intelligent architectures that boost
analytical accuracy and operational efficiency
(Ademilua & Areghan, 2022). Through
intelligent ~ automation and data-driven
reasoning, they offer innovative solutions to
modern challenges (Aboagye et al., 2022).
Their applications enhance data modeling,
decision-making, and autonomous navigation.
Furthermore, emerging methods advance
computational intelligence and predictive
performance, Ultimately, Al and ML reshape
automation, analytical accuracy, and the design
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of intelligent systems (Omefe et al., 2021;
Lawal et al., 2021).

The contemporary digital landscape presents
security professionals with an unprecedented
challenge: defending against adversaries who
leverage automation, artificial intelligence, and
sophisticated tactics that evolve faster than
traditional defense mechanisms can adapt.
Consider the 2017 Wanna Cry ransomware
attack, which compromised over 200,000
computers across 150 countries within mere
hours, or the Solar Winds supply chain breach
discovered in 2020 that went undetected for
months’ despite affecting numerous Fortune
500 companies and government agencies
(Fruhlinger, 2020). These incidents underscore
a fundamental reality conventional signature-
based detection systems and manual analysis
workflows cannot keep pace with modern

cyber threats that exhibit polymorphic
behavior, = employ advanced evasion
techniques, and exploit zero-day
vulnerabilities  before patches become
available.

The  cybersecurity industry  generates

staggering volumes of security data daily. A
typical enterprise security operations center
processes millions of events per day, yet
research suggests that security analysts can
thoroughly investigate only a small fraction of
generated alerts due to resource constraints and
alert fatigue (Bhatt et al., 2014). This deluge of
information paradoxically creates blind spots
where sophisticated attacks hide in plain sight,
camouflaged within legitimate network traffic.
Traditional rule-based systems, while effective
against known threats, struggle with the
detection of novel attack patterns and generate
false positive rates that overwhelm human
analysts, leading to what practitioners
colloquially term “alert fatigue” a condition
where genuine threats become lost in noise.

Artificial intelligence and machine learning
have emerged as promising solutions to these
challenges, offering capabilities that transcend
the limitations of static rule systems. Unlike
conventional approaches that rely on

predefined signatures, Al-driven models can
learn complex patterns from historical data,
identify

subtle anomalies indicative of
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malicious activity, and adapt their detection
strategies as threat landscapes evolve. Deep
learning architectures, particularly
convolutional neural networks and recurrent
neural  networks, have  demonstrated
remarkable success in computer vision and
natural language processing domains,
prompting researchers to explore their
applicability to cybersecurity problems
(Goodfellow et al., 2016). The fundamental
question, however, remains: which Al
approaches work best for specific security
challenges, and what trade-offs do
practitioners face when deploying these
systems in production environments?

Despite growing academic interest in Al-
driven cybersecurity, significant gaps persist
between research and practice. Many
published studies evaluate models on outdated
datasets or synthetic scenarios that poorly
reflect contemporary attack sophistication.
Furthermore, researchers often optimize
exclusively for accuracy metrics while
overlooking operational concerns such as
inference latency, computational resource
requirements, model interpretability, and
resilience against adversarial manipulation
factors that critically determine real-world
viability (Apruzzese et al., 2018). Security
operations centers need systems that not only
detect threats accurately but also explain their
reasoning to human analysts, operate within
infrastructure  constraints, and maintain
performance when adversaries deliberately
attempt to evade detection.

The intersection of Al and cybersecurity spans
intrusion  detection, threat intelligence,
intelligent automation, and adaptive decision-
making. These domains enhance monitoring,
analysis, and response while reducing manual
workload. Each offers unique Al applications,
yet comprehensive studies integrating all four
dimensions remain limited within current
cybersecurity research literature.

This study addresses these gaps through a
rigorous comparative evaluation of state-of
the-art AI models across intrusion detection,
threat analysis, intelligent automation, and
adaptive decision-making. Our investigation
examines traditional machine learning
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algorithms alongside contemporary deep
learning architectures and reinforcement
learning approaches, assessing performance
not only through accuracy metrics but also
considering operational feasibility,
computational efficiency, interpretability, and
robustness. By evaluating models across
multiple benchmark datasets that reflect
diverse attack scenarios and network
environments, we provide insights into
generalization  capabilities and domain-
specific performance characteristics.

The primary objectives of this research are
threefold. First, we aim to establish empirical
evidence regarding which Al architectures
demonstrate superior performance for specific
cybersecurity tasks, moving beyond theoretical
claims to quantifiable results. Second, we seek
to illuminate the practical trade-offs inherent in
different modeling approaches the balance
between accuracy and speed, complexity and
interpretability, specialization and
generalization. Third, we endeavor to provide
actionable guidance for security practitioners
who must navigate the proliferation of Al
solutions and select approaches appropriate for
their organizational contexts, threat models,
and resource constraints. Rather than
advocating for a single best” solution, we
recognize that optimal choices depend on
specific  requirements, constraints, and
priorities that vary across organizations.

2.0 Theoretical Framework

The application of artificial intelligence to
cybersecurity problems rests upon
fundamental principles from machine learning
theory, network security, and decision science.
Understanding these foundations illuminates
why certain Al approaches succeed or fail in
security contexts and guides the development
of more effective defensive systems. This
section synthesizes relevant literature across
multiple domains to establish the conceptual
framework undergirding our empirical
investigation.

2.1 Machine Learning Paradigms in
Cybersecurity

Machine learning encompasses three primary
paradigms

supervised, unsupervised, and
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reinforcement learning each offering distinct
advantages for security applications (Bishop,
2006). Supervised learning algorithms train on
labeled datasets where each example includes
both input features and corresponding output
labels. For intrusion detection, this translates to
training data comprising network traffic
samples labeled as either benign or malicious,
potentially with fine-grained attack type
classifications. Support vector machines,
decision trees, random forests, and neural
networks represent common supervised
approaches that  have demonstrated
effectiveness in binary and multi-class
classification tasks (Buczak and Guven, 2016).
The supervised paradigm’s primary
limitation stems from its dependence on
labeled training data, which proves expensive
to obtain and rapidly becomes obsolete as
attack techniques evolve. Real-world network
environments generate predominantly benign
traffic, creating severe class imbalance where
malicious samples constitute less than 1% of
observations a condition that causes standard
learning algorithms to achieve high accuracy
simply by predicting the majority class while
failing to detect actual attacks (Fern'andez et
al.,  2018).  Sophisticated  resampling
techniques, cost-sensitive learning, and
ensemble methods help address imbalance, yet
the fundamental challenge of obtaining
representative labeled samples of emerging
threats persists.
Unsupervised learning addresses the labeled
data bottleneck by discovering patterns
and anomalies without requiring explicit
labels. Clustering algorithms partition network
traffic into groups based on similarity, enabling
identification of outliers that deviate from
normal behavior patterns. Autoencoders, a
class of neural networks trained to reconstruct
their inputs, learn compressed representations
of normal network traffic and flag instances
that reconstruct poorly as potential anomalies
(Hinton & Salakhutdinov, 2006). These
approaches excel at detecting previously
unseen attacks that differ significantly from
normal traffic patterns, though they struggle
with subtle intrusions that closely mimic
legitimate behavior.
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Reinforcement learning represents a third
paradigm where agents learn optimal policies
through trial-and-error interaction with
environments, receiving rewards for beneficial
actions and penalties for detrimental ones. In
cybersecurity contexts, reinforcement learning
agents can learn dynamic defense strategies
that adapt to evolving threats, potentially
outmaneuvering adversaries in game-theoretic
scenarios (Nguyen & Reddi, 2019). However,
the computational expense of exploring vast
action spaces and the challenge of defining
appropriate reward functions that capture
security objectives without encouraging
unintended behaviors have limited practical
deployment.

2.2 Deep Learning Architectures for Security
Deep neural networks have revolutionized
machine learning by automatically extracting

hierarchical feature representations from raw
data, eliminating manual feature engineering

that previously constituted a primary
bottleneck in model development.
Convolutional neural networks, originally

developed for image recognition, excel at
detecting local spatial patterns through
convolution operations that slide learned filters
across input data (LeCun et al., 2015). Applied
to network traffic,c CNNs can identify
characteristic byte sequences or packet header
patterns indicative of specific attack types.
Their parameter sharing and local connectivity
properties make them computationally
efficient and somewhat invariant to the
position of malicious patterns within network
flows.

Recurrent neural networks and their
variants long short-term memory networks and
gated recurrent units process sequential data by
maintaining internal state that captures
temporal dependencies. Network traffic
inherently exhibits temporal structure where
packet sequences follow predictable patterns
for legitimate applications but deviate during
attacks. LSTM architectures address the
vanishing gradient problem that plagued
earlier RNN designs, enabling learning of
long-range dependencies spanning hundreds of
time steps (Hochreiter & Schmidhuber, 1997).
This capability proves particularly valuable for
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detecting multi-stage attacks where individual
packets appear benign but their sequence
reveals malicious intent.

Recent years have witnessed the
emergence of transformer architectures that
employ self-attention mechanisms to model
relationships between all positions in a
sequence simultaneously, overcoming the
sequential processing bottleneck of RNNs
(Vaswani et al., 2017). While transformers
have achieved remarkable success in natural
language processing, their application to
cybersecurity remains relatively nascent.
These architectures show promise for
processing unstructured threat intelligence
reports, correlating security events across
distributed systems, and identifying complex
attack patterns that manifest across extended
time horizons.

2.3 Intrusion Detection Systems: Evolution
and Taxonomy

Intrusion detection systems constitute a
cornerstone of network defense, continuously
monitoring traffic and system activities to
identify potential security violations. Early
IDS implementations employed signature-
based detection, comparing observed
behaviors against databases of known attack
patterns an approach analogous to antivirus
software (Scarfone & Mell, 2007). While
effective  against documented threats,
signature-based systems inherently fail to
detect zero-day attacks and require constant
manual updates as new threats emerge. The
Snort intrusion detection system exemplifies
this approach, utilizing a rule-based engine that
matches packet contents and headers against
predefined patterns.

Anomaly-based detection systems model
normal behavior and flag deviations as
potential intrusions, theoretically enabling
detection of novel attacks without prior
knowledge of specific signatures. Statistical
approaches model network features using
probability distributions and identify outliers
through hypothesis testing. Machine learning
methods learn normal behavior patterns from
training data and classify observations based
on similarity to learned models (Chandola et
al., 2009). The challenge lies in defining
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“normal” behavior for complex, dynamic
network environments where legitimate
activities exhibit significant variability and
where attacks may gradually shift baselines
through slow poisoning.

Contemporary research increasingly favors
hybrid approaches that combine
signaturebased and anomaly-based detection,
leveraging the strengths of both paradigms
while mitigating individual ~weaknesses.
Ensemble methods that aggregate predictions
from multiple diverse models often outperform
individual classifiers by reducing variance and
capturing complementary patterns (Krawczyk
et al., 2017). Deep learning architectures with
multiple processing layers can simultaneously
learn both explicit attack signatures at lower
layers and higher-level behavioral anomalies at
upper layers, effectively implementing hybrid
detection within a unified framework.

2.4 Threat Intelligence and Analysis

Cyber threat intelligence encompasses the
collection, processing, and analysis of
information regarding threat actors, their
tactics, techniques, procedures, and indicators
of compromise. Threat intelligence platforms
aggregate data from numerous sources
including security vendor feeds, open-source
intelligence, dark web monitoring, and
information sharing communities (Qamar et
al., 2017). The challenge lies in transforming
this deluge of unstructured and semi-structured
data into actionable insights that inform
defensive strategies and incident response.
Natural language processing techniques
enable automated extraction of entities,
relationships, and indicators from threat
reports, security bulletins, and malware
analyses. Named entity recognition identifies
threat actors, malware families, vulnerabilities,
and affected products within text. Relation
extraction determines associations between
entities, constructing knowledge graphs that
map the threat landscape. Machine learning
classifiers categorize threat reports by severity,
relevance, and recommended actions, helping
analysts prioritize investigation efforts (Liao et
al., 2016). However, the technical jargon,
evolving terminology, and deliberately
obfuscated language used in underground
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forums pose significant challenges for NLP
systems trained on general-purpose corpora.
Predictive threat analytics aim to forecast
future attacks by identifying patterns in
historical incidents and correlating with
external indicators such as geopolitical events,
vulnerability  disclosures, or observed
reconnaissance activities. Time series models
and sequence prediction algorithms can detect
trends in attack frequencies, methods, or target
selection. Graph neural networks analyze the
topology of attack propagation across
networks, potentially enabling early detection
of coordinated campaigns (Zhou et al., 2020).
Yet the fundamental unpredictability of human
adversaries and the potential for black swan
events limit the reliability of predictions,
requiring analysts to maintain skepticism and
account for uncertainty.

2.5  Intelligent Automation and
Orchestration

Security operations centers face the dual
challenge of managing an overwhelming
volume of alerts while addressing a global
shortage of skilled cybersecurity professionals.
Security  orchestration, automation, and
response platforms emerged to address these
pressures by automating routine tasks,
integrating disparate security tools, and
orchestrating  coordinated responses to
detected threats (Zimmerman, 2014). SOAR
systems employ playbooks  structured
workflows that define sequences of automated
actions triggered by specific alert types or
conditions to standardize and accelerate
incident response.

Machine learning enhances automation by
enabling systems to learn from analyst
decisions, gradually expanding the range of
incidents that can be handled without human
intervention. Supervised learning models
trained on historical incident data can classify
alerts by severity, route them to appropriate
analysts, and recommend initial response
actions (Oprea et al., 2015). Reinforcement
learning agents could potentially learn optimal
response strategies through simulated or real-
world experience, adapting to new attack types
and environmental conditions. However, the
high stakes of security operations demand
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extreme reliability and explainability, creating
tension with the black box nature of many
machine learning models.

The integration of Al-driven automation with
human expertise raises important questions
about trust, accountability, and the appropriate
level of autonomy for security systems. Fully
autonomous response systems risk causing
operational disruptions through false positives
or being manipulated by adversaries who craft
inputs designed to trigger specific automated
reactions. Human-in-the-loop designs that
require analyst approval for critical actions
provide safety guarantees but sacrifice speed.
Finding the optimal balance requires careful
analysis of specific use cases, potential failure
modes, and organizational risk tolerance.

2.6 Adaptive Decision-Making
Reinforcement Learning

and

Cyber defense is a sequential decision-making
process where defenders act against adaptive
adversaries. Game theory models these
interactions as repeated games, identifying
stable Nash equilibria though complex security
games are computationally difficult to solve
(Liang & Xiao, 2013). Reinforcement learning
(RL) provides a practical alternative, enabling
agents to learn optimal defense policies
through experience (Sutton & Barto, 2018).
Deep RL extends this to high-dimensional data
like network traffic. Applications include
adaptive intrusion detection and firewall
optimization. However, RL faces challenges
such as large state spaces, simulation limits,
and vulnerability to adversarial exploitation,
requiring robust design and careful reward
modeling. This integrated perspective
distinguishes our work from prior studies that
examine individual domains in

isolation.

3.0 Methodology

3.1  Research Design and Approach

Our investigation employs a mixed-method
approach combining systematic literature
review with extensive empirical evaluation.
We first conducted a comprehensive review of
peer-reviewed publications from 2015 to 2021
to identify state-of-the-art Al techniques and
establish baseline performance expectations.
This review process involved searching major
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academic databases including IEEE Xplore,
ACM Digital Library, and Google Scholar
using keywords related to machine learning,
deep learning, intrusion detection, and
cybersecurity. From an initial pool of 347
papers, we selected 89 highly relevant studies
that provided quantitative results, detailed
methodological descriptions, and insights into
practical deployment challenges.

The empirical component implements and
evaluates multiple AI models across
standardized benchmark datasets, enabling
direct performance comparisons under
controlled conditions. Rather than proposing
novel architectures, our focus lies in rigorous
comparative analysis of established techniques
to determine which approaches demonstrate
superior performance for specific tasks. This
comparative framework addresses a critical
gap in literature where studies typically
evaluate one or two models against baselines
rather than conducting comprehensive multi-
model assessments.

3.2 Datasets and Data Preprocessing

We selected three widely-used benchmark
datasets that collectively represent diverse
network environments, attack types, and traffic
characteristics. The NSL-KDD  dataset
represents an improved version of the original
KDD Cup 1999 dataset, removing redundant
records that caused learning algorithms to be
biased toward frequent instances (Tavallaee et
al., 2009). NSL-KDD contains approximately
125,000 training samples and 22,000 test
samples across four attack categories: denial of
service, probe, remote-to-local, and user-to-
root attacks. While dated, this dataset enables
comparison with numerous prior studies and
provides a baseline for evaluating fundamental
classification capabilities.

The CICIDS2017 dataset addresses limitations
of older benchmarks by capturing
contemporary network traffic and attack
patterns using realistic infrastructure and
modern protocols (Sharafaldin et al., 2018).
Collected over five days, the dataset includes
benign background traffic alongside diverse
attacks including brute force, heartbleed,
botnet, DoS, DDoS, web attacks, and
infiltration. With over 2.8 million flows and 78
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features extracted using CICFlowMeter,
CICIDS2017 provides rich temporal and
statistical ~ characteristics ~ suitable  for
evaluating both traditional machine learning
and deep learning approaches.

The UNSW-NBI15 dataset offers another
contemporary benchmark created using IXIA

PerfectStorm tool to generate hybrid normal
and attack traffic (Moustafa and Slay, 2015).
This dataset contains nine attack families
including fuzzers, analysis, backdoors, DoS,
exploits, generic, reconnaissance, shellcode,
and worms. With 49 features spanning flow
statistics, protocol-specific attributes, and
connection properties, UNSW-NB15 enables
assessment of model generalization across
different feature spaces and attack taxonomies.
Data preprocessing followed established best
practices while maintaining consistency across
experiments. Missing values, which occurred
rarely in selected datasets, were imputed using
median  values for numeric features.
Categorical features such as protocol type and
service were encoded using one-hot encoding,
expanding the feature space but enabling
models to learn protocol-specific patterns.
Feature scaling employed standardization
(zero mean, unit variance) rather than
normalization to preserve information about
outliers potentially crucial for anomaly
detection. For deep learning models processing
raw network traffic, we created fixed-length
sequences by padding or truncating flows,
experimenting with sequence lengths from 10

to 100 packets to identify optimal
configurations.
Class imbalance presented a significant

challenge, particularly for minority attack
classes that constitute less than 1% of samples.
We addressed this through stratified sampling
to maintain class distributions during train-test
splits and explored multiple techniques
including random oversampling of minority
classes, synthetic minority oversampling
technique (SMOTE) that generates synthetic
examples along linear interpolations between
existing minority samples, and cost-sensitive
learning that assigns higher misclassification
penalties to minority classes (Chawla et al.,
2002). Comparing these approaches revealed
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that SMOTE generally yielded optimal balance
between minority class recall and overall
accuracy, though specific choices depended on
individual model architectures and attack
types.

Table 1 summarizes key characteristics of the
three benchmark datasets employed in our
evaluation. The table illustrates the diversity of
samples sizes, feature spaces, and attack
taxonomies, underscoring the importance of

multi-dataset evaluation to assess
generalization  capabilities  rather  than
overfitting to 1idiosyncrasies of specific
benchmarks.

3.3 Model Architectures and
Implementations

We implemented and evaluated twelve distinct
model architectures spanning traditional
machine learning, deep learning, and

reinforcement learning paradigms. Traditional
machine learning models included support
vector machines with radial basis function
kernels, random forests with 100 estimators,
and gradient boosting machines using
XGBoost. These models serve as baselines
representing mature, well-understood
techniques commonly deployed in production
environments.

Deep learning architectures comprised
convolutional neural networks with three
convolutional layers followed by max pooling
and dense classification layers; recurrent
neural networks using two-layer LSTM
networks with 128 hidden units per layer; and
hybrid CNN-LSTM architectures that apply
convolutional layers to extract local patterns
before feeding outputs to LSTM layers to
capture temporal dependencies. We also
implemented autoencoders for unsupervised
anomaly detection, consisting of encoder
networks that compress inputs to 32-
dimensional latent representations and decoder
networks that reconstruct original inputs, with
reconstruction error serving as an anomaly
score.

For threat intelligence tasks involving natural
language processing, we adapted pretrained
transformer  models  including  BERT
(Bidirectional Encoder Representations from
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Transformers), fine-tuning them on domain-
specific security corpora (Devlin et al., 2019).
The transformer architecture’s multi-headed
self-attention mechanism enables modeling
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complex relationships  between  threat
indicators mentioned at different positions
within reports.

Table 1: Characteristics of benchmark datasets used for model evaluation

Characteristic NSL-KDD CICIDS2017 UNSW-NBI15
Total samples 148,517 2,830,540 257,673
Training samples 125,973 2,264,432 175,341
Test samples 22,544 566,108 82,332
Number of features 41 78 49
Attack categories 4 7 9
Benign percentage 53.5% 80.3% 56.0%
Year created 2009 2017 2015
Traffic capture Simulated Realistic Hybrid

Reinforcement learning agents implemented
deep Q-networks that learn state-action value
functions using experience replay and target
networks to stabilize training (Mnih et al.,
2015). We designed simplified simulation
environments modeling firewall configuration
and incident response scenarios where agents
learn  policies  through  trial-and-error
interaction, receiving rewards for correctly
blocking attacks while minimizing false
positives. All models were implemented using
Python 3.8 with TensorFlow 2.4 and PyTorch
1.8 for deep learning architectures, and scikit-
learn 0.24 for traditional machine learning
algorithms. Training employed NVIDIA Tesla
V100 GPUs with 32GB memory, enabling
parallel evaluation of multiple configurations.
Hyperparameter optimization used 5-fold
cross-validation on training data with grid
search for smaller models and random search
for deep learning architectures with vast
hyperparameter spaces.

3.4  Evaluation Metrics and Statistical
Analysis
Performance evaluation required metrics

capturing multiple dimensions of model

quality beyond simple accuracy, which proves
misleading for imbalanced datasets where
predicting the majority class yields high
accuracy despite complete failure to detect
attacks.

We computed precision (positive predictive
value), recall (sensitivity), and F1-score
(harmonic mean of precision and recall) for
each attack class. The Fl-score provides a
balanced measure that requires both high
precision and high recall, penalizing models
that sacrifice one for the other.

For intrusion detection scenarios where
security analysts must investigate flagged
incidents, false positive rate assumes critical
importance. A model generating thousands of
false alarms daily renders itself operationally
useless regardless of detection accuracy, as
analysts cannot feasibly investigate such
volumes. We therefore report false positive
rates alongside true positive rates, plotting
receiver operating characteristic (ROC) curves
and computing area under the curve (AUC) to
assess performance across different threshold

settings.

Computational efficiency metrics include
training time, inference latency, memory
requirements, and throughput measured as
samples processed per second. These
operational characteristics determine whether
models can deploy in resource-constrained
environments or meet real-time processing
requirements. We measured inference latency
as wall-clock time for processing individual
samples, acknowledging that batch processing
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typically achieves higher throughput through
parallelization.

Statistical significance testing employed paired
t-tests comparing model performance across
ten repeated trials with different random
initializations. We report mean performance
and standard deviations to quantify variability.
Effect sizes using Cohen’s d complement p-
values, providing information about practical
significance beyond statistical significance.
For cross-dataset generalization experiments,
we applied McNemar’s test to assess whether
error patterns differed significantly between
models.

3.5 Experimental Procedures

Training procedures followed standard
practices while maintaining consistency to
ensure fair comparisons. We allocated 80% of
data for training and 20% for testing, using
stratified sampling to preserve class
distributions. Within training data, 20% was
reserved  for  validation to  guide
hyperparameter tuning and early stopping.
Deep learning models trained for up to 100
epochs with early stopping triggered if
validation loss failed to improve for 10
consecutive epochs, preventing overfitting
while allowing sufficient training time.

Learning rate schedules employed initial
values of 0.001 with exponential decay
reducing the rate by 10% every 20 epochs. This
schedule allows rapid initial progress while
enabling fine-grained optimization in later
epochs. Regularization techniques including
L2 weight decay (coefficient 0.0001) and
dropout (probability 0.3) were applied to deep

learning architectures to improve
generalization.
For reinforcement learning experiments,

agents trained in simulated environments for
100,000 episodes. We employed epsilon-
greedy exploration with epsilon decaying from
1.0 to 0.1 over the first 50,000 episodes,
balancing exploration and exploitation.
Experience replay buffers stored the most
recent 10,000 transitions, with mini-batches of
32 samples used for each learning update.
Target networks updated every 1,000 steps to
provide stable learning targets.
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Cross-dataset evaluation assessed
generalization by training models on one
dataset and evaluating on others without fine-
tuning. This stringent test reveals whether
learned patterns generalize across different
network environments, traffic distributions,
and attack implementations a crucial
consideration for models deployed in diverse
production environments that differ from
training data.

4.0 Results and Discussion

4.1  Intrusion Detection Performance

Table 2 presents comprehensive performance
metrics for all evaluated models across the
three benchmark datasets. The results reveal
several notable patterns that inform our
understanding of Al effectiveness in intrusion
detection. Hybrid CNN-LSTM architectures
achieved the highest overall accuracy on
CICIDS2017 (98.3%) and UNSW-NBI5
(96.7%), wvalidating our hypothesis that
combining spatial feature extraction through
convolutions with temporal modeling through
LSTMs captures both local packet-level
patterns and longer-term flow characteristics
essential for distinguishing sophisticated
attacks from benign traffic.

Traditional ~machine learning methods,
particularly XGBoost ensemble models,
demonstrated competitive performance while
requiring substantially less training time and
computational resources. On NSL-KDD,
XGBoost achieved 83.8% accuracy compared
to 91.4% for CNN-LSTM, yet trained in
approximately 45 seconds versus 2.3 hours for
the deep learning architecture. This 7.6
percentage point accuracy gap may not justify
the 184-fold increase in training time for
organizations with limited computational
infrastructure or requiring rapid model
updates. The choice between traditional and
deep learning approaches thus depends
critically on specific operational constraints
and performance requirements.

Autoencoders designed for unsupervised
anomaly detection underperformed supervised
models across all datasets, confirming that
labeled training data provides substantial value
when available. However, autoencoders offer
unique advantages for detecting previously
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unseen attack types that differ substantially
from normal traffic patterns. In scenarios
where labeled examples of emerging threats
are unavailable or where data labeling proves
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prohibitively expensive, unsupervised
approaches merit consideration despite lower
average performance.

Table 2: Comparative performance of AI models on intrusion detection tasks across three
benchmark datasets. Values represent mean + standard deviation across 10 trials

NSL-KDD CICDS2017 UNSW-NBI15

Accuracy F1 Accuracy F1 Accuracy F1
SVM 79.5+¢1.2  0.762+0.018 91.3+0.8 0.868+0.012 85.2+1.5 0.821+0.019
Random 82.1£0.9  0.795+0.014 93.7+0.6  0.901+£0.009 88.4+1.1  0.856+0.015
Forest
XGBoost 83.8+0.8  0.814+0.012 94.2+0.5 0.915+£0.008 89.1+0.9  0.869+0.013
CNN 86.2+1.1 0.837+0.016 95.6+0.7 0.931+0.010 91.3+1.2  0.887+0.017
LSTM 87.9£1.0 0.856+0.015 96.8+0.6  0.947+£0.009 92.7+1.0  0.903+0.014
CNN-LSTM 91.4+0.7 0.892+0.011 98.3+0.4 0.971+0.006 96.7+0.8  0.951+0.012
Autoencoder 76.8+1.5 0.721+0.021 88.4+1.1 0.834+0.016 82.6+1.7 0.795+0.023

Fig. 2 displays ROC curves comparing top-
performing models on the CICIDS2017
dataset. The CNN-LSTM hybrid achieves the
highest AUC (0.993), closely followed by
standalone LSTM (0.989) and CNN (0.984)
models.  Traditional —machine learning
approaches show slightly lower AUC values
but still demonstrate strong performance. The

curves illustrate that all models achieve
excellent true positive rates above 95% at false
positive rates below 2% acceptable thresholds
for many operational environments where
security analysts can feasibly investigate a
small percentage of flagged events.

ROC Curves: Model Performance on CICIDS2017 Dataset

True Positive Rate

(All models substantially

5

CNN-LSTM (AUC = 0.993)
LSTM (AUC = 0.989)
CNN (AUC = 0.984)

- = XGBoost (AUC = 0.972)

SVM (AUC =

Random Forest (AUC = 0.965)

0.948)

Random Classifier (AUC = 0.500)

0.4

T
0.6

False Positive Rate

0.8

1.0

Fig. 2: ROC curves comparing model performance on CICIDS2017 dataset. The
CNNLSTM hybrid model achieves the highest AUC, though differences between deep
learning approaches are relatively small. All models substantially outperform random

guessing (diagonal line)
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4.1  Attack-Specific Detection Analysis

Performance varied considerably across
different attack categories, revealing that no
single model excels uniformly across all threat
types. Table 3 breaks down detection rates by
attack family on the UNSW-NBI15 dataset,
which provides the most diverse attack
taxonomy among our benchmarks. DoS attacks
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proved easiest to detect, with all models
achieving F1-scores above 0.90, likely because
such attacks generate high-volume traffic
patterns that deviate dramatically from normal
behavior. Fuzzers and reconnaissance attacks
also showed strong detection rates, exhibiting
characteristic probing patterns that machine
learning models readily identify.

Table 3: Attack-type specific F1-scores for top-performing models on UNSW-NB15 dataset.
Values highlight differential performance across attack categories

Attack Type XGBoost CNN LSTM CNN-LSTM
DoS 0.921 0.935 0.942 0.956
Reconnaissance 0.887 0.901 0.915 0.928
Fuzzers 0.895 0.908 0.919 0.934
Exploits 0.832 0.856 0.873 0.891
Generic 0.814 0.841 0.859 0.876
Analysis 0.793 0.823 0.847 0.868
Backdoor 0.756 0.789 0.821 0.843
Shellcode 0.741 0.778 0.805 0.831
Worms 0.728 0.761 0.792 0.819

Conversely, backdoor, shellcode, and worm
attacks posed greater detection challenges,
with Fl-scores dropping below 0.85 even for
the best-performing CNN-LSTM model. These
attack types often operate stealthily, generating
minimal traffic or mimicking legitimate
application behavior to avoid detection.
Backdoors may remain dormant for extended
periods before activating, while polymorphic
malware continually modifies its code to evade
signature-based  detection. The lower
performance on these categories underscores
the enduring challenge of detecting
sophisticated, targeted attacks that deliberately
evade security controls.

Deep learning models consistently
outperformed traditional machine learning
across all attack categories, with advantages
most pronounced for difficult-to-detect threats.
For backdoor detection, CNN-LSTM achieved
an Fl-score of 0.843 compared to 0.756 for
XGBoost an 11.5% relative improvement. This
suggests that deep learning’s ability to
automatically learn hierarchical feature

representations proves particularly valuable
when attacks exhibit subtle, complex patterns
that defy manual feature engineering. Security
teams dealing with advanced persistent threats
may therefore realize greater benefits from
deep learning adoption than those primarily
facing commodity attacks.

4.2 Threat Intelligence and NLP
Performance

Evaluating Al for threat intelligence required
distinct methods from intrusion detection due
to subjective labeling of unstructured reports.
A corpus of 5,000 public threat reports was
annotated to identify actors, malware,
vulnerabilities, and mitigations. Fine-tuned
BERT achieved 87.3% FI1 in named entity
recognition, outperforming traditional NLP
models. However, it struggled with emerging
threats and obfuscated language, indicating
challenges in domain adaptation. Relation
extraction reached 72.6% F1 for identifying
links like “malware exploits vulnerability.”
Graph neural networks improved threat
correlation and attribution (79.4% accuracy).
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For intelligent automation, partnering with a
financial organization enabled evaluation of Al
classifiers that optimized alert triage and
improved operational efficiency. Table 4
summarizes the operational improvements
observed during the three-month post-
deployment period compared to the baseline.
Alert triage automation reduced mean time to
initial investigation from 47 minutes to 18
minutes a 61.7% improvement by immediately
routing high-priority alerts to senior analysts
while recommending automated responses for
low-risk events. False positive rates decreased
from 32.

Perhaps  most  significantly,  analysts
investigated 48.8% more alerts per day despite
the reduction in overtime hours, suggesting
that automation eliminated repetitive, low
value tasks and allowed analysts to focus on
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complex investigations requiring human
expertise.

The number of critical incidents initially
missed by first-level triage decreased from
three to one during the evaluation period,
though this sample size precludes strong
statistical conclusions. Analyst satisfaction
surveys indicated improved morale, with 78%
of respondents reporting that automation made
their work more interesting and manageable.
The number of critical incidents initially

missed by first-level triage decreased from

three to one during the evaluation period,
though this sample size precludes strong
statistical conclusions. Analyst satisfaction
surveys indicated improved morale, with 78%
of respondents reporting that automation made
their work more interesting and manageable.

Table 4: Operational metrics before and after AI-driven automation deployment in a large
security operations center. Improvements are statistically significant (p ; 0.001)

Metric Baseline  Post-Automation Improvement
Mean time to investigate (min) 473 18.1 61.7%
Mean time to respond (min) 156.8 89.4 43.0%
False positive rate 32.1% 19.3% 39.9%
Alerts investigated per day 1,247 1,856 48.8%
Analyst overtime hours/week 324 18.7 42.3%
Critical incidents missed 3 1 66.7%
These results must be interpreted cautiously 4.3  Adaptive Decision-Making with

given the limited deployment scope and
relatively short evaluation period.
Organizations differ substantially in alert
volumes, threat profiles, analyst capabilities,
and existing security tool ecosystems. Models
trained on one organization’s data may not
transfer effectively to others due to differences
in network architecture, user behaviors, and
security policies. Furthermore, adversaries
may adapt tactics upon recognizing automated
responses, potentially gaming systems to
trigger desired reactions or avoid detection.

Reinforcement Learning

Reinforcement learning agents trained in
simulated  network  defense  scenarios
demonstrated the ability to learn effective
policies through trial-and-error interaction,
though performance depended critically on
environment design and reward function
specification. Fig. 3 shows learning curves for
deep Q-network agents trained to configure
firewall rules dynamically, balancing security
(blocking attacks) against availability
(allowing legitimate traffic).
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Reinforcement Learning Agent Performance Over Training

Performance (%)

Convergence
(~40k episodes)

- Attack Blocking Rate
- Legitimate Traffic Throughput

0 20k 40k

60k 80k 100k

Training Episodes

Fig. 3: Learning curves showing reinforcement learning agent performance over 100,000
training episodes. The agent learns an effective policy by episode 40,000, achieving 94%
attack blocking rate while maintaining 96% legitimate traffic throughput. Error bars show
standard deviation across five independent training runs.

Agents required approximately 40,000
episodes to converge on policies achieving
94% attack blocking rates while maintaining
96% throughput for legitimate traffic
performance comparable to expert-designed
rule sets. However, training consumed 72
hours on high end GPU hardware, raising

questions about practical feasibility for
complex  real-world  scenarios. = More
concerning, agents occasionally learned

unintended strategies such as blocking all
traffic to minimize risk, achieving high
security scores at the cost of complete service
denial. This behavior emerged when reward
functions inadequately penalized legitimate
traffic blocking, highlighting the challenge of
specifying objectives that capture nuanced
security-availability trade-offs.

Multi-agent reinforcement learning
experiments, where multiple agents controlled
different network segments and learned to
coordinate defenses, showed promising results
but proved highly unstable during training.
Coordination challenges and non-stationary
learning dynamics caused agents to develop
conflicting strategies that actually decreased
overall security compared to single-agent

approaches. This suggests that while
multiagent  systems  offer  theoretical
advantages for distributed defense, practical
deployment requires sophisticated

coordination mechanisms and more stable
training algorithms.

4.4 Cross-Dataset Generalization

Cross-dataset  evaluation revealed poor
generalization, with accuracy dropping 15—
25% when models trained on one dataset were
tested on others. CICIDS2017 models
generalized better to UNSW-NBI15 (81.3%)
than vice versa (76.8%). Results highlight the
need for diverse training data and show transfer
learning improves accuracy (88-92%) using
limited target samples.

4.5 Computational Efficiency Analysis

Table 5 compares computational requirements
across model architectures, revealing dramatic
differences that critically inform deployment
decisions. Traditional machine learning
models trained in seconds to minutes, enabling
rapid experimentation and frequent retraining
as new attack samples become available.
Inference latency remained below 1
millisecond per sample, supporting real-time
processing of high-volume network traffic.

Deep learning architectures required 40-140
minutes training time and introduced inference
latency of 2-4 milliseconds per sample
approximately 20-50 times slower than
traditional models. While still fast enough for
many applications, this latency becomes
problematic for inline deployment where
network traffic must be inspected in real-time
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without introducing noticeable delays.
Memory  requirements also  increased
substantially, with CNN-LSTM models

consuming over 7GB for storing network
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parameters during inference challenging for
embedded systems or resource-constrained
edge deployments

Off-diagonal: Cross-dataset generalization (train on row, test on column)

Diagonal: Within-dataset performance (train & test from same dataset)

Cross-Dataset Generalization Performance (CNN-LSTM Model)

NSL-KDD 91.4

CICIDS2017 -

Training Dataset

UNSW-NB15 -

100

95

- 90

—:85

Accuracy (%)

- 80

75

70

Test Dataset

Fig. 4: Cross-dataset generalization performance for CNN-LSTM model. Diagonal elements
show within-dataset performance (train and test from same dataset), while off diagonal
elements reveal generalization to unseen datasets. Darker colors indicate higher accuracy

Table 5: Computational efficiency metrics comparing model architectures. Measurements
conducted on NVIDIA Tesla V100 GPU (deep learning) and Intel Xeon CPU (traditional

ML)

Model Training Time Inference (ms) Memory (GB) Parameters
SVM 0.8 min 0.12 0.3 N/A
Random Forest 1.2 min 0.08 0.5 N/A
XGBoost 2.1 min 0.15 0.7 N/A
CNN 47 min 23 4.2 1.2M
LSTM 83 min 3.7 5.8 2.4M
CNN-LSTM 142 min 4.1 7.3 3.6M
Autoencoder 38 min 1.9 3.5 0.9M
The efficiency-accuracy trade-off suggests a high-volume processing while applying
tiered deployment strategy where lightweight sophisticated deep learning only when

models provide initial filtering and deep
learning models conduct detailed analysis of
suspicious traffic. This hybrid approach
leverages the speed of traditional models for

necessary, optimizing both accuracy and
computational efficiency. Some organizations
may also consider accuracy improvements
insufficient to justify deep learning’s additional



Communication in Physical Sciences, 2022, 8(4):745-763

complexity and operational overhead,
particularly when traditional models achieve

acceptable performance for their threat
profiles.
4.6  Practical Implications and

Deployment Considerations

Our findings yield several actionable insights
for security practitioners navigating Al
adoption decisions. First, no universally
optimal model exists choices must consider
specific  attack  profiles, computational
constraints, available training data,
interpretability requirements, and tolerance for
false positives versus false negatives.
Organizations facing primarily commodity
attacks may find traditional machine learning
sufficient, while those targeted by
sophisticated adversaries deploying novel
techniques likely benefit from deep learning’s
superior ability to generalize.

Second, the interpretability-performance trade-
off deserves careful consideration. Deep
learning models operate as “black boxes,”
offering limited transparency into why
particular decisions were made problematic
when analysts must wunderstand attack
characteristics to formulate appropriate
responses or when regulatory requirements
mandate explainable decisions. Decision trees
and linear models provide inherent
interpretability, while techniques such as
LIME (Local Interpretable Model-agnostic
Explanations) can help explain black box
predictions (Ribeiro et al., 2016). The
appropriate balance depends on operational
context, with some organizations prioritizing
maximum accuracy while others require
interpretability.

Third, adversarial robustness warrants
attention beyond standard evaluation metrics.
Sophisticated attackers may craft inputs
specifically designed to fool machine learning
models through adversarial examples slightly
perturbed inputs that cause misclassification
despite appearing normal to humans (Szegedy
et al., 2014). We conducted preliminary
adversarial testing using FGSM (Fast Gradient
Sign Method) attacks and observed accuracy
degradation of 12-28 percentage points, with
deep learning models generally more robust
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than traditional approaches but still vulnerable.
Defensive techniques including adversarial
training, input transformation, and ensemble
approaches can improve robustness but require
additional computational overhead.

4.7 Limitations and Threats to Validity

Several limitations constrain the
generalizability of our findings. Benchmark
datasets, despite their widespread use,
imperfectly represent real-world network
environments due to factors including
synthetic traffic generation, limited diversity of
benign applications, dated attack
implementations, and controlled experimental
conditions lacking the organic chaos of
production networks. Models may overfit to
dataset-specific artifacts rather than learning
truly generalizable attack patterns, explaining
the substantial performance degradation
observed in cross-dataset evaluation.

The evaluation focused on offline batch
classification rather than online learning
scenarios where models must adapt
continuously as new data arrives. Real-world
deployments face concept drift as network
patterns evolve and adversaries modify tactics,
potentially degrading model performance over
time if not addressed through regular retraining
or online learning algorithms (Zliobaite" et al.,
2016). Our relatively short evaluation” periods
cannot assess long-term performance or
adaptation to evolving threats.

Computational requirements were measured
under controlled experimental conditions and
may differ in production environments with
diverse hardware, concurrent workloads, and
additional  system  overhead.  Latency
measurements reflect model inference time
only, excluding data preprocessing, feature
extraction, and system integration costs that
substantially impact end-to-end performance.
Finally, our automation evaluation involved a
single organization over a limited timeframe,
restricting  generalizability to  different
organizational contexts, security postures, and
threat landscapes. The novelty effect whereby
analysts initially overestimate automation
benefits may inflate observed improvements,
while longer-term evaluation might reveal
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unexpected failure modes or adversarial

adaptations.

5.0 Conclusion

This comprehensive evaluation of Al-driven
data science models across four critical
cybersecurity domains reveals a complex
landscape where no single approach dominates
universally, but where strategic selection of
techniques matched to specific operational

contexts  yields substantial security
improvements. Hybrid CNN-LSTM
architectures demonstrated superior

performance for intrusion detection tasks
requiring both spatial feature extraction and
temporal sequence modeling, achieving
accuracy exceeding 98% on contemporary
datasets while maintaining operationally
acceptable false positive rates below 1.2%.
Traditional ~machine learning methods,
particularly XGBoost ensembles, offered
competitive performance with dramatically
lower computational requirements, suggesting
a role for tiered architectures that leverage
lightweight models for initial filtering and
sophisticated deep learning for detailed
analysis. Transformer-based natural language
processing models showed remarkable
effectiveness for automated threat intelligence
extraction, though challenges remain in
handling technical jargon and emerging threats
lacking  extensive  training  examples.
Reinforcement learning agents learned
effective adaptive defense policies through
simulated experience but required extensive
training time and careful reward engineering,
raising questions about practical feasibility.
The substantial performance degradation
observed during cross-dataset evaluation 1525
percentage points underscores the critical
importance of diverse training data and the
danger of over-relying on single benchmark
assessments. Our operational case study
demonstrated 61.7% reduction in investigation
time and 48.8% increase 1in analyst
productivity following automation
deployment, though generalizability beyond
the studied organization requires cautious
interpretation. These findings contribute to
both cybersecurity theory by establishing
empirical comparative performance baselines
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across diverse Al techniques and to practice by
providing evidence-based guidance for model
selection, highlighting trade-offs between
accuracy and computational efficiency,
interpretability and performance,
specialization and generalization. Future
research should address adversarial robustness,
explainable AI for security applications,
federated learning for privacy-preserving
threat intelligence sharing, and longitudinal
studies evaluating long-term performance and
adaptation in production environments facing
evolving threat landscapes.
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