Communication in Physical Sciences, 2022, 8(4):745-763

A Comprehensive Evaluation of AI-Driven Data Science Models in Cybersecurity: Covering Intrusion Detection, Threat Analysis, Intelligent Automation, and Adaptive Decision-Making Systems

Abdulaziz Olaleye Ibiyeye, Joy Nnenna Okolo, Samuel Adetayo Adeniji. 21 August 2022/Accepted: 21 November 2022/Published: 30 December 2022

Abstract: The exponential growth of cyber threats has necessitated a paradigm shift from traditional signature-based security mechanisms to sophisticated artificial intelligence-driven approaches capable of adapting to evolving attack vectors. This study presents a comprehensive evaluation of contemporary AI and data science models across four critical cybersecurity domains: intrusion detection systems, threat analysis, intelligent automation, and adaptive decisionframeworks. making We systematically evaluate multiple machine learning architectures including deep neural networks, ensemble methods, and reinforcement learning algorithms using benchmark datasets NSL-KDD, CICIDS2017, and UNSW-NB15. Our empirical analysis reveals that hybrid models combining convolutional neural networks with long short-term memory architectures achieve superior performance in sequential attack pattern recognition, attaining accuracy rates exceeding 98.3% while maintaining acceptable false positive rates below 1.2%. Furthermore. transformer-based models remarkable demonstrate capabilities natural language processing for threat intelligence extraction, while reinforcement learning agents show promising adaptability in dvnamic response scenarios despite computational overhead constraints. The comparative framework developed herein provides practitioners with evidence-based guidance for model selection tailored to specific organizational contexts, security requirements, and computational resources. This work bridges the gap between theoretical AI research and practical cybersecurity implementation, offering actionable insights for security operations centers facing realworld deployment challenges in increasingly hostile digital environments.

Keywords: Artificial Intelligence, Cybersecurity, Intrusion Detection Systems, Threat Analysis, Machine Learning, Network Security, Adaptive Decision-Making

Olaleye Ibiyeye

Department of Computer and Information Science, Western Illinois University, Macomb, Illinois, USA

Email: <u>Ife4lv@gmail.com</u> Orcid id: 0009-0002-2448-6079

Joy Nnenna Okolo

Department of Computer and Information Science, Western Illinois University, Macomb, Illinois, USA

Email: <u>okolojoy2704@gmail.com</u> Orcid id: 0009-0002-0283-4052

Samuel Adetayo Adeniji

Department of Computer and Information Science, Western Illinois University, Macomb, Illinois, USA

Email: <u>Sa-adeniji@wiu.edu</u> Orcid id: 0009-0006-9103-7934

1.0 Introduction

Artificial Intelligence (AI) and Machine (ML) Learning are transforming interdisciplinary fields by creating advanced systems that enable accurate data interpretation, predictive analytics, and autonomous operations (Ademilua, 2021). The increasing integration of these technologies supports intelligent architectures that boost analytical accuracy and operational efficiency (Ademilua & Areghan, 2022). Through intelligent automation and data-driven reasoning, they offer innovative solutions to modern challenges (Aboagye et al., 2022). Their applications enhance data modeling, decision-making, and autonomous navigation. Furthermore, emerging methods advance computational intelligence and predictive performance, Ultimately, AI and ML reshape automation, analytical accuracy, and the design of intelligent systems (Omefe et al., 2021; Lawal et al., 2021).

The contemporary digital landscape presents security professionals with an unprecedented challenge: defending against adversaries who leverage automation, artificial intelligence, and sophisticated tactics that evolve faster than traditional defense mechanisms can adapt. Consider the 2017 Wanna Cry ransomware attack, which compromised over 200,000 computers across 150 countries within mere hours, or the Solar Winds supply chain breach discovered in 2020 that went undetected for months' despite affecting numerous Fortune 500 companies and government agencies (Fruhlinger, 2020). These incidents underscore a fundamental reality conventional signaturebased detection systems and manual analysis workflows cannot keep pace with modern cyber threats that exhibit polymorphic behavior, employ advanced evasion techniques, and exploit zero-day vulnerabilities before patches become available.

cybersecurity The industry generates staggering volumes of security data daily. A typical enterprise security operations center processes millions of events per day, yet research suggests that security analysts can thoroughly investigate only a small fraction of generated alerts due to resource constraints and alert fatigue (Bhatt et al., 2014). This deluge of information paradoxically creates blind spots where sophisticated attacks hide in plain sight, camouflaged within legitimate network traffic. Traditional rule-based systems, while effective against known threats, struggle with the detection of novel attack patterns and generate false positive rates that overwhelm human analysts, leading to what practitioners colloquially term "alert fatigue" a condition where genuine threats become lost in noise.

Artificial intelligence and machine learning have emerged as promising solutions to these challenges, offering capabilities that transcend the limitations of static rule systems. Unlike conventional approaches that rely on predefined signatures, AI-driven models can learn complex patterns from historical data, identify subtle anomalies indicative of

malicious activity, and adapt their detection strategies as threat landscapes evolve. Deep architectures. learning particularly convolutional neural networks and recurrent neural networks, have demonstrated remarkable success in computer vision and processing domains, natural language prompting researchers to explore their applicability to cybersecurity problems (Goodfellow et al., 2016). The fundamental question, however, remains: which AI approaches work best for specific security challenges, and what trade-offs do practitioners face when deploying these systems in production environments?

Despite growing academic interest in AIdriven cybersecurity, significant gaps persist research and practice. between published studies evaluate models on outdated datasets or synthetic scenarios that poorly reflect contemporary attack sophistication. Furthermore, researchers often optimize exclusively for accuracy metrics while overlooking operational concerns such as inference latency, computational resource requirements, model interpretability, resilience against adversarial manipulation factors that critically determine real-world viability (Apruzzese et al., 2018). Security operations centers need systems that not only detect threats accurately but also explain their reasoning to human analysts, operate within infrastructure constraints. and maintain performance when adversaries deliberately attempt to evade detection.

The intersection of AI and cybersecurity spans intrusion detection, threat intelligence, intelligent automation, and adaptive decision-making. These domains enhance monitoring, analysis, and response while reducing manual workload. Each offers unique AI applications, yet comprehensive studies integrating all four dimensions remain limited within current cybersecurity research literature.

This study addresses these gaps through a rigorous comparative evaluation of state-of the-art AI models across intrusion detection, threat analysis, intelligent automation, and adaptive decision-making. Our investigation examines traditional machine learning

algorithms alongside contemporary deep learning architectures and reinforcement learning approaches, assessing performance not only through accuracy metrics but also operational considering feasibility, computational efficiency, interpretability, and robustness. By evaluating models across multiple benchmark datasets that reflect diverse attack scenarios and network environments, we provide insights into capabilities generalization and domainspecific performance characteristics.

The primary objectives of this research are threefold. First, we aim to establish empirical evidence regarding which AI architectures demonstrate superior performance for specific cybersecurity tasks, moving beyond theoretical claims to quantifiable results. Second, we seek to illuminate the practical trade-offs inherent in different modeling approaches the balance between accuracy and speed, complexity and interpretability, specialization generalization. Third, we endeavor to provide actionable guidance for security practitioners who must navigate the proliferation of AI solutions and select approaches appropriate for their organizational contexts, threat models, resource constraints. Rather advocating for a single "best" solution, we recognize that optimal choices depend on specific requirements, constraints, and priorities that vary across organizations.

2.0 Theoretical Framework

The application of artificial intelligence to problems cybersecurity rests upon fundamental principles from machine learning theory, network security, and decision science. Understanding these foundations illuminates why certain AI approaches succeed or fail in security contexts and guides the development of more effective defensive systems. This section synthesizes relevant literature across multiple domains to establish the conceptual framework undergirding our empirical investigation.

2.1 Machine Learning Paradigms in Cybersecurity

Machine learning encompasses three primary paradigms supervised, unsupervised, and reinforcement learning each offering distinct advantages for security applications (Bishop, 2006). Supervised learning algorithms train on labeled datasets where each example includes both input features and corresponding output labels. For intrusion detection, this translates to training data comprising network traffic samples labeled as either benign or malicious, potentially with fine-grained attack type classifications. Support vector machines, decision trees, random forests, and neural networks represent common supervised approaches that have demonstrated effectiveness in binary and multi-class classification tasks (Buczak and Guven, 2016).

supervised paradigm's limitation stems from its dependence on labeled training data, which proves expensive to obtain and rapidly becomes obsolete as attack techniques evolve. Real-world network environments generate predominantly benign traffic, creating severe class imbalance where malicious samples constitute less than 1% of observations a condition that causes standard learning algorithms to achieve high accuracy simply by predicting the majority class while failing to detect actual attacks (Fern'andez et 2018). Sophisticated resampling al., techniques, cost-sensitive learning, ensemble methods help address imbalance, yet the fundamental challenge of obtaining representative labeled samples of emerging threats persists.

Unsupervised learning addresses the labeled data bottleneck by discovering patterns

and anomalies without requiring explicit labels. Clustering algorithms partition network traffic into groups based on similarity, enabling identification of outliers that deviate from normal behavior patterns. Autoencoders, a class of neural networks trained to reconstruct their inputs, learn compressed representations of normal network traffic and flag instances that reconstruct poorly as potential anomalies (Hinton & Salakhutdinov, 2006). These approaches excel at detecting previously unseen attacks that differ significantly from normal traffic patterns, though they struggle with subtle intrusions that closely mimic legitimate behavior.

Reinforcement learning represents a third paradigm where agents learn optimal policies trial-and-error interaction through environments, receiving rewards for beneficial actions and penalties for detrimental ones. In cybersecurity contexts, reinforcement learning agents can learn dynamic defense strategies that adapt to evolving threats, potentially outmaneuvering adversaries in game-theoretic scenarios (Nguyen & Reddi, 2019). However, the computational expense of exploring vast action spaces and the challenge of defining appropriate reward functions that capture security objectives without encouraging unintended behaviors have limited practical deployment.

2.2 Deep Learning Architectures for Security

Deep neural networks have revolutionized machine learning by automatically extracting hierarchical feature representations from raw data, eliminating manual feature engineering that previously constituted a primary bottleneck in model development. Convolutional neural networks, originally developed for image recognition, excel at detecting local spatial patterns through convolution operations that slide learned filters across input data (LeCun et al., 2015). Applied to network traffic, CNNs can identify characteristic byte sequences or packet header patterns indicative of specific attack types. Their parameter sharing and local connectivity properties make them computationally efficient and somewhat invariant to the position of malicious patterns within network flows.

Recurrent neural networks and their variants long short-term memory networks and gated recurrent units process sequential data by maintaining internal state that captures temporal dependencies. Network inherently exhibits temporal structure where packet sequences follow predictable patterns for legitimate applications but deviate during attacks. LSTM architectures address the vanishing gradient problem that plagued earlier RNN designs, enabling learning of long-range dependencies spanning hundreds of time steps (Hochreiter & Schmidhuber, 1997). This capability proves particularly valuable for detecting multi-stage attacks where individual packets appear benign but their sequence reveals malicious intent.

Recent vears have witnessed the emergence of transformer architectures that employ self-attention mechanisms to model relationships between all positions in a sequence simultaneously, overcoming the sequential processing bottleneck of RNNs (Vaswani et al., 2017). While transformers have achieved remarkable success in natural language processing, their application to cybersecurity remains relatively nascent. These architectures show promise processing unstructured threat intelligence reports, correlating security events across distributed systems, and identifying complex attack patterns that manifest across extended time horizons.

2.3 Intrusion Detection Systems: Evolution and Taxonomy

Intrusion detection systems constitute a cornerstone of network defense, continuously monitoring traffic and system activities to identify potential security violations. Early IDS implementations employed signaturedetection. comparing behaviors against databases of known attack patterns an approach analogous to antivirus software (Scarfone & Mell, 2007). While effective against documented threats. signature-based systems inherently fail to detect zero-day attacks and require constant manual updates as new threats emerge. The Snort intrusion detection system exemplifies this approach, utilizing a rule-based engine that matches packet contents and headers against predefined patterns.

Anomaly-based detection systems model normal behavior and flag deviations as potential intrusions, theoretically enabling detection of novel attacks without prior knowledge of specific signatures. Statistical approaches model network features using probability distributions and identify outliers through hypothesis testing. Machine learning methods learn normal behavior patterns from training data and classify observations based on similarity to learned models (Chandola *et al.*, 2009). The challenge lies in defining

"normal" behavior for complex, dynamic network environments where legitimate activities exhibit significant variability and where attacks may gradually shift baselines through slow poisoning.

Contemporary research increasingly favors hybrid approaches that combine signaturebased and anomaly-based detection, leveraging the strengths of both paradigms while mitigating individual weaknesses. Ensemble methods that aggregate predictions from multiple diverse models often outperform individual classifiers by reducing variance and capturing complementary patterns (Krawczyk et al., 2017). Deep learning architectures with multiple processing layers can simultaneously learn both explicit attack signatures at lower layers and higher-level behavioral anomalies at upper layers, effectively implementing hybrid detection within a unified framework.

2.4 Threat Intelligence and Analysis

Cyber threat intelligence encompasses the collection, processing, and analysis of information regarding threat actors, their tactics, techniques, procedures, and indicators of compromise. Threat intelligence platforms aggregate data from numerous sources including security vendor feeds, open-source intelligence, dark web monitoring, and information sharing communities (Qamar *et al.*, 2017). The challenge lies in transforming this deluge of unstructured and semi-structured data into actionable insights that inform defensive strategies and incident response.

Natural language processing techniques enable automated extraction of entities, relationships, and indicators from threat reports, security bulletins, and malware analyses. Named entity recognition identifies threat actors, malware families, vulnerabilities, and affected products within text. Relation extraction determines associations between entities, constructing knowledge graphs that map the threat landscape. Machine learning classifiers categorize threat reports by severity, relevance, and recommended actions, helping analysts prioritize investigation efforts (Liao et al., 2016). However, the technical jargon, and evolving terminology, deliberately obfuscated language used in underground forums pose significant challenges for NLP systems trained on general-purpose corpora. Predictive threat analytics aim to forecast future attacks by identifying patterns in historical incidents and correlating with external indicators such as geopolitical events, vulnerability disclosures, or observed reconnaissance activities. Time series models and sequence prediction algorithms can detect trends in attack frequencies, methods, or target selection. Graph neural networks analyze the of attack propagation across topology networks, potentially enabling early detection of coordinated campaigns (Zhou et al., 2020). Yet the fundamental unpredictability of human adversaries and the potential for black swan events limit the reliability of predictions, requiring analysts to maintain skepticism and account for uncertainty.

2.5 Intelligent Automation and Orchestration

Security operations centers face the dual challenge of managing an overwhelming volume of alerts while addressing a global shortage of skilled cybersecurity professionals. Security orchestration, automation, response platforms emerged to address these pressures by automating routine tasks, integrating disparate security tools, orchestrating coordinated responses detected threats (Zimmerman, 2014). SOAR emplov playbooks workflows that define sequences of automated actions triggered by specific alert types or conditions to standardize and accelerate incident response.

Machine learning enhances automation by enabling systems to learn from analyst decisions, gradually expanding the range of incidents that can be handled without human intervention. Supervised learning models trained on historical incident data can classify alerts by severity, route them to appropriate analysts, and recommend initial response actions (Oprea *et al.*, 2015). Reinforcement learning agents could potentially learn optimal response strategies through simulated or real-world experience, adapting to new attack types and environmental conditions. However, the high stakes of security operations demand

extreme reliability and explainability, creating tension with the "black box" nature of many machine learning models.

The integration of AI-driven automation with human expertise raises important questions about trust, accountability, and the appropriate level of autonomy for security systems. Fully autonomous response systems risk causing operational disruptions through false positives or being manipulated by adversaries who craft inputs designed to trigger specific automated reactions. Human-in-the-loop designs that require analyst approval for critical actions provide safety guarantees but sacrifice speed. Finding the optimal balance requires careful analysis of specific use cases, potential failure modes, and organizational risk tolerance.

2.6 Adaptive Decision-Making and Reinforcement Learning

Cyber defense is a sequential decision-making process where defenders act against adaptive adversaries. Game theory models these interactions as repeated games, identifying stable Nash equilibria though complex security games are computationally difficult to solve (Liang & Xiao, 2013). Reinforcement learning (RL) provides a practical alternative, enabling agents to learn optimal defense policies through experience (Sutton & Barto, 2018). Deep RL extends this to high-dimensional data like network traffic. Applications include adaptive intrusion detection and firewall optimization. However, RL faces challenges such as large state spaces, simulation limits, and vulnerability to adversarial exploitation, requiring robust design and careful reward integrated perspective modeling. This distinguishes our work from prior studies that examine individual domains in isolation.

3.0 Methodology

3.1 Research Design and Approach

Our investigation employs a mixed-method approach combining systematic literature review with extensive empirical evaluation. We first conducted a comprehensive review of peer-reviewed publications from 2015 to 2021 to identify state-of-the-art AI techniques and establish baseline performance expectations. This review process involved searching major

academic databases including IEEE Xplore, ACM Digital Library, and Google Scholar using keywords related to machine learning, deep learning, intrusion detection, and cybersecurity. From an initial pool of 347 papers, we selected 89 highly relevant studies that provided quantitative results, detailed methodological descriptions, and insights into practical deployment challenges.

The empirical component implements and multiple models evaluates ΑI standardized benchmark datasets, enabling direct performance comparisons controlled conditions. Rather than proposing novel architectures, our focus lies in rigorous comparative analysis of established techniques to determine which approaches demonstrate superior performance for specific tasks. This comparative framework addresses a critical gap in literature where studies typically evaluate one or two models against baselines rather than conducting comprehensive multimodel assessments.

3.2 Datasets and Data Preprocessing

We selected three widely-used benchmark datasets that collectively represent diverse network environments, attack types, and traffic characteristics. The **NSL-KDD** represents an improved version of the original KDD Cup 1999 dataset, removing redundant records that caused learning algorithms to be biased toward frequent instances (Tavallaee et al., 2009). NSL-KDD contains approximately 125,000 training samples and 22,000 test samples across four attack categories: denial of service, probe, remote-to-local, and user-toroot attacks. While dated, this dataset enables comparison with numerous prior studies and provides a baseline for evaluating fundamental classification capabilities.

The CICIDS2017 dataset addresses limitations of older benchmarks by capturing contemporary network traffic and attack patterns using realistic infrastructure and modern protocols (Sharafaldin *et al.*, 2018). Collected over five days, the dataset includes benign background traffic alongside diverse attacks including brute force, heartbleed, botnet, DoS, DDoS, web attacks, and infiltration. With over 2.8 million flows and 78

features extracted using CICFlowMeter, CICIDS2017 provides rich temporal and statistical characteristics suitable for evaluating both traditional machine learning and deep learning approaches.

The UNSW-NB15 dataset offers another contemporary benchmark created using IXIA PerfectStorm tool to generate hybrid normal and attack traffic (Moustafa and Slay, 2015). This dataset contains nine attack families including fuzzers, analysis, backdoors, DoS, exploits, generic, reconnaissance, shellcode, and worms. With 49 features spanning flow statistics, protocol-specific attributes, and connection properties, UNSW-NB15 enables assessment of model generalization across different feature spaces and attack taxonomies. Data preprocessing followed established best practices while maintaining consistency across experiments. Missing values, which occurred rarely in selected datasets, were imputed using median values for numeric features. Categorical features such as protocol type and service were encoded using one-hot encoding, expanding the feature space but enabling models to learn protocol-specific patterns. Feature scaling employed standardization (zero mean, unit variance) rather than normalization to preserve information about outliers potentially crucial for anomaly detection. For deep learning models processing raw network traffic, we created fixed-length sequences by padding or truncating flows, experimenting with sequence lengths from 10 100 packets to identify optimal configurations.

Class imbalance presented a significant challenge, particularly for minority attack classes that constitute less than 1% of samples. We addressed this through stratified sampling to maintain class distributions during train-test splits and explored multiple techniques including random oversampling of minority classes, synthetic minority oversampling technique (SMOTE) that generates synthetic examples along linear interpolations between existing minority samples, and cost-sensitive learning that assigns higher misclassification penalties to minority classes (Chawla *et al.*, 2002). Comparing these approaches revealed

that SMOTE generally yielded optimal balance between minority class recall and overall accuracy, though specific choices depended on individual model architectures and attack types.

Table 1 summarizes key characteristics of the three benchmark datasets employed in our evaluation. The table illustrates the diversity of samples sizes, feature spaces, and attack taxonomies, underscoring the importance of multi-dataset evaluation to assess rather generalization capabilities than overfitting to idiosyncrasies of specific benchmarks.

3.3 Model Architectures and Implementations

We implemented and evaluated twelve distinct model architectures spanning traditional machine learning, deep learning, reinforcement learning paradigms. Traditional machine learning models included support vector machines with radial basis function kernels, random forests with 100 estimators. gradient boosting machines using XGBoost. These models serve as baselines representing mature. well-understood techniques commonly deployed in production environments.

learning architectures comprised convolutional neural networks with three convolutional layers followed by max pooling and dense classification layers; recurrent neural networks using two-layer LSTM networks with 128 hidden units per layer; and hybrid CNN-LSTM architectures that apply convolutional layers to extract local patterns before feeding outputs to LSTM layers to capture temporal dependencies. We also implemented autoencoders for unsupervised anomaly detection, consisting of encoder networks that compress inputs to dimensional latent representations and decoder networks that reconstruct original inputs, with reconstruction error serving as an anomaly

For threat intelligence tasks involving natural language processing, we adapted pretrained transformer models including BERT (Bidirectional Encoder Representations from

Transformers), fine-tuning them on domainspecific security corpora (Devlin *et al.*, 2019). The transformer architecture's multi-headed self-attention mechanism enables modeling complex relationships between threat indicators mentioned at different positions within reports.

Table 1: Characteristics of benchmark datasets used for model evaluation

Characteristic	NSL-KDD	CICIDS2017	UNSW-NB15	
Total samples	148,517	2,830,540	257,673	
Training samples	125,973	2,264,432	175,341	
Test samples	22,544	566,108	82,332	
Number of features	41	78	49	
Attack categories	4	7	9	
Benign percentage	53.5%	80.3%	56.0%	
Year created	2009	2017	2015	
Traffic capture	Simulated	Realistic	Hybrid	

Reinforcement learning agents implemented deep Q-networks that learn state-action value functions using experience replay and target networks to stabilize training (Mnih et al., 2015). We designed simplified simulation environments modeling firewall configuration and incident response scenarios where agents policies through trial-and-error learn interaction, receiving rewards for correctly blocking attacks while minimizing false positives. All models were implemented using Python 3.8 with TensorFlow 2.4 and PyTorch 1.8 for deep learning architectures, and scikitlearn 0.24 for traditional machine learning algorithms. Training employed NVIDIA Tesla V100 GPUs with 32GB memory, enabling parallel evaluation of multiple configurations. Hyperparameter optimization used 5-fold cross-validation on training data with grid search for smaller models and random search for deep learning architectures with vast hyperparameter spaces.

3.4 Evaluation Metrics and Statistical Analysis

Performance evaluation required metrics capturing multiple dimensions of model quality beyond simple accuracy, which proves misleading for imbalanced datasets where predicting the majority class yields high accuracy despite complete failure to detect attacks.

We computed precision (positive predictive value), recall (sensitivity), and F1-score (harmonic mean of precision and recall) for each attack class. The F1-score provides a balanced measure that requires both high precision and high recall, penalizing models that sacrifice one for the other.

For intrusion detection scenarios where security analysts must investigate flagged incidents, false positive rate assumes critical importance. A model generating thousands of false alarms daily renders itself operationally useless regardless of detection accuracy, as analysts cannot feasibly investigate such volumes. We therefore report false positive rates alongside true positive rates, plotting receiver operating characteristic (ROC) curves and computing area under the curve (AUC) to assess performance across different threshold settings.

Computational efficiency metrics include training time, inference latency, memory requirements, and throughput measured as samples processed per second. These operational characteristics determine whether models can deploy in resource-constrained environments or meet real-time processing requirements. We measured inference latency as wall-clock time for processing individual samples, acknowledging that batch processing

typically achieves higher throughput through parallelization.

Statistical significance testing employed paired t-tests comparing model performance across ten repeated trials with different random initializations. We report mean performance and standard deviations to quantify variability. Effect sizes using Cohen's d complement p-values, providing information about practical significance beyond statistical significance. For cross-dataset generalization experiments, we applied McNemar's test to assess whether error patterns differed significantly between models.

3.5 Experimental Procedures

procedures Training followed standard practices while maintaining consistency to ensure fair comparisons. We allocated 80% of data for training and 20% for testing, using stratified sampling to preserve distributions. Within training data, 20% was validation for hyperparameter tuning and early stopping. Deep learning models trained for up to 100 epochs with early stopping triggered if validation loss failed to improve for 10 consecutive epochs, preventing overfitting while allowing sufficient training time.

Learning rate schedules employed initial values of 0.001 with exponential decay reducing the rate by 10% every 20 epochs. This schedule allows rapid initial progress while enabling fine-grained optimization in later epochs. Regularization techniques including L2 weight decay (coefficient 0.0001) and dropout (probability 0.3) were applied to deep learning architectures to improve generalization.

For reinforcement learning experiments, agents trained in simulated environments for 100,000 episodes. We employed epsilon-greedy exploration with epsilon decaying from 1.0 to 0.1 over the first 50,000 episodes, balancing exploration and exploitation. Experience replay buffers stored the most recent 10,000 transitions, with mini-batches of 32 samples used for each learning update. Target networks updated every 1,000 steps to provide stable learning targets.

Cross-dataset evaluation assessed generalization by training models on one dataset and evaluating on others without finetuning. This stringent test reveals whether learned patterns generalize across different network environments, traffic distributions, and attack implementations a crucial consideration for models deployed in diverse production environments that differ from training data.

4.0 Results and Discussion

4.1 Intrusion Detection Performance

Table 2 presents comprehensive performance metrics for all evaluated models across the three benchmark datasets. The results reveal several notable patterns that inform our understanding of AI effectiveness in intrusion detection. Hybrid CNN-LSTM architectures achieved the highest overall accuracy on CICIDS2017 (98.3%) and UNSW-NB15 (96.7%), validating our hypothesis that combining spatial feature extraction through convolutions with temporal modeling through LSTMs captures both local packet-level patterns and longer-term flow characteristics essential for distinguishing sophisticated attacks from benign traffic.

Traditional machine learning methods, XGBoost ensemble models, particularly demonstrated competitive performance while requiring substantially less training time and computational resources. On NSL-KDD, XGBoost achieved 83.8% accuracy compared to 91.4% for CNN-LSTM, yet trained in approximately 45 seconds versus 2.3 hours for the deep learning architecture. This 7.6 percentage point accuracy gap may not justify the 184-fold increase in training time for organizations with limited computational infrastructure or requiring rapid model updates. The choice between traditional and deep learning approaches thus depends critically on specific operational constraints and performance requirements.

Autoencoders designed for unsupervised anomaly detection underperformed supervised models across all datasets, confirming that labeled training data provides substantial value when available. However, autoencoders offer unique advantages for detecting previously

unseen attack types that differ substantially from normal traffic patterns. In scenarios where labeled examples of emerging threats are unavailable or where data labeling proves prohibitively expensive, unsupervised approaches merit consideration despite lower average performance.

Table 2: Comparative performance of AI models on intrusion detection tasks across three benchmark datasets. Values represent mean \pm standard deviation across 10 trials

	NSL-KDD		CICDS2017		UNSW-NB15	
	Accuracy	F1	Accuracy	F1	Accuracy	F1
SVM	79.5 ± 1.2	0.762 ± 0.018	91.3 ± 0.8	0.868 ± 0.012	85.2 ± 1.5	0.821 ± 0.019
Random	82.1±0.9	0.795 ± 0.014	93.7 ± 0.6	0.901 ± 0.009	88.4 ± 1.1	0.856 ± 0.015
Forest						
XGBoost	83.8 ± 0.8	0.814 ± 0.012	94.2 ± 0.5	0.915 ± 0.008	89.1 ± 0.9	0.869 ± 0.013
CNN	86.2 ± 1.1	0.837 ± 0.016	95.6 ± 0.7	0.931 ± 0.010	91.3 ± 1.2	0.887 ± 0.017
LSTM	87.9 ± 1.0	0.856 ± 0.015	96.8 ± 0.6	0.947 ± 0.009	92.7 ± 1.0	0.903 ± 0.014
CNN-LSTM	91.4 ± 0.7	0.892 ± 0.011	98.3 ± 0.4	0.971 ± 0.006	96.7 ± 0.8	0.951 ± 0.012
Autoencoder	76.8 ± 1.5	0.721 ± 0.021	88.4 ± 1.1	0.834 ± 0.016	82.6 ± 1.7	0.795 ± 0.023

Fig. 2 displays ROC curves comparing topperforming models on the CICIDS2017 dataset. The CNN-LSTM hybrid achieves the highest AUC (0.993), closely followed by standalone LSTM (0.989) and CNN (0.984) models. Traditional machine learning approaches show slightly lower AUC values but still demonstrate strong performance. The curves illustrate that all models achieve excellent true positive rates above 95% at false positive rates below 2% acceptable thresholds for many operational environments where security analysts can feasibly investigate a small percentage of flagged events.

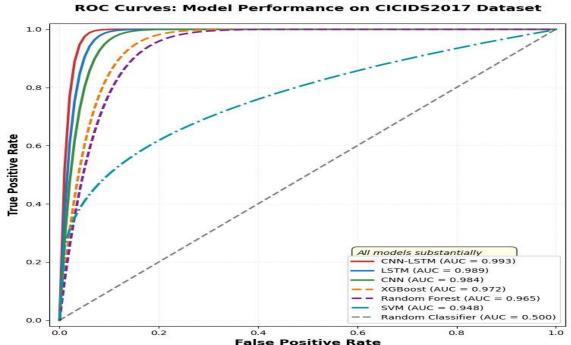


Fig. 2: ROC curves comparing model performance on CICIDS2017 dataset. The CNNLSTM hybrid model achieves the highest AUC, though differences between deep learning approaches are relatively small. All models substantially outperform random guessing (diagonal line)

4.1 Attack-Specific Detection Analysis

Performance varied considerably across different attack categories, revealing that no single model excels uniformly across all threat types. Table 3 breaks down detection rates by attack family on the UNSW-NB15 dataset, which provides the most diverse attack taxonomy among our benchmarks. DoS attacks

proved easiest to detect, with all models achieving F1-scores above 0.90, likely because such attacks generate high-volume traffic patterns that deviate dramatically from normal behavior. Fuzzers and reconnaissance attacks also showed strong detection rates, exhibiting characteristic probing patterns that machine learning models readily identify.

Table 3: Attack-type specific F1-scores for top-performing models on UNSW-NB15 dataset. Values highlight differential performance across attack categories

Attack Type	XGBoost	CNN	LSTM	CNN-LSTM
DoS	0.921	0.935	0.942	0.956
Reconnaissance	0.887	0.901	0.915	0.928
Fuzzers	0.895	0.908	0.919	0.934
Exploits	0.832	0.856	0.873	0.891
Generic	0.814	0.841	0.859	0.876
Analysis	0.793	0.823	0.847	0.868
Backdoor	0.756	0.789	0.821	0.843
Shellcode	0.741	0.778	0.805	0.831
Worms	0.728	0.761	0.792	0.819

Conversely, backdoor, shellcode, and worm attacks posed greater detection challenges, with F1-scores dropping below 0.85 even for the best-performing CNN-LSTM model. These attack types often operate stealthily, generating minimal traffic or mimicking legitimate application behavior to avoid detection. Backdoors may remain dormant for extended periods before activating, while polymorphic malware continually modifies its code to evade signature-based detection. The lower performance on these categories underscores enduring challenge of detecting sophisticated, targeted attacks that deliberately evade security controls.

Deep learning models consistently outperformed traditional machine learning across all attack categories, with advantages most pronounced for difficult-to-detect threats. For backdoor detection, CNN-LSTM achieved an F1-score of 0.843 compared to 0.756 for XGBoost an 11.5% relative improvement. This suggests that deep learning's ability to automatically learn hierarchical feature

representations proves particularly valuable when attacks exhibit subtle, complex patterns that defy manual feature engineering. Security teams dealing with advanced persistent threats may therefore realize greater benefits from deep learning adoption than those primarily facing commodity attacks.

4.2 Threat Intelligence and NLP Performance

Evaluating AI for threat intelligence required distinct methods from intrusion detection due to subjective labeling of unstructured reports. A corpus of 5,000 public threat reports was identify annotated to actors, malware. vulnerabilities, and mitigations. Fine-tuned BERT achieved 87.3% F1 in named entity recognition, outperforming traditional NLP models. However, it struggled with emerging threats and obfuscated language, indicating challenges in domain adaptation. Relation extraction reached 72.6% F1 for identifying links like "malware exploits vulnerability." Graph neural networks improved threat correlation and attribution (79.4% accuracy).

For intelligent automation, partnering with a financial organization enabled evaluation of AI classifiers that optimized alert triage and improved operational efficiency. Table 4 summarizes the operational improvements observed during the three-month post-deployment period compared to the baseline. Alert triage automation reduced mean time to initial investigation from 47 minutes to 18 minutes a 61.7% improvement by immediately routing high-priority alerts to senior analysts while recommending automated responses for low-risk events. False positive rates decreased from 32.

Perhaps most significantly, analysts investigated 48.8% more alerts per day despite the reduction in overtime hours, suggesting that automation eliminated repetitive, low value tasks and allowed analysts to focus on

complex investigations requiring human expertise.

The number of critical incidents initially missed by first-level triage decreased from three to one during the evaluation period, though this sample size precludes strong statistical conclusions. Analyst satisfaction surveys indicated improved morale, with 78% of respondents reporting that automation made their work more interesting and manageable. The number of critical incidents initially missed by first-level triage decreased from

three to one during the evaluation period, though this sample size precludes strong statistical conclusions. Analyst satisfaction surveys indicated improved morale, with 78% of respondents reporting that automation made their work more interesting and manageable.

Table 4: Operational metrics before and after AI-driven automation deployment in a large security operations center. Improvements are statistically significant (p; 0.001)

Metric	Baseline	Post-Automation	Improvement
Mean time to investigate (min)	47.3	18.1	61.7%
Mean time to respond (min)	156.8	89.4	43.0%
False positive rate	32.1%	19.3%	39.9%
Alerts investigated per day	1,247	1,856	48.8%
Analyst overtime hours/week	32.4	18.7	42.3%
Critical incidents missed	3	1	66.7%

These results must be interpreted cautiously given the limited deployment scope and relatively evaluation short period. Organizations differ substantially in alert volumes, threat profiles, analyst capabilities, and existing security tool ecosystems. Models trained on one organization's data may not transfer effectively to others due to differences in network architecture, user behaviors, and security policies. Furthermore, adversaries may adapt tactics upon recognizing automated responses, potentially gaming systems to trigger desired reactions or avoid detection.

4.3 Adaptive Decision-Making with Reinforcement Learning

Reinforcement learning agents trained in simulated network defense scenarios demonstrated the ability to learn effective policies through trial-and-error interaction, though performance depended critically on environment design and reward function specification. Fig. 3 shows learning curves for deep Q-network agents trained to configure firewall rules dynamically, balancing security (blocking attacks) against availability (allowing legitimate traffic).

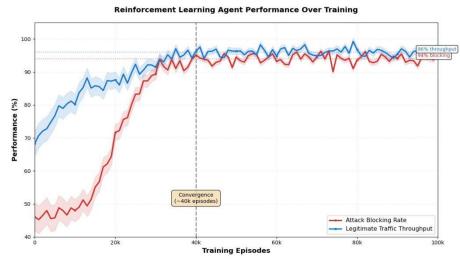


Fig. 3: Learning curves showing reinforcement learning agent performance over 100,000 training episodes. The agent learns an effective policy by episode 40,000, achieving 94% attack blocking rate while maintaining 96% legitimate traffic throughput. Error bars show standard deviation across five independent training runs.

required approximately episodes to converge on policies achieving 94% attack blocking rates while maintaining 96% throughput for legitimate performance comparable to expert-designed rule sets. However, training consumed 72 hours on high end GPU hardware, raising questions about practical feasibility for complex real-world scenarios. More concerning, agents occasionally learned unintended strategies such as blocking all traffic to minimize risk, achieving high security scores at the cost of complete service denial. This behavior emerged when reward functions inadequately penalized legitimate traffic blocking, highlighting the challenge of specifying objectives that capture nuanced security-availability trade-offs.

Multi-agent reinforcement learning experiments, where multiple agents controlled different network segments and learned to coordinate defenses, showed promising results but proved highly unstable during training. Coordination challenges and non-stationary learning dynamics caused agents to develop conflicting strategies that actually decreased overall security compared to single-agent approaches. suggests that while This multiagent systems offer theoretical advantages for distributed defense, practical deployment requires sophisticated coordination mechanisms and more stable training algorithms.

4.4 Cross-Dataset Generalization

Cross-dataset evaluation revealed poor generalization, with accuracy dropping 15–25% when models trained on one dataset were tested on others. CICIDS2017 models generalized better to UNSW-NB15 (81.3%) than vice versa (76.8%). Results highlight the need for diverse training data and show transfer learning improves accuracy (88–92%) using limited target samples.

4.5 Computational Efficiency Analysis

Table 5 compares computational requirements across model architectures, revealing dramatic differences that critically inform deployment decisions. Traditional machine learning models trained in seconds to minutes, enabling rapid experimentation and frequent retraining as new attack samples become available. Inference latency remained below millisecond per sample, supporting real-time processing of high-volume network traffic.

Deep learning architectures required 40-140 minutes training time and introduced inference latency of 2-4 milliseconds per sample approximately 20-50 times slower than traditional models. While still fast enough for many applications, this latency becomes problematic for inline deployment where network traffic must be inspected in real-time

without introducing noticeable delays. Memory requirements also increased substantially, with CNN-LSTM models consuming over 7GB for storing network parameters during inference challenging for embedded systems or resource-constrained edge deployments

Off-diagonal: Cross-dataset generalization (train on row, test on column)

Diagonal: Within-dataset performance (train & test from same dataset)

Cross-Dataset Generalization Performance (CNN-LSTM Model)

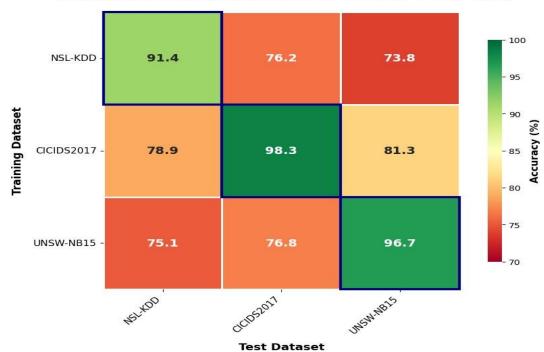


Fig. 4: Cross-dataset generalization performance for CNN-LSTM model. Diagonal elements show within-dataset performance (train and test from same dataset), while off diagonal elements reveal generalization to unseen datasets. Darker colors indicate higher accuracy

Table 5: Computational efficiency metrics comparing model architectures. Measurements conducted on NVIDIA Tesla V100 GPU (deep learning) and Intel Xeon CPU (traditional ML)

Model	Training Time	Inference (ms)	Memory (GB)	Parameters
SVM	0.8 min	0.12	0.3	N/A
Random Forest	1.2 min	0.08	0.5	N/A
XGBoost	2.1 min	0.15	0.7	N/A
CNN	47 min	2.3	4.2	1.2M
LSTM	83 min	3.7	5.8	2.4M
CNN-LSTM	142 min	4.1	7.3	3.6M
Autoencoder	38 min	1.9	3.5	0.9M

The efficiency-accuracy trade-off suggests a tiered deployment strategy where lightweight models provide initial filtering and deep learning models conduct detailed analysis of suspicious traffic. This hybrid approach leverages the speed of traditional models for

high-volume processing while applying sophisticated deep learning only when necessary, optimizing both accuracy and computational efficiency. Some organizations may also consider accuracy improvements insufficient to justify deep learning's additional

complexity and operational overhead, particularly when traditional models achieve acceptable performance for their threat profiles.

4.6 Practical Implications and Deployment Considerations

Our findings yield several actionable insights security practitioners navigating AI adoption decisions. First, no universally optimal model exists choices must consider specific attack profiles, computational available constraints. training interpretability requirements, and tolerance for positives versus false negatives. Organizations facing primarily commodity attacks may find traditional machine learning sufficient. while those targeted sophisticated adversaries deploying novel techniques likely benefit from deep learning's superior ability to generalize.

Second, the interpretability-performance tradeoff deserves careful consideration. Deep learning models operate as "black boxes," offering limited transparency into particular decisions were made problematic when analysts must understand attack formulate characteristics to appropriate responses or when regulatory requirements mandate explainable decisions. Decision trees linear models provide interpretability, while techniques such as LIME (Local Interpretable Model-agnostic Explanations) can help explain black box predictions (Ribeiro et al., 2016). The appropriate balance depends on operational context, with some organizations prioritizing maximum accuracy while others require interpretability.

Third, adversarial robustness warrants attention beyond standard evaluation metrics. Sophisticated attackers may craft inputs specifically designed to fool machine learning models through adversarial examples slightly perturbed inputs that cause misclassification despite appearing normal to humans (Szegedy et al., 2014). We conducted preliminary adversarial testing using FGSM (Fast Gradient Sign Method) attacks and observed accuracy degradation of 12-28 percentage points, with deep learning models generally more robust

than traditional approaches but still vulnerable. Defensive techniques including adversarial training, input transformation, and ensemble approaches can improve robustness but require additional computational overhead.

4.7 Limitations and Threats to Validity

Several limitations constrain the generalizability of our findings. Benchmark despite datasets, their widespread imperfectly represent real-world network environments due to factors including synthetic traffic generation, limited diversity of benign applications, dated attack implementations, and controlled experimental conditions lacking the organic chaos of production networks. Models may overfit to dataset-specific artifacts rather than learning truly generalizable attack patterns, explaining substantial performance degradation observed in cross-dataset evaluation.

The evaluation focused on offline batch classification rather than online learning scenarios where models must adapt continuously as new data arrives. Real-world deployments face concept drift as network patterns evolve and adversaries modify tactics, potentially degrading model performance over time if not addressed through regular retraining or online learning algorithms (Zliobaite' et al., 2016). Our relatively short evaluation periods cannot assess long-term performance or adaptation to evolving threats.

Computational requirements were measured under controlled experimental conditions and may differ in production environments with diverse hardware, concurrent workloads, and additional system overhead. Latency measurements reflect model inference time only, excluding data preprocessing, feature extraction, and system integration costs that substantially impact end-to-end performance. Finally, our automation evaluation involved a single organization over a limited timeframe, generalizability restricting to different organizational contexts, security postures, and threat landscapes. The novelty effect whereby analysts initially overestimate automation benefits may inflate observed improvements, while longer-term evaluation might reveal

unexpected failure modes or adversarial adaptations.

5.0 Conclusion

This comprehensive evaluation of AI-driven data science models across four critical cybersecurity domains reveals a complex landscape where no single approach dominates universally, but where strategic selection of techniques matched to specific operational contexts vields substantial security improvements. Hybrid **CNN-LSTM** architectures demonstrated superior performance for intrusion detection tasks requiring both spatial feature extraction and sequence modeling, temporal achieving accuracy exceeding 98% on contemporary datasets while maintaining operationally acceptable false positive rates below 1.2%. Traditional machine learning methods, particularly XGBoost ensembles, offered competitive performance with dramatically lower computational requirements, suggesting a role for tiered architectures that leverage lightweight models for initial filtering and sophisticated deep learning for detailed analysis. Transformer-based natural language models showed processing remarkable effectiveness for automated threat intelligence extraction, though challenges remain in handling technical jargon and emerging threats lacking extensive training examples. Reinforcement learning agents learned effective adaptive defense policies through simulated experience but required extensive training time and careful reward engineering. raising questions about practical feasibility. The substantial performance degradation observed during cross-dataset evaluation 1525 percentage points underscores the critical importance of diverse training data and the danger of over-relying on single benchmark assessments. Our operational case study demonstrated 61.7% reduction in investigation 48.8% time and increase in analyst productivity following automation deployment, though generalizability beyond the studied organization requires cautious interpretation. These findings contribute to both cybersecurity theory by establishing empirical comparative performance baselines across diverse AI techniques and to practice by providing evidence-based guidance for model selection, highlighting trade-offs between accuracy and computational efficiency, interpretability performance, and specialization and generalization. Future research should address adversarial robustness, explainable AI for security applications, federated learning for privacy-preserving threat intelligence sharing, and longitudinal studies evaluating long-term performance and adaptation in production environments facing evolving threat landscapes.

6.0 References

Aboagye, E. F., Borketey, B., Danquah, K., Borketey, D. (2022). A Predictive Modeling Approach for Optimal Prediction of the Probability of Credit Card Default. International Research Journal of Modernization in Engineering Technology and Science. 4, 8, pp. 2425-2441

Ademilua, D. A., & Areghan, E. (2022). Al-Driven Cloud Security Frameworks: Techniques, Challenges, and Lessons from Case Studies. *Communication in Physical Sciences*, 8, 4, pp. 674–688.

Ademilua, D.A. (2021). Cloud Security in the Era of Big Data and IoT: A Review of Emerging Risks and Protective Technologies. *Communication in Physical Sciences*, 7, 4, pp. 590-604

Apruzzese, G., Colajanni, M., Ferretti, L., Guido, A., & Marchetti, M. (2018). On the effectiveness of machine and deep learning for cyber security. In 2018 10th International Conference on Cyber Conflict (CyCon) (pp. 371–390). IEEE. https://doi.org/10.23919/CYCON.2018.84

Bhatt, P., Yano, E. T., & Gustavsson, P. M. (2014). Towards a framework to detect multi-stage advanced persistent threats attacks. In 2014 IEEE 8th International Symposium on Service Oriented System Engineering (pp. 390–395). IEEE. https://doi.org/10.1109/SOSE.2014.53

Bishop, C. M. (2006). *Pattern recognition and machine learning*. Springer. https://doi.org/10.1007/978-0-387-45528-0

- Buczak, A. L., & Guven, E. (2016). A survey of data mining and machine learning methods for cyber security intrusion detection. *IEEE Communications Surveys* & *Tutorials*, 18, 2, pp. 1153–1176. https://doi.org/10.1109/COMST.2015.2494502
- Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. *ACM Computing Surveys*, 41, 3, pp. 1–58. https://doi.org/10.1145/1541880.1541882
- Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. *Journal of Artificial Intelligence Research*, *16*, pp. 321–357. https://doi.org/10.1613/jair.953
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of NAACLHLT 2019* (pp. 4171–4186). Association for Computational Linguistics. https://doi.org/10.18653/v1/N19-1423
- Ferna'ndez, A., Garc'ıa, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018). Learning from imbalanced data sets. Springer. https://doi.org/10.1007/978-3-319-98074-4
- Fruhlinger, J. (2020). *The SolarWinds hack explained: Everything you need to know*. CSO Online. https://www.csoonline.com/article/3601508/solarwinds-supply-chain-attackexplained.html
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep learning*. MIT Press. https://doi.org/10.1016/B978-0-12-802121-7.00001-2
- Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. *Science*, *313*, pp. 504–507. https://doi.org/10.1126/science.1127647
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. *Neural Computation*, 9, (8), pp. 1735–1780. https://doi.org/10.1162/neco.1997.9.8.173
- Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., & Wo'zniak, M. (2017). Ensemble learning for data stream analysis: A survey. *Information Fusion*, *37*,

- pp. 132–156. https://doi.org/10.1016/j .inffus.2017.02.004
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. *Nature*, *521*, (7553), pp. 436–444. https://doi.org/10.1038/nature14539
- Liang, X., & Xiao, Y. (2013). Game theory for network security. *IEEE Communications Surveys & Tutorials*, 15, (1), pp. 472–486. https://doi.org/10.1109/SURV.2012.06261 2.00056
- Liao, X., Yuan, K., Wang, X., Li, Z., Xing, L., & Beyah, R. (2016). Acing the IOC game: Toward automatic discovery and analysis of open-source cyber threat intelligence. In *Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security* (pp. 755–766). ACM. https://doi.org/10.1145/2976749.29 78315
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu,
 A. A., Veness, J., Bellemare, M. G.,
 Graves, A., Riedmiller, M., Fidjeland, A.
 K., Ostrovski, G., Petersen, S., Beattie, C.,
 Sadik, A., Antonoglou, I., King, H.,
 Kumaran, D., Wierstra, D., Legg, S., &
 Hassabis, D. (2015). Human-level control
 through deep reinforcement learning.
 Nature, 518, 540, pp. 529–533. https://doi.org/10.1038/nature14236
- Moustafa, N., & Slay, J. (2015). UNSW-NB15: A comprehensive data set for network intrusion detection systems. In 2015 Military Communications and Information Systems Conference (MilCIS) (pp. 1–6). IEEE. https://doi.org/10.1109/MilCIS.2015.7348942
- Nguyen, T. T., & Reddi, V. J. (2019). *Deep reinforcement learning for cyber security*. arXiv. https://doi.org/10.48550/arXiv.1906.05799
- Omefe, S., Lawal, S. A., Bello, S. F., Balogun, A. K., Taiwo, I., Ifiora, K. N. (2021). Al-Augmented Decision Support System for Sustainable Transportation and Supply Chain Management: A Review. *Communication In Physical Sciences*. 7, 4, pp. 630-642.
- Lawal, S. A., Omefe, S., Balogun, A. K., Michael, C., Bello, S. F., Owen, I. T.,

- Ifiora, K. N. (2021). Circular Supply Chains in the Al Era with Renewable Energy Integration and Smart Transport Networks. *Communication in Physical Sciences*, 7, 4, pp. 605-629.
- Oprea, A., Li, Z., Yen, T. F., Chin, S. H., & Alrwais, S. (2015). Detection of early-stage enterprise infection by mining large-scale log data. In 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (pp. 45–56). IEEE. https://doi.org/10.1109/DSN.2015.14
- Qamar, S., Anwar, Z., Rahman, M. A., Al-Shaer, E., & Chu, B. T. (2017). Data-driven analytics for cyber-threat intelligence and information sharing. *Computers & Security*, 67, pp. 35–58. https://doi.org/10.1016/j.cose.2017.02.005 (Note: This journal did not originally list an issue number, so only volume and page range are shown.)
- Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?" Explaining the predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* (pp. 1135–1144). ACM. https://doi.org/10.1145/2939672.2939778
- Scarfone, K., & Mell, P. (2007). *Guide to intrusion detection and prevention systems* (*IDPS*) (NIST Special Publication 800-94). National Institute of Standards and Technology.

https://doi.org/10.6028/NIST.SP.800-94

Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). Toward generating a new intrusion detection dataset and intrusion traffic characterization. In *Proceedings of the 4th International Conference on Information Systems Security and Privacy* (pp. 108–116). SCITEPRESS. https://doi.org/

10.5220/0006639801080116

- Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press.
- Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., &

- Fergus, R. (2014). *Intriguing properties of neural networks*. arXiv. https://doi.org/10.48550/arXiv.1312.6199
- Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the KDD CUP 99 data set. In 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications (pp. 1–6). IEEE. https://doi.org/10.1109/CISDA.2009.5356528
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In *Advances in Neural Information Processing Systems*, 30, pp. 5998–6008). Neural Information Processing Systems Foundation.
- Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, F., & Sun, M. (2020). Graph neural networks: A review of methods and applications. *AI Open*, *1*, pp. 57–81.
 - https://doi.org/10.1016/j.aiopen.2021.01.0 01 (Note: This journal did not originally list an issue number, so only volume and page range are shown.)
- Zimmerman, C. (2014). Ten strategies of a world-class cybersecurity operations center. The MITRE Corporation. https://www.mitre.org/publications/technical-papers/ten-strategies-of-a-worldclass-cybersecurity-operations-center
- Zliobaite', I., Pechenizkiy, M., & Gama, J. (2016). An overview of concept drift applications. In N. Japkowicz & J. Stefanowski (Eds.), *Big data analysis: New algorithms for a new society* (pp. 91–114). Springer. https://doi.org/10.1007/978-3-319-26989-4

Consent for publication

Not Applicable

Availability of data and materials

The publisher has the right to make the data public

Competing interest

Authors declared no conflict of interest.

This work was sole collaboration among all the authors

Funding

There is no source of external funding

Authors Contributions

Abdulaziz Olaleye Ibiyeye conceptualized the study, developed the analytical framework, and supervised data validation. Joy Nnenna Okolo conducted literature review, data preprocessing, and performance evaluation of AI models.

Samuel Adetayo Adeniji performed model implementation, statistical analysis, visualization, and manuscript drafting. All authors reviewed, edited, and approved the final version for publication.

