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Abstract : The exponential growth of cyber 

threats has necessitated a paradigm shift from 

traditional signature-based security 

mechanisms to sophisticated artificial 

intelligence-driven approaches capable of 

adapting to evolving attack vectors. This study 

presents a comprehensive evaluation of 

contemporary AI and data science models 

across four critical cybersecurity domains: 

intrusion detection systems, threat analysis, 

intelligent automation, and adaptive decision-

making frameworks. We systematically 

evaluate multiple machine learning 

architectures including deep neural networks, 

ensemble methods, and reinforcement learning 

algorithms using benchmark datasets NSL-

KDD, CICIDS2017, and UNSW-NB15. Our 

empirical analysis reveals that hybrid models 

combining convolutional neural networks with 

long short-term memory architectures achieve 

superior performance in sequential attack 

pattern recognition, attaining accuracy rates 

exceeding 98.3% while maintaining 

acceptable false positive rates below 1.2%. 

Furthermore, transformer-based models 

demonstrate remarkable capabilities in 

natural language processing for threat 

intelligence extraction, while reinforcement 

learning agents show promising adaptability in 

dynamic response scenarios despite 

computational overhead constraints. The 

comparative framework developed herein 

provides practitioners with evidence-based 

guidance for model selection tailored to 

specific organizational contexts, security 

requirements, and computational resources. 

This work bridges the gap between theoretical 

AI research and practical cybersecurity 

implementation, offering actionable insights 

for security operations centers facing real-

world deployment challenges in increasingly 

hostile digital environments. 
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1.0  Introduction 
 

Artificial Intelligence (AI) and Machine 

Learning (ML) are transforming 

interdisciplinary fields by creating advanced 

systems that enable accurate data 

interpretation, predictive analytics, and 

autonomous operations (Ademilua, 2021). The 

increasing integration of these technologies 

supports intelligent architectures that boost 

analytical accuracy and operational efficiency 

(Ademilua & Areghan, 2022). Through 

intelligent automation and data-driven 

reasoning, they offer innovative solutions to 

modern challenges (Aboagye et al., 2022). 

Their applications enhance data modeling, 

decision-making, and autonomous navigation. 

Furthermore, emerging methods advance 

computational intelligence and predictive 

performance, Ultimately, AI and ML reshape 

automation, analytical accuracy, and the design 
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of intelligent systems (Omefe et al., 2021; 

Lawal et al., 2021). 

The contemporary digital landscape presents 

security professionals with an unprecedented 

challenge: defending against adversaries who 

leverage automation, artificial intelligence, and 

sophisticated tactics that evolve faster than 

traditional defense mechanisms can adapt. 

Consider the 2017 Wanna Cry ransomware 

attack, which compromised over 200,000 

computers across 150 countries within mere 

hours, or the Solar Winds supply chain breach 

discovered in 2020 that went undetected for 

months’ despite affecting numerous Fortune 

500 companies and government agencies 

(Fruhlinger, 2020). These incidents underscore 

a fundamental reality conventional signature-

based detection systems and manual analysis 

workflows cannot keep pace with modern 

cyber threats that exhibit polymorphic 

behavior, employ advanced evasion 

techniques, and exploit zero-day 

vulnerabilities before patches become 

available. 

The cybersecurity industry generates 

staggering volumes of security data daily. A 

typical enterprise security operations center 

processes millions of events per day, yet 

research suggests that security analysts can 

thoroughly investigate only a small fraction of 

generated alerts due to resource constraints and 

alert fatigue (Bhatt et al., 2014). This deluge of 

information paradoxically creates blind spots 

where sophisticated attacks hide in plain sight, 

camouflaged within legitimate network traffic. 

Traditional rule-based systems, while effective 

against known threats, struggle with the 

detection of novel attack patterns and generate 

false positive rates that overwhelm human 

analysts, leading to what practitioners 

colloquially term ”alert fatigue” a condition 

where genuine threats become lost in noise. 

Artificial intelligence and machine learning 

have emerged as promising solutions to these 

challenges, offering capabilities that transcend 

the limitations of static rule systems. Unlike 

conventional approaches that rely on 

predefined signatures, AI-driven models can 

learn complex patterns from historical data, 

identify subtle anomalies indicative of 

malicious activity, and adapt their detection 

strategies as threat landscapes evolve. Deep 

learning architectures, particularly 

convolutional neural networks and recurrent 

neural networks, have demonstrated 

remarkable success in computer vision and 

natural language processing domains, 

prompting researchers to explore their 

applicability to cybersecurity problems 

(Goodfellow et al., 2016). The fundamental 

question, however, remains: which AI 

approaches work best for specific security 

challenges, and what trade-offs do 

practitioners face when deploying these 

systems in production environments? 

Despite growing academic interest in AI-

driven cybersecurity, significant gaps persist 

between research and practice. Many 

published studies evaluate models on outdated 

datasets or synthetic scenarios that poorly 

reflect contemporary attack sophistication. 

Furthermore, researchers often optimize 

exclusively for accuracy metrics while 

overlooking operational concerns such as 

inference latency, computational resource 

requirements, model interpretability, and 

resilience against adversarial manipulation 

factors that critically determine real-world 

viability (Apruzzese et al., 2018). Security 

operations centers need systems that not only 

detect threats accurately but also explain their 

reasoning to human analysts, operate within 

infrastructure constraints, and maintain 

performance when adversaries deliberately 

attempt to evade detection. 

The intersection of AI and cybersecurity spans 

intrusion detection, threat intelligence, 

intelligent automation, and adaptive decision-

making. These domains enhance monitoring, 

analysis, and response while reducing manual 

workload. Each offers unique AI applications, 

yet comprehensive studies integrating all four 

dimensions remain limited within current 

cybersecurity research literature. 

This study addresses these gaps through a 

rigorous comparative evaluation of state-of 

the-art AI models across intrusion detection, 

threat analysis, intelligent automation, and 

adaptive decision-making. Our investigation 

examines traditional machine learning 
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algorithms alongside contemporary deep 

learning architectures and reinforcement 

learning approaches, assessing performance 

not only through accuracy metrics but also 

considering operational feasibility, 

computational efficiency, interpretability, and 

robustness. By evaluating models across 

multiple benchmark datasets that reflect 

diverse attack scenarios and network 

environments, we provide insights into 

generalization capabilities and domain-

specific performance characteristics. 

The primary objectives of this research are 

threefold. First, we aim to establish empirical 

evidence regarding which AI architectures 

demonstrate superior performance for specific 

cybersecurity tasks, moving beyond theoretical 

claims to quantifiable results. Second, we seek 

to illuminate the practical trade-offs inherent in 

different modeling approaches the balance 

between accuracy and speed, complexity and 

interpretability, specialization and 

generalization. Third, we endeavor to provide 

actionable guidance for security practitioners 

who must navigate the proliferation of AI 

solutions and select approaches appropriate for 

their organizational contexts, threat models, 

and resource constraints. Rather than 

advocating for a single ”best” solution, we 

recognize that optimal choices depend on 

specific requirements, constraints, and 

priorities that vary across organizations. 
 

2.0 Theoretical Framework 
 

The application of artificial intelligence to 

cybersecurity problems rests upon 

fundamental principles from machine learning 

theory, network security, and decision science. 

Understanding these foundations illuminates 

why certain AI approaches succeed or fail in 

security contexts and guides the development 

of more effective defensive systems. This 

section synthesizes relevant literature across 

multiple domains to establish the conceptual 

framework undergirding our empirical 

investigation. 
 

2.1  Machine Learning Paradigms in 

Cybersecurity 
 

 

Machine learning encompasses three primary 

paradigms supervised, unsupervised, and 

reinforcement learning each offering distinct 

advantages for security applications (Bishop, 

2006). Supervised learning algorithms train on 

labeled datasets where each example includes 

both input features and corresponding output 

labels. For intrusion detection, this translates to 

training data comprising network traffic 

samples labeled as either benign or malicious, 

potentially with fine-grained attack type 

classifications. Support vector machines, 

decision trees, random forests, and neural 

networks represent common supervised 

approaches that have demonstrated 

effectiveness in binary and multi-class 

classification tasks (Buczak and Guven, 2016). 

The supervised paradigm’s primary 

limitation stems from its dependence on 

labeled training data, which proves expensive 

to obtain and rapidly becomes obsolete as 

attack techniques evolve. Real-world network 

environments generate predominantly benign 

traffic, creating severe class imbalance where 

malicious samples constitute less than 1% of 

observations a condition that causes standard 

learning algorithms to achieve high accuracy 

simply by predicting the majority class while 

failing to detect actual attacks (Fern´andez et 

al., 2018). Sophisticated resampling 

techniques, cost-sensitive learning, and 

ensemble methods help address imbalance, yet 

the fundamental challenge of obtaining 

representative labeled samples of emerging 

threats persists. 

Unsupervised learning addresses the labeled 

data bottleneck by discovering patterns 

and anomalies without requiring explicit 

labels. Clustering algorithms partition network 

traffic into groups based on similarity, enabling 

identification of outliers that deviate from 

normal behavior patterns. Autoencoders, a 

class of neural networks trained to reconstruct 

their inputs, learn compressed representations 

of normal network traffic and flag instances 

that reconstruct poorly as potential anomalies 

(Hinton & Salakhutdinov, 2006). These 

approaches excel at detecting previously 

unseen attacks that differ significantly from 

normal traffic patterns, though they struggle 

with subtle intrusions that closely mimic 

legitimate behavior. 
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Reinforcement learning represents a third 

paradigm where agents learn optimal policies 

through trial-and-error interaction with 

environments, receiving rewards for beneficial 

actions and penalties for detrimental ones. In 

cybersecurity contexts, reinforcement learning 

agents can learn dynamic defense strategies 

that adapt to evolving threats, potentially 

outmaneuvering adversaries in game-theoretic 

scenarios (Nguyen & Reddi, 2019). However, 

the computational expense of exploring vast 

action spaces and the challenge of defining 

appropriate reward functions that capture 

security objectives without encouraging 

unintended behaviors have limited practical 

deployment. 
 

2.2 Deep Learning Architectures for Security 
 

Deep neural networks have revolutionized 

machine learning by automatically extracting 

hierarchical feature representations from raw 

data, eliminating manual feature engineering 

that previously constituted a primary 

bottleneck in model development. 

Convolutional neural networks, originally 

developed for image recognition, excel at 

detecting local spatial patterns through 

convolution operations that slide learned filters 

across input data (LeCun et al., 2015). Applied 

to network traffic, CNNs can identify 

characteristic byte sequences or packet header 

patterns indicative of specific attack types. 

Their parameter sharing and local connectivity 

properties make them computationally 

efficient and somewhat invariant to the 

position of malicious patterns within network 

flows. 

Recurrent neural networks and their 

variants long short-term memory networks and 

gated recurrent units process sequential data by 

maintaining internal state that captures 

temporal dependencies. Network traffic 

inherently exhibits temporal structure where 

packet sequences follow predictable patterns 

for legitimate applications but deviate during 

attacks. LSTM architectures address the 

vanishing gradient problem that plagued 

earlier RNN designs, enabling learning of 

long-range dependencies spanning hundreds of 

time steps (Hochreiter & Schmidhuber, 1997). 

This capability proves particularly valuable for 

detecting multi-stage attacks where individual 

packets appear benign but their sequence 

reveals malicious intent. 

Recent years have witnessed the 

emergence of transformer architectures that 

employ self-attention mechanisms to model 

relationships between all positions in a 

sequence simultaneously, overcoming the 

sequential processing bottleneck of RNNs 

(Vaswani et al., 2017). While transformers 

have achieved remarkable success in natural 

language processing, their application to 

cybersecurity remains relatively nascent. 

These architectures show promise for 

processing unstructured threat intelligence 

reports, correlating security events across 

distributed systems, and identifying complex 

attack patterns that manifest across extended 

time horizons. 
 

2.3 Intrusion Detection Systems: Evolution 

and Taxonomy 
 

Intrusion detection systems constitute a 

cornerstone of network defense, continuously 

monitoring traffic and system activities to 

identify potential security violations. Early 

IDS implementations employed signature-

based detection, comparing observed 

behaviors against databases of known attack 

patterns an approach analogous to antivirus 

software (Scarfone & Mell, 2007). While 

effective against documented threats, 

signature-based systems inherently fail to 

detect zero-day attacks and require constant 

manual updates as new threats emerge. The 

Snort intrusion detection system exemplifies 

this approach, utilizing a rule-based engine that 

matches packet contents and headers against 

predefined patterns. 

Anomaly-based detection systems model 

normal behavior and flag deviations as 

potential intrusions, theoretically enabling 

detection of novel attacks without prior 

knowledge of specific signatures. Statistical 

approaches model network features using 

probability distributions and identify outliers 

through hypothesis testing. Machine learning 

methods learn normal behavior patterns from 

training data and classify observations based 

on similarity to learned models (Chandola et 

al., 2009). The challenge lies in defining 
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”normal” behavior for complex, dynamic 

network environments where legitimate 

activities exhibit significant variability and 

where attacks may gradually shift baselines 

through slow poisoning. 

Contemporary research increasingly favors 

hybrid approaches that combine 

signaturebased and anomaly-based detection, 

leveraging the strengths of both paradigms 

while mitigating individual weaknesses. 

Ensemble methods that aggregate predictions 

from multiple diverse models often outperform 

individual classifiers by reducing variance and 

capturing complementary patterns (Krawczyk 

et al., 2017). Deep learning architectures with 

multiple processing layers can simultaneously 

learn both explicit attack signatures at lower 

layers and higher-level behavioral anomalies at 

upper layers, effectively implementing hybrid 

detection within a unified framework. 
 

2.4 Threat Intelligence and Analysis 
 

Cyber threat intelligence encompasses the 

collection, processing, and analysis of 

information regarding threat actors, their 

tactics, techniques, procedures, and indicators 

of compromise. Threat intelligence platforms 

aggregate data from numerous sources 

including security vendor feeds, open-source 

intelligence, dark web monitoring, and 

information sharing communities (Qamar et 

al., 2017). The challenge lies in transforming 

this deluge of unstructured and semi-structured 

data into actionable insights that inform 

defensive strategies and incident response. 

Natural language processing techniques 

enable automated extraction of entities, 

relationships, and indicators from threat 

reports, security bulletins, and malware 

analyses. Named entity recognition identifies 

threat actors, malware families, vulnerabilities, 

and affected products within text. Relation 

extraction determines associations between 

entities, constructing knowledge graphs that 

map the threat landscape. Machine learning 

classifiers categorize threat reports by severity, 

relevance, and recommended actions, helping 

analysts prioritize investigation efforts (Liao et 

al., 2016). However, the technical jargon, 

evolving terminology, and deliberately 

obfuscated language used in underground 

forums pose significant challenges for NLP 

systems trained on general-purpose corpora. 

Predictive threat analytics aim to forecast 

future attacks by identifying patterns in 

historical incidents and correlating with 

external indicators such as geopolitical events, 

vulnerability disclosures, or observed 

reconnaissance activities. Time series models 

and sequence prediction algorithms can detect 

trends in attack frequencies, methods, or target 

selection. Graph neural networks analyze the 

topology of attack propagation across 

networks, potentially enabling early detection 

of coordinated campaigns (Zhou et al., 2020). 

Yet the fundamental unpredictability of human 

adversaries and the potential for black swan 

events limit the reliability of predictions, 

requiring analysts to maintain skepticism and 

account for uncertainty. 
 

2.5 Intelligent Automation and 

Orchestration 
 

Security operations centers face the dual 

challenge of managing an overwhelming 

volume of alerts while addressing a global 

shortage of skilled cybersecurity professionals. 

Security orchestration, automation, and 

response platforms emerged to address these 

pressures by automating routine tasks, 

integrating disparate security tools, and 

orchestrating coordinated responses to 

detected threats (Zimmerman, 2014). SOAR 

systems employ playbooks structured 

workflows that define sequences of automated 

actions triggered by specific alert types or 

conditions to standardize and accelerate 

incident response. 

Machine learning enhances automation by 

enabling systems to learn from analyst 

decisions, gradually expanding the range of 

incidents that can be handled without human 

intervention. Supervised learning models 

trained on historical incident data can classify 

alerts by severity, route them to appropriate 

analysts, and recommend initial response 

actions (Oprea et al., 2015). Reinforcement 

learning agents could potentially learn optimal 

response strategies through simulated or real-

world experience, adapting to new attack types 

and environmental conditions. However, the 

high stakes of security operations demand 
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extreme reliability and explainability, creating 

tension with the ”black box” nature of many 

machine learning models. 

The integration of AI-driven automation with 

human expertise raises important questions 

about trust, accountability, and the appropriate 

level of autonomy for security systems. Fully 

autonomous response systems risk causing 

operational disruptions through false positives 

or being manipulated by adversaries who craft 

inputs designed to trigger specific automated 

reactions. Human-in-the-loop designs that 

require analyst approval for critical actions 

provide safety guarantees but sacrifice speed. 

Finding the optimal balance requires careful 

analysis of specific use cases, potential failure 

modes, and organizational risk tolerance. 
 

2.6 Adaptive Decision-Making and 

Reinforcement Learning 
 

Cyber defense is a sequential decision-making 

process where defenders act against adaptive 

adversaries. Game theory models these 

interactions as repeated games, identifying 

stable Nash equilibria though complex security 

games are computationally difficult to solve 

(Liang & Xiao, 2013). Reinforcement learning 

(RL) provides a practical alternative, enabling 

agents to learn optimal defense policies 

through experience (Sutton & Barto, 2018). 

Deep RL extends this to high-dimensional data 

like network traffic. Applications include 

adaptive intrusion detection and firewall 

optimization. However, RL faces challenges 

such as large state spaces, simulation limits, 

and vulnerability to adversarial exploitation, 

requiring robust design and careful reward 

modeling. This integrated perspective 

distinguishes our work from prior studies that 

examine individual domains in 

isolation. 

3.0 Methodology 

3.1 Research Design and Approach 
 

Our investigation employs a mixed-method 

approach combining systematic literature 

review with extensive empirical evaluation. 

We first conducted a comprehensive review of 

peer-reviewed publications from 2015 to 2021 

to identify state-of-the-art AI techniques and 

establish baseline performance expectations. 

This review process involved searching major 

academic databases including IEEE Xplore, 

ACM Digital Library, and Google Scholar 

using keywords related to machine learning, 

deep learning, intrusion detection, and 

cybersecurity. From an initial pool of 347 

papers, we selected 89 highly relevant studies 

that provided quantitative results, detailed 

methodological descriptions, and insights into 

practical deployment challenges. 

The empirical component implements and 

evaluates multiple AI models across 

standardized benchmark datasets, enabling 

direct performance comparisons under 

controlled conditions. Rather than proposing 

novel architectures, our focus lies in rigorous 

comparative analysis of established techniques 

to determine which approaches demonstrate 

superior performance for specific tasks. This 

comparative framework addresses a critical 

gap in literature where studies typically 

evaluate one or two models against baselines 

rather than conducting comprehensive multi-

model assessments. 
 

3.2 Datasets and Data Preprocessing 
 

We selected three widely-used benchmark 

datasets that collectively represent diverse 

network environments, attack types, and traffic 

characteristics. The NSL-KDD dataset 

represents an improved version of the original 

KDD Cup 1999 dataset, removing redundant 

records that caused learning algorithms to be 

biased toward frequent instances (Tavallaee et 

al., 2009). NSL-KDD contains approximately 

125,000 training samples and 22,000 test 

samples across four attack categories: denial of 

service, probe, remote-to-local, and user-to-

root attacks. While dated, this dataset enables 

comparison with numerous prior studies and 

provides a baseline for evaluating fundamental 

classification capabilities. 

The CICIDS2017 dataset addresses limitations 

of older benchmarks by capturing 

contemporary network traffic and attack 

patterns using realistic infrastructure and 

modern protocols (Sharafaldin et al., 2018). 

Collected over five days, the dataset includes 

benign background traffic alongside diverse 

attacks including brute force, heartbleed, 

botnet, DoS, DDoS, web attacks, and 

infiltration. With over 2.8 million flows and 78 
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features extracted using CICFlowMeter, 

CICIDS2017 provides rich temporal and 

statistical characteristics suitable for 

evaluating both traditional machine learning 

and deep learning approaches. 

The UNSW-NB15 dataset offers another 

contemporary benchmark created using IXIA 

PerfectStorm tool to generate hybrid normal 

and attack traffic (Moustafa and Slay, 2015). 

This dataset contains nine attack families 

including fuzzers, analysis, backdoors, DoS, 

exploits, generic, reconnaissance, shellcode, 

and worms. With 49 features spanning flow 

statistics, protocol-specific attributes, and 

connection properties, UNSW-NB15 enables 

assessment of model generalization across 

different feature spaces and attack taxonomies. 

Data preprocessing followed established best 

practices while maintaining consistency across 

experiments. Missing values, which occurred 

rarely in selected datasets, were imputed using 

median values for numeric features. 

Categorical features such as protocol type and 

service were encoded using one-hot encoding, 

expanding the feature space but enabling 

models to learn protocol-specific patterns. 

Feature scaling employed standardization 

(zero mean, unit variance) rather than 

normalization to preserve information about 

outliers potentially crucial for anomaly 

detection. For deep learning models processing 

raw network traffic, we created fixed-length 

sequences by padding or truncating flows, 

experimenting with sequence lengths from 10 

to 100 packets to identify optimal 

configurations. 

Class imbalance presented a significant 

challenge, particularly for minority attack 

classes that constitute less than 1% of samples. 

We addressed this through stratified sampling 

to maintain class distributions during train-test 

splits and explored multiple techniques 

including random oversampling of minority 

classes, synthetic minority oversampling 

technique (SMOTE) that generates synthetic 

examples along linear interpolations between 

existing minority samples, and cost-sensitive 

learning that assigns higher misclassification 

penalties to minority classes (Chawla et al., 

2002). Comparing these approaches revealed 

that SMOTE generally yielded optimal balance 

between minority class recall and overall 

accuracy, though specific choices depended on 

individual model architectures and attack 

types. 

Table 1 summarizes key characteristics of the 

three benchmark datasets employed in our 

evaluation. The table illustrates the diversity of 

samples sizes, feature spaces, and attack 

taxonomies, underscoring the importance of 

multi-dataset evaluation to assess 

generalization capabilities rather than 

overfitting to idiosyncrasies of specific 

benchmarks. 

3.3 Model Architectures and 

Implementations 
 

We implemented and evaluated twelve distinct 

model architectures spanning traditional 

machine learning, deep learning, and 

reinforcement learning paradigms. Traditional 

machine learning models included support 

vector machines with radial basis function 

kernels, random forests with 100 estimators, 

and gradient boosting machines using 

XGBoost. These models serve as baselines 

representing mature, well-understood 

techniques commonly deployed in production 

environments. 

Deep learning architectures comprised 

convolutional neural networks with three 

convolutional layers followed by max pooling 

and dense classification layers; recurrent 

neural networks using two-layer LSTM 

networks with 128 hidden units per layer; and 

hybrid CNN-LSTM architectures that apply  

convolutional layers to extract local patterns 

before feeding outputs to LSTM layers to 

capture temporal dependencies. We also 

implemented autoencoders for unsupervised 

anomaly detection, consisting of encoder 

networks that compress inputs to 32-

dimensional latent representations and decoder 

networks that reconstruct original inputs, with 

reconstruction error serving as an anomaly 

score. 

For threat intelligence tasks involving natural 

language processing, we adapted pretrained 

transformer models including BERT 

(Bidirectional Encoder Representations from 



Communication in Physical Sciences, 2022, 8(4):745-763 752 
 

 

Transformers), fine-tuning them on domain-

specific security corpora (Devlin et al., 2019). 

The transformer architecture’s multi-headed 

self-attention mechanism enables modeling 

complex relationships between threat 

indicators mentioned at different positions 

within reports. 

 
 

Table 1: Characteristics of benchmark datasets used for model evaluation 
 

Characteristic NSL-KDD CICIDS2017 UNSW-NB15 

Total samples 148,517 2,830,540 257,673 

Training samples 125,973 2,264,432 175,341 

Test samples 22,544 566,108 82,332 

Number of features 41 78 49 

Attack categories 4 7 9 

Benign percentage 53.5% 80.3% 56.0% 

Year created 2009 2017 2015 

Traffic capture Simulated Realistic Hybrid 

Reinforcement learning agents implemented 

deep Q-networks that learn state-action value 

functions using experience replay and target 

networks to stabilize training (Mnih et al., 

2015). We designed simplified simulation 

environments modeling firewall configuration 

and incident response scenarios where agents 

learn policies through trial-and-error 

interaction, receiving rewards for correctly 

blocking attacks while minimizing false 

positives. All models were implemented using 

Python 3.8 with TensorFlow 2.4 and PyTorch 

1.8 for deep learning architectures, and scikit-

learn 0.24 for traditional machine learning 

algorithms. Training employed NVIDIA Tesla 

V100 GPUs with 32GB memory, enabling 

parallel evaluation of multiple configurations. 

Hyperparameter optimization used 5-fold 

cross-validation on training data with grid 

search for smaller models and random search 

for deep learning architectures with vast 

hyperparameter spaces. 
 

3.4 Evaluation Metrics and Statistical 

Analysis 

Performance evaluation required metrics 

capturing multiple dimensions of model 

quality beyond simple accuracy, which proves 

misleading for imbalanced datasets where 

predicting the majority class yields high 

accuracy despite complete failure to detect 

attacks. 

We computed precision (positive predictive 

value), recall (sensitivity), and F1-score 

(harmonic mean of precision and recall) for 

each attack class. The F1-score provides a 

balanced measure that requires both high 

precision and high recall, penalizing models 

that sacrifice one for the other. 

For intrusion detection scenarios where 

security analysts must investigate flagged 

incidents, false positive rate assumes critical 

importance. A model generating thousands of 

false alarms daily renders itself operationally 

useless regardless of detection accuracy, as 

analysts cannot feasibly investigate such 

volumes. We therefore report false positive 

rates alongside true positive rates, plotting 

receiver operating characteristic (ROC) curves 

and computing area under the curve (AUC) to 

assess performance across different threshold 

settings. 

Computational efficiency metrics include 

training time, inference latency, memory 

requirements, and throughput measured as 

samples processed per second. These 

operational characteristics determine whether 

models can deploy in resource-constrained 

environments or meet real-time processing 

requirements. We measured inference latency 

as wall-clock time for processing individual 

samples, acknowledging that batch processing 
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typically achieves higher throughput through 

parallelization. 

Statistical significance testing employed paired 

t-tests comparing model performance across 

ten repeated trials with different random 

initializations. We report mean performance 

and standard deviations to quantify variability. 

Effect sizes using Cohen’s d complement p-

values, providing information about practical 

significance beyond statistical significance. 

For cross-dataset generalization experiments, 

we applied McNemar’s test to assess whether 

error patterns differed significantly between 

models. 
 

3.5 Experimental Procedures 
 

Training procedures followed standard 

practices while maintaining consistency to 

ensure fair comparisons. We allocated 80% of 

data for training and 20% for testing, using 

stratified sampling to preserve class 

distributions. Within training data, 20% was 

reserved for validation to guide 

hyperparameter tuning and early stopping. 

Deep learning models trained for up to 100 

epochs with early stopping triggered if 

validation loss failed to improve for 10 

consecutive epochs, preventing overfitting 

while allowing sufficient training time. 

Learning rate schedules employed initial 

values of 0.001 with exponential decay 

reducing the rate by 10% every 20 epochs. This 

schedule allows rapid initial progress while 

enabling fine-grained optimization in later 

epochs. Regularization techniques including 

L2 weight decay (coefficient 0.0001) and 

dropout (probability 0.3) were applied to deep 

learning architectures to improve 

generalization. 

For reinforcement learning experiments, 

agents trained in simulated environments for 

100,000 episodes. We employed epsilon-

greedy exploration with epsilon decaying from 

1.0 to 0.1 over the first 50,000 episodes, 

balancing exploration and exploitation. 

Experience replay buffers stored the most 

recent 10,000 transitions, with mini-batches of 

32 samples used for each learning update. 

Target networks updated every 1,000 steps to 

provide stable learning targets. 

Cross-dataset evaluation assessed 

generalization by training models on one 

dataset and evaluating on others without fine-

tuning. This stringent test reveals whether 

learned patterns generalize across different 

network environments, traffic distributions, 

and attack implementations a crucial 

consideration for models deployed in diverse 

production environments that differ from 

training data. 

4.0 Results and Discussion 

4.1 Intrusion Detection Performance 
 

Table 2 presents comprehensive performance 

metrics for all evaluated models across the 

three benchmark datasets. The results reveal 

several notable patterns that inform our 

understanding of AI effectiveness in intrusion 

detection. Hybrid CNN-LSTM architectures 

achieved the highest overall accuracy on 

CICIDS2017 (98.3%) and UNSW-NB15 

(96.7%), validating our hypothesis that 

combining spatial feature extraction through 

convolutions with temporal modeling through 

LSTMs captures both local packet-level 

patterns and longer-term flow characteristics 

essential for distinguishing sophisticated 

attacks from benign traffic. 

Traditional machine learning methods, 

particularly XGBoost ensemble models, 

demonstrated competitive performance while 

requiring substantially less training time and 

computational resources. On NSL-KDD, 

XGBoost achieved 83.8% accuracy compared 

to 91.4% for CNN-LSTM, yet trained in 

approximately 45 seconds versus 2.3 hours for 

the deep learning architecture. This 7.6 

percentage point accuracy gap may not justify 

the 184-fold increase in training time for 

organizations with limited computational 

infrastructure or requiring rapid model 

updates. The choice between traditional and 

deep learning approaches thus depends 

critically on specific operational constraints 

and performance requirements. 

Autoencoders designed for unsupervised 

anomaly detection underperformed supervised 

models across all datasets, confirming that 

labeled training data provides substantial value 

when available. However, autoencoders offer 

unique advantages for detecting previously 
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unseen attack types that differ substantially 

from normal traffic patterns. In scenarios 

where labeled examples of emerging threats 

are unavailable or where data labeling proves 

prohibitively expensive, unsupervised 

approaches merit consideration despite lower 

average performance. 
 

 

Table 2: Comparative performance of AI models on intrusion detection tasks across three 

benchmark datasets. Values represent mean ± standard deviation across 10 trials 
 

 NSL-KDD CICDS2017 UNSW-NB15 

 Accuracy F1 Accuracy F1 Accuracy F1 

SVM 79.5±1.2 0.762±0.018 91.3±0.8 0.868±0.012 85.2±1.5 0.821±0.019 

Random 

Forest 

82.1±0.9 0.795±0.014 93.7±0.6 0.901±0.009 88.4±1.1 0.856±0.015 

XGBoost 83.8±0.8 0.814±0.012 94.2±0.5 0.915±0.008 89.1±0.9 0.869±0.013 

CNN 86.2±1.1 0.837±0.016 95.6±0.7 0.931±0.010 91.3±1.2 0.887±0.017 

LSTM 87.9±1.0 0.856±0.015 96.8±0.6 0.947±0.009 92.7±1.0 0.903±0.014 

CNN-LSTM 91.4±0.7 0.892±0.011 98.3±0.4 0.971±0.006 96.7±0.8 0.951±0.012 

Autoencoder 76.8±1.5 0.721±0.021 88.4±1.1 0.834±0.016 82.6±1.7 0.795±0.023 

 

Fig. 2 displays ROC curves comparing top-

performing models on the CICIDS2017 

dataset. The CNN-LSTM hybrid achieves the 

highest AUC (0.993), closely followed by 

standalone LSTM (0.989) and CNN (0.984) 

models. Traditional machine learning 

approaches show slightly lower AUC values 

but still demonstrate strong performance. The 

curves illustrate that all models achieve 

excellent true positive rates above 95% at false 

positive rates below 2% acceptable thresholds 

for many operational environments where 

security analysts can feasibly investigate a 

small percentage of flagged events. 
 

 
Fig. 2: ROC curves comparing model performance on CICIDS2017 dataset. The 

CNNLSTM hybrid model achieves the highest AUC, though differences between deep 

learning approaches are relatively small. All models substantially outperform random 

guessing (diagonal line) 
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4.1 Attack-Specific Detection Analysis 
 

Performance varied considerably across 

different attack categories, revealing that no 

single model excels uniformly across all threat 

types. Table 3 breaks down detection rates by 

attack family on the UNSW-NB15 dataset, 

which provides the most diverse attack 

taxonomy among our benchmarks. DoS attacks 

proved easiest to detect, with all models 

achieving F1-scores above 0.90, likely because 

such attacks generate high-volume traffic 

patterns that deviate dramatically from normal 

behavior. Fuzzers and reconnaissance attacks 

also showed strong detection rates, exhibiting 

characteristic probing patterns that machine 

learning models readily identify. 
 
 

Table 3: Attack-type specific F1-scores for top-performing models on UNSW-NB15 dataset. 

Values highlight differential performance across attack categories 

 

Attack Type XGBoost CNN LSTM CNN-LSTM 

DoS 0.921 0.935 0.942 0.956 

Reconnaissance 0.887 0.901 0.915 0.928 

Fuzzers 0.895 0.908 0.919 0.934 

Exploits 0.832 0.856 0.873 0.891 

Generic 0.814 0.841 0.859 0.876 

Analysis 0.793 0.823 0.847 0.868 

Backdoor 0.756 0.789 0.821 0.843 

Shellcode 0.741 0.778 0.805 0.831 

Worms 0.728 0.761 0.792 0.819 

Conversely, backdoor, shellcode, and worm 

attacks posed greater detection challenges, 

with F1-scores dropping below 0.85 even for 

the best-performing CNN-LSTM model. These 

attack types often operate stealthily, generating 

minimal traffic or mimicking legitimate 

application behavior to avoid detection. 

Backdoors may remain dormant for extended 

periods before activating, while polymorphic 

malware continually modifies its code to evade 

signature-based detection. The lower 

performance on these categories underscores 

the enduring challenge of detecting 

sophisticated, targeted attacks that deliberately 

evade security controls. 

Deep learning models consistently 

outperformed traditional machine learning 

across all attack categories, with advantages 

most pronounced for difficult-to-detect threats. 

For backdoor detection, CNN-LSTM achieved 

an F1-score of 0.843 compared to 0.756 for 

XGBoost an 11.5% relative improvement. This 

suggests that deep learning’s ability to 

automatically learn hierarchical feature 

representations proves particularly valuable 

when attacks exhibit subtle, complex patterns 

that defy manual feature engineering. Security 

teams dealing with advanced persistent threats 

may therefore realize greater benefits from 

deep learning adoption than those primarily 

facing commodity attacks. 
 

4.2 Threat Intelligence and NLP 

Performance 
 

Evaluating AI for threat intelligence required 

distinct methods from intrusion detection due 

to subjective labeling of unstructured reports. 

A corpus of 5,000 public threat reports was 

annotated to identify actors, malware, 

vulnerabilities, and mitigations. Fine-tuned 

BERT achieved 87.3% F1 in named entity 

recognition, outperforming traditional NLP 

models. However, it struggled with emerging 

threats and obfuscated language, indicating 

challenges in domain adaptation. Relation 

extraction reached 72.6% F1 for identifying 

links like “malware exploits vulnerability.” 

Graph neural networks improved threat 

correlation and attribution (79.4% accuracy). 
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For intelligent automation, partnering with a 

financial organization enabled evaluation of AI 

classifiers that optimized alert triage and 

improved operational efficiency. Table 4 

summarizes the operational improvements 

observed during the three-month post-

deployment period compared to the baseline. 

Alert triage automation reduced mean time to 

initial investigation from 47 minutes to 18 

minutes a 61.7% improvement by immediately 

routing high-priority alerts to senior analysts 

while recommending automated responses for 

low-risk events. False positive rates decreased 

from 32.  

Perhaps most significantly, analysts 

investigated 48.8% more alerts per day despite 

the reduction in overtime hours, suggesting 

that automation eliminated repetitive, low 

value tasks and allowed analysts to focus on 

complex investigations requiring human 

expertise.  

The number of critical incidents initially 

missed by first-level triage decreased from 

three to one during the evaluation period, 

though this sample size precludes strong 

statistical conclusions. Analyst satisfaction 

surveys indicated improved morale, with 78% 

of respondents reporting that automation made 

their work more interesting and manageable. 

The number of critical incidents initially 

missed by first-level triage decreased from  
 

three to one during the evaluation period,  

though this sample size precludes strong 

statistical conclusions. Analyst satisfaction 

surveys indicated improved morale, with 78% 

of respondents reporting that automation made 

their work more interesting and manageable. 

Table 4: Operational metrics before and after AI-driven automation deployment in a large 

security operations center. Improvements are statistically significant (p ¡ 0.001) 
 

Metric Baseline Post-Automation Improvement 

Mean time to investigate (min) 47.3 18.1 61.7% 

Mean time to respond (min) 156.8 89.4 43.0% 

False positive rate 32.1% 19.3% 39.9% 

Alerts investigated per day 1,247 1,856 48.8% 

Analyst overtime hours/week 32.4 18.7 42.3% 

Critical incidents missed 3 1 66.7% 

These results must be interpreted cautiously 

given the limited deployment scope and 

relatively short evaluation period. 

Organizations differ substantially in alert 

volumes, threat profiles, analyst capabilities, 

and existing security tool ecosystems. Models 

trained on one organization’s data may not 

transfer effectively to others due to differences 

in network architecture, user behaviors, and 

security policies. Furthermore, adversaries 

may adapt tactics upon recognizing automated 

responses, potentially gaming systems to 

trigger desired reactions or avoid detection. 
 

4.3 Adaptive Decision-Making with 

Reinforcement Learning 
 

Reinforcement learning agents trained in 

simulated network defense scenarios 

demonstrated the ability to learn effective 

policies through trial-and-error interaction, 

though performance depended critically on 

environment design and reward function 

specification. Fig. 3 shows learning curves for 

deep Q-network agents trained to configure 

firewall rules dynamically, balancing security 

(blocking attacks) against availability 

(allowing legitimate traffic). 
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Fig. 3: Learning curves showing reinforcement learning agent performance over 100,000 

training episodes. The agent learns an effective policy by episode 40,000, achieving 94% 

attack blocking rate while maintaining 96% legitimate traffic throughput. Error bars show 

standard deviation across five independent training runs. 

Agents required approximately 40,000 

episodes to converge on policies achieving 

94% attack blocking rates while maintaining 

96% throughput for legitimate traffic 

performance comparable to expert-designed 

rule sets. However, training consumed 72 

hours on high end GPU hardware, raising 

questions about practical feasibility for 

complex real-world scenarios. More 

concerning, agents occasionally learned 

unintended strategies such as blocking all 

traffic to minimize risk, achieving high 

security scores at the cost of complete service 

denial. This behavior emerged when reward 

functions inadequately penalized legitimate 

traffic blocking, highlighting the challenge of 

specifying objectives that capture nuanced 

security-availability trade-offs. 

Multi-agent reinforcement learning 

experiments, where multiple agents controlled 

different network segments and learned to 

coordinate defenses, showed promising results 

but proved highly unstable during training. 

Coordination challenges and non-stationary 

learning dynamics caused agents to develop 

conflicting strategies that actually decreased 

overall security compared to single-agent 

approaches. This suggests that while 

multiagent systems offer theoretical 

advantages for distributed defense, practical 

deployment requires sophisticated 

coordination mechanisms and more stable 

training algorithms. 
 

4.4 Cross-Dataset Generalization 
 

Cross-dataset evaluation revealed poor 

generalization, with accuracy dropping 15–

25% when models trained on one dataset were 

tested on others. CICIDS2017 models 

generalized better to UNSW-NB15 (81.3%) 

than vice versa (76.8%). Results highlight the 

need for diverse training data and show transfer 

learning improves accuracy (88–92%) using 

limited target samples. 

4.5 Computational Efficiency Analysis 
 

 

Table 5 compares computational requirements 

across model architectures, revealing dramatic 

differences that critically inform deployment 

decisions. Traditional machine learning 

models trained in seconds to minutes, enabling 

rapid experimentation and frequent retraining 

as new attack samples become available. 

Inference latency remained below 1 

millisecond per sample, supporting real-time 

processing of high-volume network traffic. 

Deep learning architectures required 40-140 

minutes training time and introduced inference 

latency of 2-4 milliseconds per sample 

approximately 20-50 times slower than 

traditional models. While still fast enough for 

many applications, this latency becomes 

problematic for inline deployment where 

network traffic must be inspected in real-time  
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without introducing noticeable delays. 

Memory requirements also increased 

substantially, with CNN-LSTM models 

consuming over 7GB for storing network 

parameters during inference challenging for 

embedded systems or resource-constrained 

edge deployments 

 
Fig. 4: Cross-dataset generalization performance for CNN-LSTM model. Diagonal elements 

show within-dataset performance (train and test from same dataset), while off diagonal 

elements reveal generalization to unseen datasets. Darker colors indicate higher accuracy 
 

 

Table 5: Computational efficiency metrics comparing model architectures. Measurements 

conducted on NVIDIA Tesla V100 GPU (deep learning) and Intel Xeon CPU (traditional 

ML) 
 

Model Training Time Inference (ms) Memory (GB) Parameters 

SVM 0.8 min 0.12 0.3 N/A 

Random Forest 1.2 min 0.08 0.5 N/A 

XGBoost 2.1 min 0.15 0.7 N/A 

CNN 47 min 2.3 4.2 1.2M 

LSTM 83 min 3.7 5.8 2.4M 

CNN-LSTM 142 min 4.1 7.3 3.6M 

Autoencoder 38 min 1.9 3.5 0.9M 

The efficiency-accuracy trade-off suggests a 

tiered deployment strategy where lightweight 

models provide initial filtering and deep 

learning models conduct detailed analysis of 

suspicious traffic. This hybrid approach 

leverages the speed of traditional models for 

high-volume processing while applying 

sophisticated deep learning only when 

necessary, optimizing both accuracy and 

computational efficiency. Some organizations 

may also consider accuracy improvements 

insufficient to justify deep learning’s additional 



Communication in Physical Sciences, 2022, 8(4):745-763 759 
 

 

complexity and operational overhead, 

particularly when traditional models achieve 

acceptable performance for their threat 

profiles. 
 

4.6 Practical Implications and 

Deployment Considerations 
 

Our findings yield several actionable insights 

for security practitioners navigating AI 

adoption decisions. First, no universally 

optimal model exists choices must consider 

specific attack profiles, computational 

constraints, available training data, 

interpretability requirements, and tolerance for 

false positives versus false negatives. 

Organizations facing primarily commodity 

attacks may find traditional machine learning 

sufficient, while those targeted by 

sophisticated adversaries deploying novel 

techniques likely benefit from deep learning’s 

superior ability to generalize. 

Second, the interpretability-performance trade-

off deserves careful consideration. Deep 

learning models operate as ”black boxes,” 

offering limited transparency into why 

particular decisions were made problematic 

when analysts must understand attack 

characteristics to formulate appropriate 

responses or when regulatory requirements 

mandate explainable decisions. Decision trees 

and linear models provide inherent 

interpretability, while techniques such as 

LIME (Local Interpretable Model-agnostic 

Explanations) can help explain black box 

predictions (Ribeiro et al., 2016). The 

appropriate balance depends on operational 

context, with some organizations prioritizing 

maximum accuracy while others require 

interpretability. 

Third, adversarial robustness warrants 

attention beyond standard evaluation metrics. 

Sophisticated attackers may craft inputs 

specifically designed to fool machine learning 

models through adversarial examples slightly 

perturbed inputs that cause misclassification 

despite appearing normal to humans (Szegedy 

et al., 2014). We conducted preliminary 

adversarial testing using FGSM (Fast Gradient 

Sign Method) attacks and observed accuracy 

degradation of 12-28 percentage points, with 

deep learning models generally more robust 

than traditional approaches but still vulnerable. 

Defensive techniques including adversarial 

training, input transformation, and ensemble 

approaches can improve robustness but require 

additional computational overhead. 
 

4.7 Limitations and Threats to Validity 
 

Several limitations constrain the 

generalizability of our findings. Benchmark 

datasets, despite their widespread use, 

imperfectly represent real-world network 

environments due to factors including 

synthetic traffic generation, limited diversity of 

benign applications, dated attack 

implementations, and controlled experimental 

conditions lacking the organic chaos of 

production networks. Models may overfit to 

dataset-specific artifacts rather than learning 

truly generalizable attack patterns, explaining 

the substantial performance degradation 

observed in cross-dataset evaluation. 

The evaluation focused on offline batch 

classification rather than online learning 

scenarios where models must adapt 

continuously as new data arrives. Real-world 

deployments face concept drift as network 

patterns evolve and adversaries modify tactics, 

potentially degrading model performance over 

time if not addressed through regular retraining 

or online learning algorithms (Zliobaite˙ et al., 

2016). Our relatively short evaluationˇ periods 

cannot assess long-term performance or 

adaptation to evolving threats. 

Computational requirements were measured 

under controlled experimental conditions and 

may differ in production environments with 

diverse hardware, concurrent workloads, and 

additional system overhead. Latency 

measurements reflect model inference time 

only, excluding data preprocessing, feature 

extraction, and system integration costs that 

substantially impact end-to-end performance. 

Finally, our automation evaluation involved a 

single organization over a limited timeframe, 

restricting generalizability to different 

organizational contexts, security postures, and 

threat landscapes. The novelty effect whereby 

analysts initially overestimate automation 

benefits may inflate observed improvements, 

while longer-term evaluation might reveal 



Communication in Physical Sciences, 2022, 8(4):745-763 760 
 

 

unexpected failure modes or adversarial 

adaptations. 
 

 

5.0  Conclusion 
 

This comprehensive evaluation of AI-driven 

data science models across four critical 

cybersecurity domains reveals a complex 

landscape where no single approach dominates 

universally, but where strategic selection of 

techniques matched to specific operational 

contexts yields substantial security 

improvements. Hybrid CNN-LSTM 

architectures demonstrated superior 

performance for intrusion detection tasks 

requiring both spatial feature extraction and 

temporal sequence modeling, achieving 

accuracy exceeding 98% on contemporary 

datasets while maintaining operationally 

acceptable false positive rates below 1.2%. 

Traditional machine learning methods, 

particularly XGBoost ensembles, offered 

competitive performance with dramatically 

lower computational requirements, suggesting 

a role for tiered architectures that leverage 

lightweight models for initial filtering and 

sophisticated deep learning for detailed 

analysis. Transformer-based natural language 

processing models showed remarkable 

effectiveness for automated threat intelligence 

extraction, though challenges remain in 

handling technical jargon and emerging threats 

lacking extensive training examples. 

Reinforcement learning agents learned 

effective adaptive defense policies through 

simulated experience but required extensive 

training time and careful reward engineering, 

raising questions about practical feasibility. 

The substantial performance degradation 

observed during cross-dataset evaluation 1525 

percentage points underscores the critical 

importance of diverse training data and the 

danger of over-relying on single benchmark 

assessments. Our operational case study 

demonstrated 61.7% reduction in investigation 

time and 48.8% increase in analyst 

productivity following automation 

deployment, though generalizability beyond 

the studied organization requires cautious 

interpretation. These findings contribute to 

both cybersecurity theory by establishing 

empirical comparative performance baselines 

across diverse AI techniques and to practice by 

providing evidence-based guidance for model 

selection, highlighting trade-offs between 

accuracy and computational efficiency, 

interpretability and performance, 

specialization and generalization. Future 

research should address adversarial robustness, 

explainable AI for security applications, 

federated learning for privacy-preserving 

threat intelligence sharing, and longitudinal 

studies evaluating long-term performance and 

adaptation in production environments facing 

evolving threat landscapes. 
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