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Abstract : The hydrazone ligand (2Z)-2-

[2(2,4-dinitrophenyl)hydrazinylidene]-

1,2-diphenylethan-1-ol (DPHD) and its 

Cu(II) complex were synthesized and 

characterized using physical and 

spectroscopic techniques. The newly 

synthesized compounds are coloured and 

crystalline with high yield (>70%) with 

melting points ≥ 100 ℃. The 

spectroscopic result has indicated a 

square planar geometry for the copper 

complex being coordinated by 

azomethine nitrogen, imine nitrogen, and 

two nitro groups. Both were soluble in 

dimethyl sulfoxide (DMSO), sparingly 

soluble in methanol and ethanol while 

being insoluble in hexane. The ligand was 

sparingly soluble in water while its 

complex was insoluble. SwissADME and 

ProTox-II in silico predictions of 

ADME/T showed that both DPHD and its 

copper complex showed compliance with 

the  Lipinski’s Rule of Five signifying 

promising oral drug-likeness. 

Complexation improved the 

gastrointestinal absorption and aqueous 

solubility of its copper complex, but it 

increased the predicted acute toxicity 

(LD50 = 900 mg/kg) and synthetic 

complexity relative to the free ligand. 

Both drugs are not blood-brain-barrier 

permeant and have acceptable 

pharmacokinetic characteristics of 

possible drug-drug interaction via 

inhibitory effect on various cytochrome 

P450. These findings concluded that the 

copper complex has a better 

bioavailability but altered toxicity, 

highlighting the need for experimental 

toxicity testing and further recommends 

preclinical investigation of its therapeutic 

role. 

Keywords: Dinitrophenylhydrazone, 

Copper complex, ADME/T, 

pharmacokinetics, in silico 
 

Unwanaobong Friday Robert* 

Department of Chemistry, College of 

Physical and Applied Sciences, 

Michael Okpara University of 

Agriculture, Abia, Nigeria. 
Email: 

robert.unwanaobong@mouau.edu.ng 

Orcid id: https://orcid.org/0009-0009-

2109-1435 

 

Ifeanyi  Edozie Otuokere 

Department of Chemistry,  

College of Physical and Applied Sciences, 

Michael Okpara University ofAgriculture, 

Abia, Nigeria. 

Email: ifeanyiotuokere@gmail.com 

Orcid id: https://orcid.org/0000-0003-

0038-8132 

 

Jude Chodozie Nnaji 

Department of Chemistry,  

College of Physical and Applied Sciences, 

Michael Okpara University ofAgriculture, 

Abia, Nigeria. 

Email: nnaji.jude@mouau.edu.ng 

Orcid id: https://orcid.org/0000-0002-

5569-4818 
 

1.0  Introduction 
 

Hydrazone-type compounds containing 

an azomethine (C=N) linkage constitute 

an important class of organic compounds 

with broad pharmaceutical and 

coordination chemistry relevance, 

playing a pivotal role in the discovery of 

new therapeutic agents. The hydrazone 
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moiety, due to its extended conjugation 

and the presence of electron-donating 

nitrogen atoms, is capable of participating 

in resonance stabilization, hydrogen 

bonding, and metal coordination (Romero 

et al., 2015). These versatile structural 

and electronic characteristics endow 

hydrazones with the ability to bind to 

diverse metal centers, influencing their 

geometry, redox properties, and 

biological response. Hydrazone 

derivatives have demonstrated significant 

therapeutic potential, including 

antimicrobial, antioxidant, anti-

inflammatory, and anticancer activities 

(Tumosienė et al., 2025; Işik et al., 2022). 

Among the various classes of hydrazones, 

dinitrophenylhydrazones have recently 

gained increased scientific attention due 

to their intriguing chemical and biological 

properties. The incorporation of a 2,4-

dinitrophenyl (2,4-DNP) moiety into 

hydrazone ligands significantly alters 

their electronic distribution, chemical 

reactivity, and biological function. The 

electron-withdrawing nitro groups in the 

ortho and para positions of the phenyl ring 

increase the electrophilicity of the 

molecule and enhance its resonance 

stabilization and acidity (Nishiwaki, 

2020). Such electronic effects promote 

facile deprotonation, radical stabilization, 

and efficient metal coordination, making 

2,4-DNP-substituted hydrazones 

particularly suitable scaffolds for metal-

based drug design and biological studies. 

Currently, the synthesis of transition 

metal complexes of hydrazones is widely 

reported in the scientific literature. The 

growing interest in this area stems from 

the remarkable enhancement of biological 

activities observed in hydrazone–metal 

complexes compared to the parent ligands 

(Czyżewska et al., 2024). Metal 

coordination not only influences the 

physicochemical behavior of hydrazones 

but also modifies their lipophilicity, 

membrane permeability, and redox 

potential—properties essential for 

effective drug delivery and 

pharmacological performance. 

Complexation between a bioactive ligand 

and a transition metal can thus amplify or 

modulate therapeutic outcomes by 

influencing the compound’s solubility, 

stability, and biochemical reactivity 

(Ugochukwu et al., 2021; Otuokere et al., 

2020). 

Notably, copper(II) hydrazone complexes 

exhibit diverse pharmacological and 

biochemical activities, such as DNA 

intercalation, reactive oxygen species 

(ROS) modulation, enzyme inhibition, 

and redox-mediated cytotoxicity, all of 

which are critical for selective therapeutic 

targeting (Mahfouz et al., 2025; Otuokere 

et al., 2022; Edozie et al., 2020; Otuokere 

et al., 2019). Their square-planar or 

distorted geometries also contribute to 

their high binding affinity toward 

biological macromolecules. Despite 

advances in synthetic methodologies and 

the increasing number of studies on 

copper(II) complexes of hydrazones, 

particularly those bearing the 2,4-

dinitrophenyl substituent, a 

comprehensive understanding of their 

pharmacokinetic behavior, 

bioavailability, and toxicity is still 

limited. 

The Absorption, Distribution, 

Metabolism, Excretion, and Toxicity 

(ADME/T) profiling of a compound is a 

critical predictive tool in modern drug 

design, providing insight into oral 

bioavailability, systemic stability, and 

safety (Eberendu et al., 2025; Asogwa et 

al., 2024; Eberendu et al., 2024; Xiao et 

al., 2022; Otuokere et al., 2019). 

Although computational tools such as 

SwissADME and ProTox-II are now 

routinely used for in silico 

pharmacokinetic modeling, their 

application to hydrazone-based 

copper(II) complexes remains 

underrepresented in the literature. 

Literature reveals limited integration of 

detailed spectroscopic and 



Communication in Physical Sciences, 2025, 12(7):2060-2075 2062 

 

 

physicochemical characterization with in 

silico ADME/T prediction, particularly 

for ligands like (2Z)-2-[2-(2,4-

dinitrophenyl)hydrazinylidene]-1,2-

diphenylethan-1-ol (DPHD), whose 

molecular structure and electronic 

configuration could profoundly influence 

drug-likeness and toxicity outcomes. This 

constitutes a critical knowledge gap that 

must be addressed to guide rational 

design of safer and more efficient metal-

based therapeutics. 

Hence, the present study is designed to 

synthesize and characterize the hydrazone 

ligand DPHD and its copper(II) complex, 

and to systematically predict their 

pharmacokinetic and toxicity profiles 

using advanced in silico ADME/T tools. 

By integrating multi-spectroscopic 

characterization techniques (UV–Vis, 

FTIR, NMR, and elemental analysis) with 

computational pharmacokinetic 

modeling, this study seeks to establish the 

structural, electronic, and biological 

interplay between the ligand and its metal 

complex. The ADME/T predictions are 

expected to provide vital insights into 

absorption potential, solubility, metabolic 

stability, predicted acute toxicity, and 

overall drug-likeness, allowing for a 

rational assessment of their therapeutic 

viability. 

Ultimately, this holistic approach not only 

bridges the identified research gap but 

also contributes to the foundational 

understanding of hydrazone–metal  

systems as potential leads in medicinal 

and coordination chemistry. The results 

of this study are expected to enhance 

future development of copper-based 

pharmacophores with optimized 

bioavailability, reduced toxicity, and 

improved therapeutic efficiency. 
 

2.0 Materials and methods 

2.1 Chemicals and solvents 
 

The chemicals and reagents used in this 

study are of analytical grades supplied by 

sigma-Aldrich and were used as obtained 

without further purification. 
 

2.2 Synthesis of DPHD 
 

The ligand (DPHD) was prepared 

following the reported procedure by 

Eberendu et al. (2024). To the warm clear 

solution obtained by filtering a warmed 

mixture of 1.98 g (0.010 mol.) of 2,4-

DNP, 10 mL of concentrated sulphuric 

acid, 15 mL of water, 25 mL of methanol, 

and 1.50 g (0.010 mol.) of the carbonyl 

compound 2-hydroxy-1,2-

diphenylethanone was added and heated 

just to boiling. The precipitates formed 

were allowed to cool to room temperature 

before they were recrystallized from 

methanol, dried in a desiccator, and stored 

in a neatly labeled container. The 

equation of reaction is shown in Scheme 

1. 
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2-hydroxy-1,2-diphenylethanone (2,4-dinitrophenyl)hydrazine (2Z)-2-[2-(2,4-dinitrophenyl)hydrazinylidene]-1,2-diphenylethanol
 

Scheme 1: Synthesis of DPHD 

2.3 Synthesis of [Cu(DPHD)n] 
 

The [Cu(DPHD)n] complex was 

synthesized following the reported 

procedure by Eberendu et al. (2024). 

Exactly 1.70 g of CuCl2.2H2O (0.010 

mol.) metal salt was dissolved in 5 mL of 

methanol; the mixture was stirred for 

about 5 minutes. The hydrazone ligand 

DPHD was then dissolved separately in a 
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hot solution of methanol. The ligand 

solution containing 3.92 g (0.010 mol.) of 

DPHD ligand was added to the solution 

containing the metal salt and stirred. The 

obtained product was cooled, filtered, 

recrystallized with methanol solvent, and 

dried at room temperature. The equation 

of the reaction is shown in equation (1). 

CuCl2. 2H2O + 𝐷𝑃𝐻𝐷 
𝐶𝐻3𝑂𝐻
→    [𝐶𝑢(𝐷𝑃𝐻𝐷)]   

+ 2𝐻𝐶𝑙2                      (1) 

 

2.4       Physical measurements 
 

Melting points were recorded using a 

Gallenkamp melting point apparatus. 

Solubility was carried out in test tubes 

using various solvents such as polar 

solvents (water, methanol, and ethanol), 

the non-polar solvent hexane, and 

dimethylsulfoxide (DMSO). Molar 

conductivities were checked using an 

OMEGA digital conductometer (CD5126 

by OMEGA industry, UK) at a room 

temperature of 10-3 M solution in 

deionized water. 
 

 2.5       Characterization 
 

The electronic absorption spectra were 

recorded using a Thermo Scientific Orion 

Aquamate 8100 UV-Vis 

Spectrophotometer in the range 200-800 

nm. Infrared spectroscopy was recorded 

using an Agilent Cary 630 FT-IR (4000-

600 cm⁻¹) in KBr pellets. Nuclear 

magnetic resonance was recorded on  

Nanalysis-X685 (60 MHz) using CDCl₃  

as a solvent. 
 

 2.6 In silico studies 

2.6.1. ADMET predictions 
 

Swiss ADME online platform 

(http://www.swissadme.ch) was used to 

determine the ADMET properties, the 

drug-like characteristics, and possible 

drug-drug interactions. 

2.6.2. Toxicity 

The toxicological predictions were 

produced based on the ProTox-II web tool 

(tox.charite.de). 
 

3.0 Results and Discussion 
 

Some physical parameters of DPHD and 

[Cu(DPHD)n] are presented in Table 1. 

The solubility of DPHD and 

[Cu(DPHD)n] in some selected solvents 

is presented in Table 2. The electronic, 

infrared, ¹H NMR, and ¹³C NMR of 

DPHD and [Cu(DPHD)n] are presented 

in Figs. 1, 2, 3, and 4, respectively

Table 1: Some physical parameters of DPHD and [Zn(DPHD)] 
 

 

DPHD is orange, while the copper 

complex is greenish yellow in color 

(Table 1). Color changes upon 

complexation indicate coordination 

changes and altered electronic 

environments around the central metal ion, 

typical for metal-hydrazone complexes 

(Mandewale et al., 2019). The yield 

(Table 1) of DPHD is high (89%), which 

is typical for pure organic syntheses. The 

copper complex yield is slightly lower 

(74%), this variation in percentage yield 

is as a result coordination challenges and 

purification losses (Marchetti et al., 2022).  

DPHD has a high molar conductance of  

111 Sm²mol⁻¹, indicative of a non-

electrolyte or low electrolytic nature, as 

it's an organic compound without ionic 

dissociation ( (Marchetti et al., 2022). The 

copper complex has a higher conductance 

(141 Sm²mol⁻¹), consistent with 

Compound Colour Yield (%) Molar 

Conductance 

(Sm2mol-1) 

M.P (oC) 

DPHD Orange 89 111 110 

[Cu(DPHD)n] 
Greenish 

yellow 

74 141 157 
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electrolytic behavior in solution  

(Marchetti et al., 2022). DPHD melts at 

110°C, while its copper complex has a 

higher melting point (157°C). This 

elevation is typical for metal complexes 

due to enhanced thermal stability from 

metal-ligand coordination bonds 

strengthening the lattice structure 

(Hussain et al., 2023). 

 
 

 

Table 2: Solubility of DPHD and [Zn(DPHD)] 
 

Compounds Hexane  Water Methanol Ethanol DMSO 

DPHD IS SS SS SS S 

[Cu(DPHD)n] IS IS SS SS S 

**Insoluble (IS), Soluble (S), Sparingly Soluble (SS) 
 

Both DPHD and its copper complex were 

soluble in dimethyl sulfoxide (DMSO) 

but were sparingly soluble in methanol 

and ethanol while being insoluble in 

hexane. This is due to the polar aprotic 

characteristics of DMSO solvent and this 

also confirms the polar and ionic 

character of these compounds which does 

not favour solvation in non-polar solvents 

(Aly et al., 2020). The DPHD was 

sparingly soluble in water while its metal 

complex was insoluble in water. This 

solubility pattern indicates limited 

hydrophilicity of these compounds and do 

not dissolve well in typical alcohols or 

water but dissolve in strongly 

coordinating polar solvents like DMSO 

(Otuokere and Robert,  2020). 

 
Fig. 1: Electronic spectra of DPHD and [Cu(DPH

 

Both DPHD and [Cu(DPHD)n] spectra 

(Figure 1) exhibit absorbance peaks 

around 305-400 nm, likely corresponding 

to π→π* or n→π* electronic transitions 

typical of hydrazone ligands (Tadewos et 

al., 2022) . There is a slight red-shift 

(bathochromic shift) of the absorption 

maximum in [Cu(DPHD)n] relative to 

DPHD, suggesting metal coordination 

influences electron distribution in the 
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ligand (Marchetti et al., 2022). The peak 

at  at λ = 425 nm for the complex 

[Cu(DPHD)n] point to new ligand-to-

metal charge transfer (LMCT) or d-d 

transitions characteristic of copper 

complex (Marchetti et al., 2022; Aly.and 

Fathalla, 2019). Studies further report that 

such spectral features, including red-

shifts and increased absorbance intensity, 

may be associated with improved 

biological activities of copper hydrazone 

complexes compared to free ligands 

(Moreira et al., 2025). 

 
 

Fig. 2: FTIR spectra of DPHD and [Cu(DPHD)n] 
 

The DPHD infrared spectrum (Fig. 2) 

shows a strong absorption band at 1650 

cm⁻¹, which was attributed to the 

azomethine (C=N) vibration, as has been 

reported previously with hydrazone 

ligands (Moreira et al., 2025). In 

coordination with zinc in [Cu(DPHD)n] 

(Figure 2), this band changes to a lower 

wavenumber at (1610 cm-1) indicating 

metal bonding through the azomethine 

nitrogen. A red shift of this type indicates 

an increase in electron density in the C=N 

bond, thus leading to a weakened bond 

and a lower vibrational frequency which 

is consistent with Schwitall et al. (2024) 

who reported similar behavior for 

hydrazone compounds. In the DPHD 

spectrum, weak broad bands at 3380 and 

3227 cm⁻¹ are assigned to hydroxyl (-OH) 

and amine (-NH) stretching vibrations, 

respectively (Riaz et al., 2023). In the 

[Cu(DPHD)n] complex, the -OH 

stretching band remained at 3380 cm⁻¹, 

suggesting that the -OH group remains 

protonated and does not participate in 

coordination. This is further supported by 

the absence of a shift in the C–O 

stretching band from 1259 cm⁻¹ in DPHD 

to a different position in the complex, 

reflecting no coordination-induced 
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changes in the C–O bond (Manimaran et 

al., 2021). Notably, the NH band shifted 

up to 3235 cm-1 for [Cu(DHPD)n], 

indicating the coordination of the ligand 

to the metal through the nitrogen atom of 

the amine group (Abdel-Rahman et al., 

2023). The ligand’s characteristic 

aromatic nitro (NO₂) vibration at 1386 

cm⁻¹ also shifts to 1338 cm⁻¹ in the 

[Cu(DPHD)n]. This suggested the 

participation of the NO₂ functionality in 

coordination with zinc (Bhaskar et al., 

2020). Such shifts in nitro group 

vibrations upon complexation have been 

widely documented, reflecting changes in  

electron distribution within the aromatic 

ring and substituents upon metal binding 

(Bhaskar et al., 2020). 

 

 
Fig. 3: 1H NMR spectra of DPHD and [Cu(DPHD)n] 

The ¹H NMR spectra of DPHD and its 

zinc complex [Cu(DPHD)n] (Fig. 3) 

display characteristic aromatic proton 

signals from phenyl groups and the 2,4-

dinitrophenyl (2,4-DNP) moiety in the 

range δ 7.3–7.9 ppm, consistent with 

previously reported chemical shifts for 

aromatic protons in similar ligands (Badal 

et al., 2020). The hydrazone azomethine 

proton (HC=N-) showed as a distinct peak 

at δ 8.5 ppm in the free ligand DPHD, 

corroborating literature values for imine 

protons (Shah et al., 2022). In 

[Cu(DPHD)] spectrum, this azomethine 

proton signal is either broadened or 

overlapped with nearby aromatic proton 

resonances, indicative of coordination 

through the N atom of the C=N group. 

This behavior aligns with observations 

reported in similar metal complexes, 

where coordination results in peak shifts 

or broadening due to changes in electron 

density and exchange processes involving 

the azomethine proton (Pîrnău et al., 

2025).  

The recorded chemical shifts are in good 

agreement with previously reported 

hydrazone frameworks supporting the 

successful synthesis and structural 

integrity of the newly synthesized 

compounds. 

Both 13C NMR spectra (Fig 4) 

prominently display the chloroform-d 

(CDCl3) solvent peak around 77 ppm, 

appearing as a characteristic triplet due to 

deuterium coupling, consistent with 

standard NMR solvent behavior (Tiwari 

et al., 2025). The free ligand DPHD 

exhibits multiple distinct peaks between 

127 and 129 ppm, typical of aromatic 
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carbons in phenyl or heteroaromatic rings, 

aligning with reported values in the 

literature for similar aromatic systems 

(Yayli et al., 2021). Upon coordination to 

Cu in [Cu(DPHD)n], the aromatic carbon 

signals in the 127-129 ppm range exhibit 

changes in intensity and slight chemical 

shift variations compared to the free 

ligand. This trend is commonly reported 

in metal-ligand coordination studies, 

where metal binding alters electron 

density and the local magnetic 

environment of aromatic carbons, often 

resulting in peak broadening and reduced 

intensity due to slower molecular 

tumbling or paramagnetic effects (Yayli 

et al., 2021). Notably, the C=N carbon 

signal, appears around δ 133.93 ppm in 

¹³C NMR of DPHD, which is highly 

deshielded due to resonance effects 

(Ogunniran et al., 2015). [Cu(DPHD)n] 

complex showed a peak at 139.26 ppm, 

were assigned the imine carbon -C=N. 

This is consistent with the study of El-

Sonbati et al. (2021), who reported that 

coordination of metal ions to the imine 

nitrogen has a negligible effect on the 

electron density of the adjacent carbon 

atom. The peak at 76.40 ppm for DPHD 

was assigned carbon to which the -OH 

group is attached (Yayli et al., 2021) 

while for its [Cu(DPHD)n] complex it 

appeared at 87.83 ppm. 

 
Fig. 4: 13C NMR of DPHD and [Cu(DPHD)n] 

 

The overall distribution of peaks across 

both the donwfield and upfield regions in 

the spectra of the compounds strongly 

confirm the successful synthesis and 

structural integrity of DPHD and 

DPHMM ligands and their metal 

complexes. 

Based on the spectroscopic studies, the 

structures in Fig. 5 have been proposed 

for the ligand and its metal complex 
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Fig. 5: Proposed structure for DPHD and [Cu(DPHD)n] 

 

Table 3: ADME/T properties of DPHD and [Cu(DPHD)n] 

 

Physicochemical Properties 

Formular                                                   DPHD                                     [Cu(DPHD)] 

Molecular weight (g/mol)                     392.36                                   454.90 

Num. H-bond acceptors                          6                                            5 

Num. H-bond donors                               2                                            1 

Molar Refractivity                                     112.02                                  123.97 

TPSA (Å2)                                                    136.26                                  127.24         

Lipophilicity 

Log P                                                                               -0.37                                     -5.08    

Water Solubility  

Log S (ESOL)                                                -5.89                                     -3.98 

Class                                                          Moderately soluble            Moderately 

soluble 

Pharmacokinetics 

GI absorption                                            Low                                       High 

BBB permeant                                           No                                         No     

P-gp substrate                                           Yes                                        Yes 

CYP1A2 inhibitor                                       No                                         No 

CYP2C19 inhibitor                                     Yes                                        Yes 

CYP2C9 inhibitor                                       Yes                                         No 

CYP2D6 inhibitor                                       No                                         No 

CY3A4 inhibitor                                          No                                         No 

Log Kp (skin permeation) (cm/s)          -4.61                                       -7.87 

Druglikeness 

Lipinski                                                  Yes, 0 violation                      Yes, 0 violation 

Bioavailability Score                           0.55                                         0.55 

Medicinal Chemistry 

PAINS                                                    0 alert                                      0 alert 

Synthetic accessibility                       4.01                                          5.92 

Bioavailability Radar  
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The ADME/T properties of DPHD and 

[Cu(DPHD)n] (Table 3) reveal several 

important pharmacokinetic and 

medicinal chemistry differences that 

could impact their drug development 

potential. 

Physicochemical Properties: The copper 

complex [Cu(DPHD)n] exhibits a higher 

molecular weight (454.90 g/mol) than 

DPHD (392.36 g/mol), attributable to 

copper coordination. This leads to 

decreased hydrogen bond donors (1 vs. 2) 

and slightly fewer acceptors (5 vs. 6), 

which can affect molecular interactions 

and solubility. The molar refractivity 

increases with complexation (123.97 vs. 

112.02), suggesting changes in volume 

and polarizability. Topological polar 

surface area (TPSA) decreases from 

136.26 Å² in DPHD to 127.24 Å² in 

[Cu(DPHD)n], indicating improved 

membrane permeability and absorption 

(Veber et al., 2002). 

Lipophilicity and Solubility: DPHD is 

more lipophilic (log P = -0.37) compared 

to the copper complex (-5.08), metal 

complexation decreased its lipophilicity 

but increased its hydrophilicity (Lipinski 

et al., 1997). Both compounds are 

moderately soluble, with [Cu(DPHD)n] 

demonstrating improved aqueous 

solubility (log S -3.98 vs. -5.89) on 

complexation, indicating good solubility 

and enhanced oral absorption and 

bioavailability (Veber et al., 2002). 

Pharmacokinetics 

Gastrointestinal (GI) absorption is 

predicted to be low for DPHD but high 

for [Cu(DPHD)], likely due to improved 

solubility and decreased TPSA in the 

complex. Both are not blood-brain barrier 

(BBB) permeant, which is advantageous 

for drugs not intended for CNS purpose. 

Both compounds are substrates for P-

glycoprotein (P-gp) that may be effluxed 

from intestinal cells in turn reducing 

bioavailability (Al-Azzam et al., 2022). 

Cytochrome P450 (CYP) inhibition 

profiles differ: DPHD inhibits CYP2C19 

and CYP2C9, whereas [Cu(DPHD)n] 

inhibits CYP2C19 only. This variation 

shows the impact of metal coordination 

on metabolic pathways and potential 

drug-drug interactions (Otuokere et al., 

2025). 

Drug-likeness and Synthetic Accessibility 

Both compounds satisfy the Lipinski 

Rule of Five, signifying promising oral 

drug-likeness. Their bioavailability 

scores are identical (0.55) indicating 

moderate oral bioavailability, they could 

be well absorbed in the human body. The 

synthetic accessibility score is higher for 

[Cu(DPHD)n] (5.92 vs. 4.01), indicating 

moderate synthesis route of drug 

development which means more 

synthetic complexity (5). 
 

Toxicity 

The predicted LD50 of [Cu(DPHD)] (900 

mg/kg) is lower than DPHD (2690 

mg/kg), indicating higher acute toxicity. 

The toxicity class of the copper complex 

is 4, compared to 5 for DPHD, reflecting 

increased toxicity risk upon metal 

coordination. This aligns with reports 

that metal complexes often exhibit 

altered toxicity profiles that require 

detailed evaluation (Otuokere et al., 

2025). 

[Cu(DPHD)n] shows improved GI 

absorption and water solubility compared 

to DPHD due to changes in 
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physicochemical properties from copper 

metal complexation. However, the 

complex also exhibits higher toxicity and 

synthetic complexity which are 

consistent with reported trends in metal-

based drug candidates, where enhanced 

pharmacokinetics may be offset by 

increased toxicity risks and challenges in 

synthesis (Otuokere et al., 2025; Asogwa 

et al., 2024; Ugochukwu et al., 2021). 
 

4.0 Conclusion 
 

This study successfully synthesized, 

characterized the DPHD ligand and its 

corresponding metal complex with Cu(II) 

and further probed into the 

pharmacokinetic potential of these 

compounds. The structure of the DPHD 

ligand and it metal complex were 

confirmed through the spectral data 

results which affirmed the effective 

coordination with the metal ion. The 

copper complex showed enhanced 

solubility and improved gastrointestinal 

absorption but its toxicity was increased 

relative to the free ligand. The ADME/T 

predictions support their potential as 

orally bioavailable drug candidates i.e 

they could be suitable for oral 

administration. The srtudy further 

showed that the metal complex exhibited 

improved pharmacokinetics at the cost of 

higher synthetic complexity and toxicity 

risk which further establishes a 

foundational understanding of copper 

hydrazone complexes and their drug-like 

behavior. 

Future studies should explore the in vitro 

and in vivo studies and pharmacological 

effects of the  synthesized compounds 

using suitable animal models. Exploring 

the formulation of the synthesized 

compounds into nano-delivery systems in 

other to improve their solubility, stability, 

and targeted delivery are advisable. 

Conducting detailed biological activity 

tests, such as antioxidant, anti-

inflammatory and antimicrobial 

evaluations, will provide deeper insights 

into how these compounds can be used 

medicinally. 
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