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Abstract: This study introduces the Type I 

Half-Logistic Exponentiated Kumaraswamy 

(TIHLEtKw) distribution, a new statistical 

model designed to provide improved flexibility 

and accuracy for data modelling across 

diverse applications. The background of the 

study highlights the limitations of existing 

distributions in capturing complex real-world 

data patterns. The purpose of this work is to 

develop and characterize the TIHLEtKw 

distribution, deriving key properties such as 

the moment generating function, reliability 

function, hazard function, and quantile 

function. Additionally, order statistics were 

explored to understand the behavior of the 

distribution. Simulation studies demonstrated 

the efficiency of the maximum likelihood 

estimators (MLEs) for the parameters of the 

TIHLEtKw distribution, with mean square 

error (MSE) values decreasing as sample size 

increased, indicating the estimators’ 

consistency. For example, for a parameter set 

(α = 2, β = 1.5, γ = 1, δ = 2), the MSE 

decreased from 0.045 for a sample size of 50 

to 0.011 for a sample size of 300. The 

application of the TIHLEtKw distribution to 

real datasets, including civil engineering data 

with a skewness of 2.18 and wind speed data 

with a kurtosis of 3.62, demonstrated its 

superior fit compared to other models. Metrics 

such as the Akaike Information Criterion 

(AIC) and Bayesian Information Criterion 

(BIC) indicated that the TIHLEtKw 

distribution outperformed established models 

like the Kumaraswamy-Kumaraswamy and 

Weibull-Kumaraswamy distributions, with 

reductions in AIC of up to 15%. The findings 

confirm the TIHLEtKw distribution's 

effectiveness in capturing data variability and 

complexity, offering a robust tool for 

statistical modelling. The study concludes that 

this distribution significantly enhances 

modelling capabilities, and it is recommended 

for use in fields such as environmental studies, 

biomedicine, and finance. Future research 

could focus on extending the model's 

applications and optimizing computational 

methods for parameter estimation. 
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1.0  Introduction 
 

The Kumaraswamy distribution, introduced by 

Poondi Kumaraswamy in 1980, is a family of 

continuous probability distributions defined 

on the interval (0,1). Like the beta 

distribution, it is especially useful in 

simulation studies due to its simplicity and 

versatility. Its probability density function, 

cumulative distribution function, and quantile 
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functions can all be expressed in closed form, 

making it highly practical for a wide range of 

applications. The Kumaraswamy distribution 

is particularly effective in addressing 

hydrological challenges and modelling natural 

phenomena with bounded process values. Its 

distinctive properties make it an excellent 

choice for applications requiring efficient and 

straightforward modelling techniques, 

solidifying its importance in hydrology and 

related fields. In recent years, numerous 

extensions of the Kumaraswamy distribution 

have been introduced, significantly increasing 

its versatility and applicability in both 

academic and practical problem-solving. 

These advancements include the 

Kumaraswamy Distribution by Nadarajah 

(2008), A New Generalized Kumaraswamy 

Distribution by Carrasco et al., (2010), 

Exponentiated Kumaraswamy Distribution by 

Lemonte et al., (2013), Kumaraswamy-

Kumaraswamy Distributionby El-Sherpieny et 

al., (2014), Exp-Kumaraswamy Distribution 

by Javanshiri et al., (2015), Transmuted 

Kumaraswamy Distribution by Khan et al., 

(2016), Lomax-Kumaraswamy Distribution by 

Asiribo et al., (2018), Odd Generalized 

Exponential Kumaraswamy Distribution by 

NK et al., (2018), Gamma-Kumaraswamy 

Distribution by Ghosh and Hamedani (2018), 

Cubic Rank Transmuted Kumaraswamy 

Distribution by Saraçoglu and Taniş (2018), 

Generalized Transmuted Kumaraswamy 

Distribution by Ishaq et al., (2019), 

Generalized Modification of the 

Kumaraswamy Distribution by Alshkaki 

(2020), Log-Kumaraswamy Distributions by 

Ishaq et al., (2023), and the  Generalized Odd 

Maxwell-Kumaraswamy Distribution  by 

Ishaq et al., (2024). These developments have 

further solidified the Kumaraswamy 

distribution as a robust tool for modelling 

complex data across various fields. 

Bello et al., (2021) introduced an innovative 

family of distributions known as the Type I 

Half-Logistic Exponentiated-G (TIHLEt-G) 

distribution, offering enhanced flexibility and 

an improved ability to model the features of 

diverse datasets effectively. This distribution 

family is characterized by two positive shape 

parameters, denoted by  and  , and can be 

applied to any arbitrary cumulative 

distribution function (cdf) ( ),H x  . The 

cumulative distribution function (cdf) and the 

probability density function (pdf) for TIHLEt-

G are given by 

1 [1 ( ; )]
( ; , , )

1 [1 ( ; )]
TIHLEt GF

H x
x

H x

 

 
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− −
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+ −
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The cdf and pdf of the Kumaraswamy distribution are given as 

( ; , ) 1 1 , 0 1, , 0H x x x
    = − −                                 (3) 

1
1

1 , 0 1, , 0( ; , )h x xx x      −
−

 −    =                             (4) 

This paper aims to enhance the flexibility of 

statistical modelling by extending the 

traditional two-parameter Kumaraswamy 

distribution, introducing a new model named 

the Type I Half-Logistic Exponentiated 

Kumaraswamy (TIHLEtKw) distribution. The 

paper is structured as follows: Section 2 

defines and introduces the TIHLEtKw 

distribution. Section 3 outlines key 

representations of the model. Section 4 delves 
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into various statistical properties, including 

probability-weighted moments, moments, the 

moment-generating function, the quantile 

function, the reliability function, the hazard 

function, and order statistics. Section 5 

focuses on parameter estimation using the 

maximum likelihood estimation (MLE) 

method. Section 6 features a simulation study 

to assess the efficiency and consistency of 

MLE. In Section 7, the new model is applied 

to real-world datasets to illustrate its practical 

utility. Finally, Section 8 provides concluding 

remarks. 

1.1 Type I Half-Logistic Exponentiated 

Kumaraswamy (TIHLEtKw) Distribution 
 

In this section, we introduce a new model 

referred to as the TIHLEtKw distribution. A 

random variable X is said to follow the 

TIHLEtKw distribution if its cumulative 

distribution function (cdf) is derived by 

substituting Equation (3) into Equation (1), 

resulting in the following expression:  

1 1

( ; , , , ) 0 1, , , ,

1 1

,

1 1

0

1 1

TIHLEtKw

x

F x x

x
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       

   − −     =   
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
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         (5) 

By differentiating equation (5), the pdf of the TIHLEtKw distribution is obtained as follows: 
1
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Fig. 3.1: Plot of pdf of TIHLEtKw distribution for different values of parameters. 

 

1.2   Suitable expansion of density for TIHLEtKw distribution 
 

In this section, we derive the appropriate expressions for the pdf and cdf of the TIHLEtKw 

distribution. These expressions are formulated using the binomial expansion technique, as 

outlined below: 
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For | | 1z  and   is a positive real non-integer. The suitable expansion for the pdf of the 

TIHLEtKw distribution is then obtained by using the binomial theorem in equation (7) to 

equation (6). 
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Also, an expansion for the CDF, using the binomial expansion  ( , , , , )
h

F x      where h is an 

integer, leads to: 
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1.3   Statistical Properties of TIHLEtKw Distribution 
 

This section explores the statistical properties of the TIHLEtKw distribution. 
 

1.4  Probability Weighted Moments for TIHLEtKw Distribution 
 

The probability-weighted moments (PWMs), introduced by Greenwood et al. (1979), are utilized 

to derive inverse form estimators for a distribution's parameters and quantiles. Denoted by ,r s , 

the PWMs for a random variable X can be calculated using the following relationships. 
1

,

0

( ) ( )( ( ))r s r s

r s E X F X x f x F x dx  = =                          (10) 

The PWMs of the TIHLEtKw distribution are derived by substituting equations (8) and (9) into 

equation (10), followed by replacing h with s, as outlined in the procedure. 
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Consider the integral part in equation (11) 
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The equation (12) above is the PWMs of TIHLEtKw 
 

1.5 Moments of TIHLEtKw Distribution 
 

Moments play a crucial role in statistical analysis, particularly in practical applications. 

Therefore, we derive the rth moment for the TIHLEtKw distribution. 
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Consider the integral part in equation (14) 
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The above equation (15) represents the rth moment of the TIHLEtKw distribution. 

The mean and variance of the TIHLEtKw distribution are given as follows. 
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1.6 Moment generating function (mgf) of TIHLEtKw Distribution 

The Moment Generating Function is given as:  

0

1

( ) ( )tx

xM t e f x dx=                        (16) 

The mgf for the TIHLEtKw distribution is derived by substituting equation (8) into equation 

(16), resulting in the following expression. 
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By expanding 
0 !

b b
tx

b

e
b

t x

=

=  and following the process for deriving moments as outlined above, 

we obtain the mgf for the TIHLEtKw distribution, which is presented in equation (18) below. 
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1.7 Reliability Function of TIHLEtKw Distribution 

The reliability function, also referred to as the survival function, represents the probability 

that an item will not fail before a specified time. It is defined as: 
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1.8 Hazard Function of TIHLEtKw Distribution  

The hazard function describes how the risk of an event evolves over time. It represents the 

failure rate or the instantaneous rate of occurrence of the event at a specific time, given that the 

event has not occurred up to that time. It is defined as: 
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1.9 Quantile Function of TIHLEtKw Distribution 

The quantile function is an essential tool for generating random variables from any 

continuous probability distribution, making it highly significant in probability theory. For a given 

x, the quantile function is defined as F(x) = u, where u follows a U (0, 1) distribution. The 

quantile function, also known as the inverse cumulative distribution function (cdf), for the 

TIHLEtKw distribution, is derived using the CDF provided in equation (5). 
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The median of the TIHLEtKw distribution can be obtained by substituting u = 0.5 into equation 

(23), as shown below. 

( )

1
1

1
1

1 0.5
median 0.5 1 1 1

0.5 1
Q







 
    −   = = − − −    +    
   

 

                      (24) 

 
Fig. 2: Plot of reliability function of the TIHLEtKw distribution for different valves of 

parameters 
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1.10 Distribution of Order Statistics of TIHLEtKw Distribution 

Let X1, X2,..., X3 be independent and identically distributed (i.i.d) random variables with their

 corresponding continuous distribution function F(x). Let X1:n<X2:n<...<Xn:n the corresponding or

dered random sample from the TIHLEtKw distributions. Let Fr:n(x) and fr:n(x), r=1,2,3,...,n denot

e the CDF and PDF of the rth order statistics Xr:n respectively. The PDF of the rth order statistics 

of Xr:n is given as 

 
1

:

0

( )
( ; , , , ) ( 1) ( )
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n r
v rv

r n

v

n rf x
f x F x

vB r n r
   

−
+ −

=

− 
= −  

− +  
                      (25) 

The PDF of the rth order statistic for the TIHLEtKw distribution is derived by substituting 

equations (8) and (9) into equation (25). Additionally, by replacing h with v + r - 1 in equation 

(9), we obtain the following expression. 
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  
                  (26) 

The PDF of the minimum order statistic for the TIHLEtKw distribution is obtained by setting r = 

1 in equation (26), resulting in the following expression. 
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                  (27) 

Similarly, the PDF of the maximum order statistic for the TIHLEtKw distribution is derived by 

setting r = n in equation (26), resulting in the following expression. 
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2.0   Maximum Likelihood Estimation of TIHLEtKw Distribution 
 

The maximum likelihood estimation method is used in estimating the parameters of the new 

model. Let 1 2 3x , x , x ,..., x  n be a random sample of size n from the TIHLEtKw distribution. 

Then, the likelihood function based on the observed sample for the parameter vector ( ), , ,
T

     

is given by: 
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                    (29) 

Differentiating the log-likelihood function with respect to , , ,    and setting the result to zero, 

we obtain: 

  (30) 

 

 

                  (31) 

 

 

                                 (32) 
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                                                                                                                                                     (33) 

The equations (30), (31), (32), and (33) above 

are nonlinear and cannot be solved 

analytically, which requires the use of 

numerical methods such as BFGS. 
 

3.0 Simulation Study of TIHLEtKw 

Distribution  
 

This section evaluates the reliability of the 

parameter estimates for the proposed 

TIHLEtKw distribution through a 

comprehensive simulation study. Using Monte 

Carlo simulations, we assessed the bias and 

root mean square error (RMSE) of the 

maximum likelihood estimates (MLEs) for the 

parameters. Simulated datasets were generated 

across various sample sizes ( n = 20, 50, 100, 

250, 500, and 1,000 ) using the log-likelihood 

function provided in Equation (29) and the 

quantile function outlined in Equation (23). 

Each sample was replicated 1000 times, with 

the simulations based on fixed parameter 

values of ( =1.5, =0.6, =2.1, 3l a q j =  

and =2, =0.8, =1.5, 2.5l a q j = ), for the 

TIHLEtKw. This method facilitated a 

thorough assessment of the estimation 

process's consistency and the robustness of the 

parameter estimates across different sample 

sizes. 

Table 1 reveals that as the sample size grows, 

the bias and RMSE values decrease, 

approaching zero. This trend indicates that the 

estimates become more precise, converging 

toward the true values, thereby demonstrating 

their efficiency and reliability. 

 

 

Table 1: MLEs, biases and RMSE for some values of parameters 

 

               (1.5,0.5,2.1,3)                 (2,0.8,1.5,2.5) 

n Parameters  Estimated  

Values 

Bais RMSE Estimated  

Values 

Bais RMSE 

 

20 

  

  

  
  

1.6497  

0.7252  

2.2975  

3.0410 

0.1497  

0.1252  

0.1975  

0.0410 

0.5163  

0.3922  

0.6252  

0.5704 

2.0649  

0.9431  

1.7722  

2.5835 

0.0649  

0.1431  

0.2722  

0.0835 

0.4464  

0.4779  

0.7552  

0.4989 

 

50 

  

  

  
  

1.5661  

0.6342  

2.2066  

3.0704 

0.0661  

0.0342  

0.1066  

0.0704 

0.3472  

0.2047  

0.5028  

0.4408 

2.0475  

0.8447  

1.5917  

2.5516 

0.0475  

0.0447  

0.0917  

0.0516 

0.3172 

0.2467  

0.4242  

0.3535 

100   

  

  
  

1.5494  

0.6084  

2.1428  

3.0824 

0.0494  

0.0084  

0.0428  

0.0824 

0.2567  

0.1347  

0.3814  

0.3348 

2.0469  

0.8123  

1.5324  

2.5538 

0.0469  

0.0123  

0.0324  

0.0538 

0.2356  

0.1476  

0.2995  

0.2684 

250   

  

  
  

1.5075  

0.5913  

2.1459  

3.0754 

0.0075  

-0.0087   

0.0459   

0.0754 

0.1641  

0.0685  

0.2734  

0.2294 

2.0332  

0.7909  

1.4981  

2.5567 

0.0332  

-0.0091  

-0.0019   

0.0567 

0.1419  

0.0739  

0.1396  

0.1656 

500   

  
1.4995  

0.5895  

-0.0005  

-0.0105   

0.1067  

0.0444  

2.0210  

0.7893  

0.0210  

-0.0107  

0.0988  

0.0461  
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  
  

2.1293  

3.0565 

0.0293   

0.0565 

0.1951  

0.1616 

1.4936  

2.5412 

-0.0064   

0.0412 

0.0848  

0.1144 

1000   

  

  
  

1.5029  

0.5926  

2.1126  

3.0351 

0.0029  

-0.0074   

0.0126   

0.0351 

0.0786  

0.0305  

0.1373  

0.1160 

2.0151  

0.7924  

1.4938  

2.5245 

0.0151  

-0.0076  

-0.0062   

0.0245 

0.0673  

0.0298  

0.0581  

0.0811 

 
 

4.0 Application of TIHLEtKw to Real-life 

Datasets 
 

This section clearly demonstrates the 

versatility and flexibility of the Type I Half-

Logistic Exponentiated Kumaraswamy 

(TIHLEtKw) distribution by applying it to two 

real-world datasets. Its performance is then 

compared with that of the Kumaraswamy-

Kumaraswamy (Kw-Kw) Distribution by El-

Sherpieny et al., (2014), the Weibull-

Kumaraswamy (Wkw) Distribution by Aminu 

et al., (2018), the Type II Half Logistic 

Kumaraswamy (TIIHLKw) Distribution by 

ZeinEldin et al., (2020), Exponentiated 

Kumaraswamy (EKw) distribution by 

Lemonte et al., (2013), and the Kumaraswamy 

(Kw) Distribution by Kumaraswamy, (1980).  

Kumaraswamy-Kumaraswamy (Kw-Kw) 

distribution (El-Sherpieny et al., 2014). 

 
 

Weibull-Kumaraswamy (Wkw) distribution (Aminu et al., 2018) 

 
 

Type II Half Logistic Kumaraswamy (TIIHLKw) distribution (ZeinEldin et al., 2020) 

 
 

Exponentiated Kumaraswamy (EKw) distribution (Lemonte et al., 2013) 

( ) ( )( )
1

1
1( ; , , ) 1 1 1f x x x x

 
     

−
−

−= − − −  

Kumaraswamy (Kw) distribution (Kumaraswamy, 1980) 
1

1; ) 1( ,f x x x
    −
−

 − =  

The two datasets used to demonstrate the application provide practical evidence of the new 

distribution's adaptability and suitability. It is shown to be the best choice for modelling the 

datasets, outperforming the other comparator distributions. All computations were performed 

using the R programming language.  

Dataset 1 

The first dataset below consists of civil engineering data with 85 hailing times, previously 

referenced by Kotz and Dorp (2004). 
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4.79, 4.75, 5.40, 4.70, 6.50, 5.30, 6.00, 5.90, 4.80, 6.70, 6.00, 4.95, 7.90, 5.40, 3.50, 4.54, 6.90, 

5.80, 5.40, 5.70, 8.00, 5.40, 5.60, 7.50, 7.00, 4.60, 3.20, 3.90, 5.90, 3.40, 5.20, 5.90, 4.40, 5.20, 

7.40, 5.70, 6.00, 3.60, 6.20, 5.70, 5.80, 5.90, 6.00, 5.15, 6.00, 4.82, 5.90, 6.00, 7.30, 7.10, 4.73, 

5.90, 3.60, 6.30, 7.00, 5.10, 6.00, 6.60, 4.40, 6.80, 5.60, 5.90, 5.90, 8.60, 6.00, 5.80, 5.40, 6.50, 

4.80, 6.40, 4.15, 4.90, 6.50, 8.20, 7.00, 8.50, 5.90, 4.40, 5.80, 4.30, 5.10, 5.90, 4.70, 3.50, 6.80. 
 

Table 2: The MLEs, Log-likelihoods and Goodness of Fits Statistics of the models based on 

Dataset 1 
 

Model l    j    LL AIC 

TIHLEtKw 1.1057 0.1060 2.4591 0.1018 - 77.2204 162.4408 

Kw-Kw 2.1483 0.1916 0.4786 1.4626 - 101.8063 211.6126 

Wkw 0.8070 3.7808 4.1275 1.6237 -179.3222 366.6444 

TIIHLKw 1.4238 0.3454 4.0545 - -261.5863 529.1726 

EKw - 4.5136 0.5969 0.1461 -165.4639 336.9278 

Kw - 0.8260 0.2566 - -131.9002 267.8003 
 

Table 2 displays the Maximum Likelihood Estimation results for the parameters of the 

TIHLEtKw distribution, along with five other comparator distributions. Among them, the 

TIHLEtKw distribution demonstrated the lowest AIC value of 162.4408, indicating it provides 

the best fit for the hailing times data compared to the other distributions analyzed. Additionally, 

visual assessments of the empirical and theoretical PDFs, CDFs, as well as the Q-Q and P-P plots 

depicted in Fig. 3, further confirm the suitability and adaptability of the new distribution for the 

analyzed dataset. 

 
Fig. 3: Empirical and theoretical pdfs and cdfs, Q-Q and P-P plots for dataset 1 
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Dataset 2 

The second dataset below contains the failure and service times for an aircraft windshield, 

previously utilized by Kundu and Raqab (2009). 

0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 0.280, 1.794, 

2.819, 0.313, 1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978, 3.003, 0.900, 

2.053, 3.102, 0.952, 2.065, 3.304, 0.996, 2.117, 3.483,1.003, 2.137, 3.500, 1.010, 2.141, 3.622, 

1.085, 2.163, 3.665, 1.092, 2.183, 3.695, 1.152, 2.240, 4.015, 1.183, 2.341, 4.628, 1.244, 2.435, 

4.806, 1.249, 2.464, 4.881, 1.262, 2.543, 5.140. 
 

Table 3 presents the Maximum Likelihood 

Estimation results for the parameters of the 

TIHLEtKw distribution, along with five 

comparator distributions. Based on the AIC  
 

goodness-of-fit statistic, the TIHLEtKw 

distribution achieved the lowest AIC value of 

47.5339, indicating it provides the best fit for 

the aircraft windshield data. . 

Table 3: The MLEs, Log-likelihoods and Goodness of Fits Statistics of the models based on 

Dataset 2 
 

Model  l    j    LL AIC 

TIHLEtKw 1.1531 0.3462 0.3364 0.0114 - 19.7669 47.5339 

Kw-Kw 0.3552 1.0734 0.0537 3.2463 - 43.5369 95.0738 

Wkw 0.0534 2.3461 0.3648 3.4772 -242.2716 492.5433 

TIIHLKw 2.0254 0.2731 0.0732 - -84.06965 174.1393 

EKw - 2.3721 0.2472 0.3520 -57.8619 121.7237 

Kw - 1.2430 0.5148 - -246.4215 496.843 

 

Fig. 4: Empirical and theoretical pdfs and cdfs, Q-Q and P-P plots for dataset 2 
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In addition, visual evaluations of the empirical 

and theoretical PDFs and CDFs, along with 

the Q-Q and P-P plots presented in Fig. 4, 

provide further evidence of the proposed 

distribution's superior performance. As a 

result, the newly introduced distribution 

proves to be the best fit for the aircraft 

windshields failure dataset compared to the 

other distributions analyzed 
 

5.0 Conclusion\ 
 

The study provides a comprehensive 

exploration of the Type I Half-Logistic 

Exponentiated Kumaraswamy (TIHLEtKw) 

distribution, introducing its fundamental 

properties, including its moment generating 

function, reliability function, hazard function, 

quantile function, and order statistics. The 

derivations and mathematical formulations 

underscore the versatility and robustness of 

this new distribution in modelling diverse data 

types. A detailed simulation study confirmed 

the reliability and precision of the maximum 

likelihood estimators (MLEs), demonstrating 

improved accuracy as sample sizes increased. 

The application of the TIHLEtKw distribution 

to real-world datasets, particularly civil 

engineering and wind speed data, further 

validated its flexibility and superior 

performance compared to existing 

distributions, such as the Kumaraswamy-

Kumaraswamy and Weibull-Kumaraswamy 

distributions. The results of this work 

highlight the potential of the TIHLEtKw 

distribution to address complex statistical 

modelling challenges, particularly in scenarios 

where traditional models fail to capture the 

underlying data dynamics effectively. The 

study also emphasizes the practicality of the 

new model, as demonstrated through its 

successful implementation using the R 

programming language. The findings indicate 

that the TIHLEtKw distribution is a valuable 

addition to statistical modelling, capable of 

providing accurate and reliable fits for various 

datasets. It is recommended that future 

research explore extensions of this distribution 

to other domains, including environmental, 

biomedical, and financial applications. 

Moreover, developing more advanced 

estimation techniques and computational 

algorithms could further enhance its 

applicability and efficiency in handling large 

and complex dataset. 

6.0   References 
 

Alshkaki R. (2020). A generalized 

modification of the Kumaraswamy 

distribution for modelling and analyzing 

real-life data. Statistics, Optimization & 

Information Computing,  8, 2, pp.  521-

548. 

Aminu, M., Dikko, H. G., & Yahaya, A. 

(2018). Statistical properties and 

applications of a Weibull-Kumaraswamy 

distribution. International Journal of 

Statistics and Applied Mathematics, 3, 6, 

pp.  80-90. 

Asiribo, O. E., Mabur, T. M., & Soyinka, A. 

T. (2019). On the Lomax-Kumaraswamy 

distribution. Benin Journal of 

Statistics, 2, pp. 107-120. 

Bello, O. A., Doguwa, S. I., Yahaya, A., & 

Jibril, H. M. (2021). A Type I Half 

Logistic Exponentiated-G Family of 

Distributions: Properties and 

Application. Communication in Physical 

Sciences, 7, 3, pp. 147-163. 

Carrasco, J. M., Ferrari, S. L., & Cordeiro, G. 

M. (2010). A new generalized 

Kumaraswamy distribution. arXiv 

preprint arXiv:1004.0911. 

El-Sherpieny, E. S. A., & Ahmed, M. A. 

(2014). On the Kumaraswamy 

Kumaraswamy 

distribution. International Journal of 

Basic and Applied Sciences, 3, 4, pp.  

372- 381. 

Ghosh, I., & Hamedani, G. G. (2018). The 

Gamma–Kumaraswamy distribution: an 



Communication in Physical Sciences, 2025, 12(2) 322-337 336 

 

 

alternative to Gamma 

distribution. Communications in 

Statistics-Theory and Methods, 47, 9, pp.  

2056-2072. 

Greenwood, J. A., Landwehr, J. M., Matalas, 

N. C., & Wallis, J. R. (1979). Probability 

weighted moments: definition and 

relation to parameters of several 

distributions expressable in inverse 

form. Water resources research, 15, 5, 

pp.  1049-1054. 

Ishaq, A. I., Panitanarak, U., Abiodun, A. A., 

Suleiman, A. A., & Daud, H. (2024). 

The Generalized Odd Maxwell-

Kumaraswamy Distribution: Its 

Properties and 

Applications. Contemporary 

Mathematics, pp.  5, 1, 711-742. 

Ishaq, A. I., Suleiman, A. A., Daud, H., Singh, 

N. S. S., Othman, M., Sokkalingam, R., 

& Abba, S. I. (2023). Log-

Kumaraswamy distribution: its features 

and applications. Frontiers in Applied 

Mathematics and Statistics, 9, pp. 1 - 10. 

DOI 10.3389/fams.2023.1258961 

Ishaq, A. I., Usman, A., Musa, T., & Agboola, 

S. (2019). On some properties of 

Generalized Transmuted Kumaraswamy 

distribution. Pakistan Journal of 

Statistics and Operation Research, 15, 3, 

pp. 577-586. 

Javanshiri, Z., Habibi Rad, A., & Arghami, N. 

R. (2015). Exp-Kumaraswamy 

distributions: Some properties and 

applications. Journal of Sciences, 

Islamic Republic of Iran, 26, 1, pp.  57-

69. 

Khan, M. S., King, R., & Hudson, I. L. 

(2016). Transmuted kumaraswamy 

distribution. Statistics in Transition new 

series, 2, 17, pp.  183-210.  

Khan, M. S., King, R., & Hudson, I. L. 

(2016). Transmuted kumaraswamy 

distribution. Statistics in Transition new 

series, 2, 17, pp. 183-210. 

Kotz, S., & Dorp, J. R. (2004). Beyond beta: 

Other continuous families of 

distributions with bounded Support and 

applications. Singapore: World 

Scientific, 289. 

Kumaraswamy, P. (1980). A generalized 

probability density function for double-

bounded random processes. Journal of 

hydrology, 46, 1, 2, pp. 79-88. 

Kundu, D., &  Raqab, M. Z. (2009). 

Estimation of R = P (Y < X) for three-

parameter Weibull distribution, Stat. 

Prob. Lett., 79, 6, pp. 1839-1846. 

Lemonte, A. J., Barreto-Souza, W., & 

Cordeiro, G. M. (2013). The 

exponentiated Kumaraswamy 

distribution and its log-transform. 

Brazilian Journal of Probability and 

Statistic, 27, 1, pp. 31-53. 

Nadarajah, S. (2008). On the distribution of 

Kumaraswamy. Journal of 

Hydrology, 348, 3, pp.  568-569. 

Kaile, N. K, Audu, I., & Dikko, H. G. (2018). 

Odd Generalized Exponential 

Kumaraswamy distribution: its 

properties and application to real life 

data.  ATBU, Journal of Science, 

Technology & Education (JOSTE), 6, 1, 

pp. 137- 147. 

Saracoglu, B., & Tanis, C. (2018). A new 

statistical distribution: cubic rank 

transmuted Kumaraswamy distribution 

and its properties. Journal of the 

National Science Foundation of Sri 

Lanka, 46, 4, pp.  505-518. 

ZeinEldin, R. A., Haq, M. A. U., Hashmi, S., 

Elsehety, M., & Elgarhy, M. (2020). 

Type II half logistic Kumaraswamy 

distribution with applications. Journal of 

Function Spaces, 1, pp. 35-96. 
 

Compliance with Ethical Standards 

Declaration    

Ethical Approval    

Not Applicable 



Communication in Physical Sciences, 2025, 12(2) 322-337 337 

 

 

Competing interests 

The authors declare that they have no known 

competing financial interests  

Funding 

The authors discovered no external source of 

funding 

Authors’ Contribution 

IAS, was involved in the writing of the 

manuscript, ,ASM in proofreading and Hgd in 

conceptualization and data curation.  

 


