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Abstract: This study examines how machine
learning (ML) and artificial intelligence (Al)
technologies are fundamentally reshaping
financial  technology  (FinTech), with
particular emphasis on three interconnected
domains: digital payments, fraud detection,
and financial inclusion. Despite the rapid
proliferation of Al-driven financial services,
comprehensive empirical evidence linking
specific  algorithmic  approaches  to
measurable outcomes remains fragmented
across disciplinary boundaries. We employ a
mixed-methods research design combining
systematic literature review (covering 2018—
2023), quantitative analysis of adoption
patterns across 45 countries and 125
financial institutions, and detailed case study
examination of six leading FinTech
implementations. Our quantitative analysis
incorporates transaction data from over 50
million digital payment events, fraud
detection records encompassing 2.3 million
documented  incidents, and  financial
inclusion metrics from the World Bank'’s
Global Findex Database. Results
demonstrate substantial ~ performance
improvements across all three domains. Al-
enhanced digital payment systems achieve
67% reduction in average processing time
while  maintaining  enhanced  security
protocols. Machine learning-based fraud
detection systems exhibit accuracy rates
between 94-98% with false positive
reductions approaching 70 % compared to
rule-based alternatives. Alternative credit
scoring models powered by ML algorithms
expand financial access by 25—40% among
previously underserved populations, with
loan approval rates 67% higher than
traditional methods while maintaining
comparable or improved default rates. Our
conceptual framework positions AI/ML as an
enabling infrastructure that simultaneously

transforms and is transformed by advances in
payments, fraud detection, and inclusion,
with feedback loops distinguishing our
approach from linear input-output models
common in earlier work.
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1.0 Introduction

The financial services landscape has
undergone a profound transformation over
the past decade. Traditional banking
infrastructure, once characterized by
extensive branch networks and face-to-face
interactions, now coexists—often uneasily—
with fully digital platforms that process
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millions of transactions per second without
direct human intervention (Arner, Barberis,
& Buckley, 2016; Ademilua & Areghan,
2022; Okolo 2021). This transformation,
commonly labeled as the FinTech revolution,
encompasses far more than mere digitization
of existing processes. Rather, it represents a
fundamental reconceptualization of how
financial value flows through economic
systems, who participates in these flows, and
what mechanisms ensure their integrity (Lee
& Shin, 2018). At the heart of this
transformation lies artificial intelligence (Al),
with machine learning (ML) constituting the
dominant operational layer through which
most contemporary sectors with systems
learn, adapt, and make real-time decisions
(Akinsanya et al., 2022). While AI has
captured public imagination through
advances in natural language processing and
computer vision, its perhaps most profound
impact has manifested in domains where
immediate visibility remains limited to
industry  insiders: the algorithmic
infrastructure undergirding digital financial
services. Every tap of a contactless payment
card, every interaction with a mobile banking
application, and every real-time decision on
whether a transaction is fraudulent
increasingly depend on sophisticated
machine learning models. These models are
trained on billions of historical data points
and operate at temporal scales imperceptible
to human oversight (Gomber, Kauffman,
Parker, & Weber, 2018). Yet despite the
ubiquity of Al-driven financial services,
academic understanding remains curiously
fragmented. Computer scientists publish
extensively about algorithmic innovations in
fraud detection but rarely engage with
questions of financial inclusion or regulatory
compliance. Economists analyze financial
access but often treat underlying technologies
as black boxes. Development scholars
examine inclusion outcomes without probing
the specific algorithmic = mechanisms
producing these effects. This disciplinary
fragmentation obscures crucial
interconnections and creates knowledge gaps
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precisely where integrated understanding
matters most.

The integration of artificial intelligence into
financial technology was neither inevitable
nor accidental. Rather, it emerged from the
confluence of several technological and
economic trends (Philippon, 2016). First, the
exponential growth in computational power
following trajectories that would have
seemed fantastical even two decades ago
made previously intractable machine learning
approaches suddenly feasible. What required
supercomputer clusters in 2005 can now run
on smartphone processors (Goodfellow,
Bengio, & Courville, 2016). Second, the
proliferation of digital transactions created
massive  datasets  capturing  granular
behavioral patterns. Third, cloud computing
infrastructure  democratized access to
scalable computational resources, enabling
startups to compete with established
institutions ~ without = massive  capital
investments in physical infrastructure. These
technological enablers intersected with
urgent business imperatives. Financial
institutions faced mounting pressure to
reduce operational costs while improving
customer experience (Frost, Gambacorta,
Huang, Shin, & Zbinden, 2019). Regulatory
requirements demanded more sophisticated
risk management and fraud prevention.
Meanwhile, fintech startups recognized
opportunities to serve market segments that
traditional banks found uneconomical the
proverbial “long tail” of customers with thin
credit files or modest account balances.
Machine learning offered promising
solutions to all these challenges
simultaneously. These populations—often
excluded from formal financial systems—
represent a critical test case for evaluating
whether Al-driven FinTech innovation
delivers inclusive growth rather than merely
efficiency gains.

Despite rapid growth in FinTech scholarship,
existing literature exhibits three persistent
and consequential limitations. Existing
literature, while valuable, exhibits three
significant limitations. First, most studies
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examine individual application domains in
isolation digital payments or fraud detection
or financial inclusion thereby missing the
synergies and tensions among these
interconnected systems. Second, much
research remains either highly technical
(focusing on algorithmic minutiae) or highly
conceptual (discussing abstract implications)
without bridging these levels of analysis.
Third, empirical evidence often relies on
simulated data or small-scale pilots rather
than production systems serving millions of
actual users (Claessens, Frost, Turner, & Zhu,
2018). This study addresses these gaps
through an integrated analytical framework
examining Al and ML across three critical
FinTech domains. This study makes four
primary contributions. First, we develop an
integrated theoretical framework
synthesizing technology acceptance theory,
innovation diffusion, and financial inclusion
paradigms. Second, we employ a mixed-
methods design that bridges algorithmic
performance analysis with institutional and
developmental outcomes. Third, we provide
large-scale empirical evidence drawn from
production-level systems across 45 countries.
Finally, we derive practical insights relevant
to financial institutions, regulators, and
development practitioners.

Methodologically, we combine systematic
literature review with large-scale quantitative
analysis and detailed case studies, providing
both breadth and depth. Empirically, we
present evidence from production systems
spanning 45 countries and processing billions
of dollars in transactions, moving beyond
laboratory demonstrations to real-world
performance. Practically, our findings inform
multiple stakeholder groups. Financial
institutions gain insights into implementation
pathways, expected performance
improvements, and common pitfalls.
Policymakers receive evidence about
regulatory approaches that foster innovation
while protecting consumers (Brummer &
Yadav, 2019). Development organizations
learn about effective strategies for leveraging
AI/ML to expand financial access.
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Technology providers understand how their
algorithms perform in diverse operational
contexts.

Our investigation centers on four primary
research questions. First, how do machine
learning  and  artificial  intelligence
technologies enhance the efficiency, security,
and user experience of digital payment
systems across different technological
architectures and regional contexts? Second,
what is the comparative effectiveness of Al-
based fraud detection systems versus
traditional rule-based approaches in terms of
accuracy, false positive rates, processing
latency, and adaptability to evolving threat
landscapes? Third, to what extent do Al and
ML innovations facilitate financial inclusion
among underserved populations, and through
what specific mechanisms do these
technologies expand access to credit, savings,
and other financial services? Fourth, what
regulatory, ethical, and technical challenges
constrain widespread AI/ML adoption in
financial services, and how might these
barriers be addressed without stifling
innovation or compromising consumer
protection? These questions guided our data
collection, analysis, and interpretation
throughout the research process.
Technologies in the FinTech Ecosystem. This
framework illustrates the interconnected
relationships  among  digital payment
innovation, fraud detection mechanisms, and
financial inclusion outcomes, with machine
learning  algorithms  serving as the
foundational enabler across all three
domains. The arrows indicate both direct
effects and feedback loops, such as how
expanded financial inclusion generates
additional transaction data that improves
fraud detection capabilities.

Fig. 1 presents our conceptual framework,
positioning machine learning and artificial
intelligence as foundational technologies that
simultaneously enable and are enhanced by
advances in digital payments, fraud detection,
and financial inclusion. The framework
emphasizes feedback loops for instance, how
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expanded financial inclusion generates
additional transactional data that, in turn,

improves fraud detection algorithms and
payment processing efficiency. These
recursive  relationships  distinguish  our
approach from linear input-output models
common in earlier FinTech literature. This
paper proceeds as follows. Section 2 develops
our theoretical framework, integrating
perspectives  from technology adoption
theory, machine learning fundamentals, and
domain-specific financial theories. Section 3
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details our mixed-methods research design,
including systematic literature review
procedures, quantitative data sources and
analytical methods, and case study selection
criteria. Section 4 provides research findings
on the three main areas, both the statistical
findings and the qualitative findings (using
the case studies). Section 5 ends by giving
theoretical contributions, practical
implications, known limitations, and
promising directions of future research.

Gsnceptual Framework: Al/ML in the FinTech Ecoystem

Digital
Payments

e Machine Learning & 4,
K \ Artificial Intelligence / %

Financial
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Fig. 1: Conceptual Framework: AI/ML

1.1 Theoretical Framework

A rigorous analysis of artificial intelligence
(AI) and machine learning (ML) in financial
services must be grounded in robust
theoretical ~ foundations. Given  the
interdisciplinary nature of this study—
spanning computer science, economics,
finance, and development studies—multiple
theoretical ~ traditions  are  required.
Accordingly, we structure our theoretical
framework across three interrelated levels: (1)

foundational theories of technology adoption
and innovation, (i1) technical foundations of
machine learning methodologies, and (iii)
domain-specific financial theories relevant to
each application area

1.1.1 Diffusion of Technology Adoption
and Innovation

The Technology Acceptance Model (TAM),
which was initially developed by Davis
(1989) hypothesizes that the adoption of
technology depends on two factors, which are
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perceived usefulness and perceived ease of
use. Although TAM has been criticized as
oversimplified, the main point it makes is
quite important: technologies should provide
concrete value by means of interfaces that are
easy to use. Within the FinTech setting,
perceived usefulness is expressed in the form
of reduced transaction time, lower charges, or
the availability of services that were not
available previously. Perceived ease of use
manifests through intuitive mobile interfaces,
biometric authentication mechanisms, and
Al-enabled customer support systems such as
chatbots. However, TAM primarily operates
at the individual level and does not fully
capture the dynamics of institutional
adoption. Rogers (2003) determines five
factors that determine the adoption of
innovations and these include relative
advantage (level of improvement relative to
the current solutions), compatibility (how
much it coincides with the current values and
practices), complexity (how difficult it is to
understand and implement), trialability (how
easy it is to experiment the innovation before
committing to it), and observability (how
well the results are visible to other people).
In the context of AI/ML adoption in financial
services, the relative advantage is substantial,
including enhanced fraud detection accuracy,
reduced transaction costs, and expanded
market coverage: However, it is still very
complex, and specialized knowledge that is
often not possessed by most institutions is
necessary. This conflict can be used to clarify
patterns of adoption in which advanced
financial institutions and venture-capital-
backed startups are on the forefront of
implementation, and small community banks
fall behind. Compatibility challenges are
particularly pronounced in legacy financial
institutions, where decades-old core banking
systems often conflict with modern machine
learning pipelines.

1.2 Principles of Machine Learning

To assess the impact of Al on financial
services, a basic understanding of machine
learning methodologies is essential. Machine
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learning is a general class of computational
techniques that allow systems to perform
better on certain tasks as a result of
experience, without being coded to cover all
contingencies (Bishop, 2006).

Supervised learning algorithms learn
mappings from input features to output labels
using labeled training data. In fraud
detection, this means training models on
historical transactions labeled as legitimate or
fraudulent. Common supervised learning
approaches include logistic regression,
decision trees, random forests, support vector
machines, and neural networks. The choice
among these depends on factors including
dataset size, feature dimensionality,
interpretability requirements, and
computational constraints.

Deep learning, a subset of machine learning
employing multi-layer neural networks, has
demonstrated strong performance in tasks
involving high-dimensional and unstructured
data (Goodfellow et al., 2016). Recurrent
neural networks (RNNs) and their more
sophisticated variants like Long Short-Term

Memory (LSTM) networks excel at
sequential data crucial for analyzing
transaction sequences over time.

Convolutional neural networks, despite their
primary association with image processing,
have found applications in document
verification and biometric authentication
(Pumsirirat & Yan, 2018).

Unsupervised learning methods identify
patterns in data without pre-existing labels.
Clustering  algorithms  group  similar
transactions or customers, enabling market
segmentation and personalized service
offerings. Anomaly detection algorithms
identify unusual patterns that might indicate
fraud or system errors, particularly valuable
when labeled fraud examples are scarce
(Abdallah, Maarof, & Zainal, 2016).
Reinforcement learning approaches, while
less common in traditional financial
applications, show promise for dynamic
pricing, algorithmic trading, and adaptive
fraud detection systems where agents learn
optimal strategies through trial-and-error
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interactions with their environment (Sutton &
Barto, 2018). Table 1 summarizes major
algorithm families and their typical FinTech
applications. The diversity of approaches
reflects the heterogeneity of financial service
challenges. No single algorithm dominates
across all contexts; rather, practitioners select
methods based on specific requirements, data
characteristics, and operational constraints.
Notably, ensemble methodswhich combine
predictions from multiple algorithms
increasingly represent best practice for high-
stakes decisions where maximizing accuracy
justifies additional computational
complexity.

1.3 Domain-Specific Financial Theories

In addition to overall technology adoption
models and ML underlying technologies, we
analyze using domain-specific theories. In
the case of digital payments, we will read
literature that investigates payment systems
architecture, especially studies that consider
tradeoffs  between centralization and
decentralization, settlement finality, cross-
border interoperability (Bech, Faruqui,
Ougaard, and Picillo, 2017; Dahlberg, Guo,
and Ondrus, 2015). Network effects—where
system value increases with the number of
participants—play a critical role in payment
system efficiency, often encouraging market
concentration while potentially constraining
competition and innovation(Ozili, 2023).

Fraud detection theory emphasizes the cat-
and-mouse  dynamics between  fraud
perpetrators and detection systems (Bolton &
Hand, 2002). Traditional rule-based systems
encode expert knowledge about fraud
patterns but struggle with adaptation when
perpetrators adjust tactics. Machine learning
approaches, by learning patterns from data,
can potentially identify novel fraud schemes.
However, this dynamic creates an adversarial
learning environment, in which fraudsters
continuously adapt their behavior to evade
detection systems. Advanced techniques such
as deep learning architectures have shown
particular promise in addressing imbalanced
classification problems inherent in fraud
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detection (Dal Pozzolo, Caelen, Johnson, &
Bontempi, 2015). Financial inclusion theory
builds on Sen’s (1999) capability approach,
viewing access to financial services not as an
end itself but as a means toward economic
agency and opportunity. The theoretical
framework distinguishes access (availability
of financial services), usage (actual uptake of
services), and quality (whether services meet
users’ needs). Machine learning contributes
to financial inclusion primarily through
alternative credit scoring mechanisms that
leverage non-traditional data sources to
determine creditworthiness in cases of non-
existent or thin conventional credit histories.
Recent empirical studies demonstrate that
FinTech innovations significantly reduce
barriers to financial access, particularly in
developing economies (Demirguc,-Kunt et
al., 2020).

2.0 Methodology

This study employs a mixed-methods
research design, integrating quantitative and
qualitative approaches to capture both
breadth and depth in examining AI/ML
applications in financial services. This
section elaborates our systematic literature
review procedure, sources of quantitative
data and analytical methods, and methods of
selection and analysis of our case studies.

2.1 Systematic Literature Review

To find, filter, and integrate the relevant
studies, we performed a systematic literature
review based on PRISMA (Preferred
Reporting Items to Systematic Reviews and
Meta-Analyses) principles. Relevant studies
were identified using Boolean operators such
as (machine learning OR artificial
intelligence OR deep learning) AND (fintech
OR financial technology OR digital
payments OR fraud detection OR financial
inclusion). Searches were conducted across
Web of Science, Scopus, IEEE, and Google
Scholar databases.

Our screening is shown in Fig. 2. The first
search provided 3,847 possibly relevant.
After removing duplicates and screening
based on title and abstract, 412 articles
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underwent  full-text assessment. Final
inclusion criteria emphasized empirical
studies and theoretical contributions directly
addressing AI/ML applications in our three
focal domains, resulting in 156 articles for
detailed synthesis. The high exclusion rate
reflects our focus on rigorous, peer-reviewed
research rather than grey literature or purely
speculative pieces.

2.2 Quantitative Data Collection and
Analysis

Quantitative analysis leveraged multiple
complementary data sources to assess AI/ML
adoption and performance outcomes across
our three domains. Data included transaction
amount, timestamp, merchant category,
authentication method, processing duration,
and success/failure status.

After duplicate removal and title/abstract
screening, 412 articles underwent full-text
review against predetermined inclusion
criteria: (1) focus on ML/AI applications in
financial services, (2) empirical evidence or
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theoretical contribution rather than purely
speculative discussion, (3) publication in
peer-reviewed venues, and (4) publication
between 2018 and 2022 to capture recent
developments while excluding outdated
approaches. This process identified 156
articles for detailed synthesis.

From the selected articles, we extracted

information  on  research  questions,
methodologies, datasets, algorithms,
performance metrics, and limitations.

Thematic coding identified recurring patterns
and literature gaps, confirming the need for
an integrated, cross-domain analytical
approach. Thematic coding identified
recurring patterns and gaps in existing
literature. We found that while individual
domains  (payments, fraud detection,
inclusion) have received substantial attention,
integrated perspectives spanning multiple
domains remain rare. This reinforced our
decision to pursue a holistic analytical
approach.

Table 1: Overview of ML/AI Algorithms and FinTech Applications.

Algorithm Specific Techniques Primary FinTech Applications

Family

Supervised Logistic Regression, Credit scoring, fraud classification,

Learning Random Forests, Gradient default prediction, payment
Boosting (XGBoost), authentication,  customer  churn
Support prediction

Vector Machines

Deep Learning
Recurrent Neural
Networks (LSTM,

Networks, Autoen-
coders
Unsupervised K-means Clustering,
Learning Hierarchical Clustering,
DBSCAN, Isolation

Forest, One-Class SVM

Feedforward Neural Networks,

GRU),
Convolutional Neural

Analysis of the sequence of
transactions, biometric authentication,
verification of documents, chatbot
customer service, detection of
complex fraud patterns.

Customer segmentation, anomaly
detection, market basket analysis,
network-based fraud detection, outlier
identification
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Reinforcement Q-Learning, Deep QNetworks, Dynamic pricing, algorithmic trading,

Learning Policy Gradient Methods personalized product
recommendations, adaptive fraud
detective systems

Ensemble Bagging, Boosting, Stacking, High-stakes  decisions  requiring
Methods Voting Clas- maximum accuracy (loan approval,
sifiers fraud detection), combining multiple

model predictions
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Fig. 2: PRISMA Flow Diagram for Systematic Literature Review. Initial database
searches yielded 3,847 potentially relevant articles.
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Crucially, we  excluded  personally
identifiable information throughout our
analysis, maintaining strict compliance with
data protection regulations.

Fraud detection analysis leveraged publicly
available fraud reporting data from the
Federal Trade Commission’s Consumer
Sentinel Network and the FBI’s Internet
Crime Complaint Center, supplemented by
aggregated statistics from industry reports by
McKinsey, Deloitte, and the Association for
Financial Professionals. These sources
provided insights into fraud typologies,

incident volumes, financial losses, and
detection rates across different
methodologies.

Financial inclusion metrics came primarily
from the World Bank’s Global Findex

Database, which surveys approximately
150,000 adults across 140+ countries
regarding financial service usage

(Demirgu“c -Kunt ef al., 2022). We focused
on the 2017 and 2021 waves, analyzing trends
in account ownership, digital payment
adoption, credit access, and savings behavior.
This data enabled cross-national comparisons
and 1dentification of regional patterns.

Our analytical approach employed multiple
statistical methods appropriate to specific
research questions. Descriptive statistics
established baseline patterns and
distributions. Multiple regression analysis
examined relationships between AI/ML
adoption and performance outcomes,
controlling for potential confounders like
economic development, regulatory
environment, and digital infrastructure
quality.  Difference-in-differences (DiD)
analysis estimated causal effects of AI/ML
implementation by comparing outcomes
before and after adoption relative to control
groups without such adoption.

Table 2 defines key variables in our
quantitative analysis. To operationalize
abstract constructs such as ‘AI/ML adoption,’
we developed a composite adoption index
incorporating the proportion of
algorithmically processed transactions, the
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number of ML models deployed, and an
algorithmic ~ complexity = score.  This
multidimensional measure captures adoption
more comprehensively than a simple binary
indicator. This multidimensional approach
provides richer insights than binary adoption
indicators while remaining practically
measurable.

2.3 Qualitative Case Study Analysis

To complement large-scale statistical
analysis with nuanced understanding of
implementation contexts, mechanisms, and
challenges, we conducted detailed case
studies of six leading  FinTech
implementations: PhonePe (India) and
Alipay (China) for digital payments; PayPal
and Mastercard Decision Intelligence for
fraud detection; and M-Pesa (Kenya) and
Nubank (Brazil) for financial inclusion.
Cases were purposively selected to maximize
variation in geography, business model, and
technological approach, while ensuring
sufficient ~ documentation  and  data
availability.

Data collection employed multiple methods,
including semi-structured interviews with 45
stakeholders—executives, data scientists,
regulators, and end users—and document
analysis of white papers, technical blogs,
regulatory filings, media reports, and
academic studies. We supplemented
interviews with extensive document analysis
of company white papers, technical blog
posts, regulatory filings, media coverage, and
academic case studies.

Qualitative  data  analysis  followed
established procedures for thematic coding.
Interview transcripts and documents were
coded using NVivo software to identify
recurring themes, patterns, and insights. We
employed both deductive coding (based on
our theoretical framework) and inductive
coding (allowing themes to emerge from
data). Crosscase synthesis identified common
patterns and context-specific variations,
enriching our understanding beyond what
aggregate statistics alone could provide.
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Table 2: Variable Definitions and Measurement Instruments

Variable Type

Measurement

Independent Variables
AI/ML Adoption Level Continuous

Algorithm Type Categorical

Data Quality Index  Continuous

Dependent Variables
Transaction Success Continuous
Rate
Processing Time Continuous
Fraud Detection Continuous
Accuracy

False Positive Rate Continuous
Financial Access Continuous
Credit Approval Rate Continuous

Control Variables

GDP per Capita Continuous
Regulatory Continuous
Environment
Digital Infrastructure Continuous
Financial Literacy Continuous

Composite score (0—100) based on:
percentage of transactions processed
by ML algorithms, number of ML
models in production, algorithmic
complexity index
Classification: rule-based ( baseline),
supervised learning, deep learning,
ensemble methods
Composite measure of completeness,
accuracy, timeliness, and consistency

(0100 scale)

Percentage of initiated transactions
successfully completed
Milliseconds from initiation to
completion
Percentage of correctly classified
transactions (true positives + true
negatives) / total
Percentage of legitimate transactions
incorrectly flagged as fraudulent
Percentage of adult population with
formal financial account
Percentage of applicants approved for

credit products

World Bank data, current US dollars

Index measuring
innovationfriendliness, consumer
protection, data privacy (0-100)
Internet penetration rate, mobile
subscription rate, 4G/5G coverage
Percentage of population meeting
basic financial literacy threshold

2.4  Ethical Considerations and
Limitations

Several ethical considerations shaped our
research design. We obtained Institutional
Review Board approval before any data
collection involving human subjects. All

interview participants provided informed
consent after receiving detailed information
about research purposes and data usage.
Transaction data came pre-anonymized, with
multiple layers of de-identification ensuring
no possibility of re-identifying individuals.
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We did not collect or analyze any data on
protected characteristics (race, religion, etc.)
unless publicly reported in aggregate form by
authoritative sources.

There are limitations to our methodology to
which we can admit. Transaction data were
obtained through partnerships with specific
processors, which may introduce selection
bias if these processors are not fully
representative of the broader market. While
the case studies provide in-depth insights,
findings may not be fully generalizable
across different institutional or geographic
contexts.There are inherent problems with
causal inference based on observational data
even though we use quasi-experimental
techniques such as difference-in-differences.
Given the rapid pace of technological
innovation, findings may become outdated,
underscoring the need for ongoing research.

3.0 Results and Discussion

This section details our systematic literature
review procedures, quantitative data sources
and analytical methods, and the selection and
analysis of case studies. For each domain, we
synthesize quantitative results, qualitative
case study insights, and connections to
theoretical frameworks developed earlier.
3.1  Digital Payments: Speed, Security,
and User Experience

The digital payments landscape has evolved
dramatically over the past decade. What
began as relatively simple online credit card
processing has expanded into a complex
ecosystem encompassing mobile wallets,
contactless cards, peer-to-peer transfer
applications, cryptocurrency exchanges, and
more. Artificial intelligence and machine
learning pervade nearly every component of
modern payment infrastructure.

Our quantitative analysis reveals substantial
performance improvements associated with
AI/ML adoption in payment systems. Fig. 3
presents adoption trends and performance
metrics across our sample of 125 financial
institutions spanning 45 countries. The left
panel shows steady growth in Al-powered
payment  transaction  volume  from
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approximately 15% of total transactions in
2018 to nearly 68% by 2023. This growth
occurred more rapidly in Asia-Pacific and
Latin American markets, where mobile-first
digital banking faced fewer legacy
infrastructure constraints compared to North
America and Europe. The right panel of Fig.
3 compares transaction processing times
between traditional and Al-enhanced
payment systems.

The median processing time dropped from
2.3 seconds in traditional systems to 0.8
seconds with Al implementation a 67%
reduction. While this may seem modest in
absolute terms, consider that these sub-
second improvements occur across billions of
transactions. At scale, such efficiency gains
translate into meaningful cost reductions and
improved user experiences.

Left panel: Percentage of payment
transactions  processed using ML/AI
algorithms, shown by region. Asia-Pacific
leads adoption, driven primarily by China and
India’s mobile payment ecosystems. Right
panel: Average transaction processing time
comparison. Al-enhanced systems achieve
median processing times of 0.8 seconds
versus 2.3 seconds for traditional systems,
representing 67% reduction. Box plots show
distribution across all institutions in sample,
with outliers indicating particularly fast or
slow processors.

The broader distributions evident in box plots
reflect heterogeneity across institutions and
transaction types; complex international
transfers naturally require longer processing
than domestic peer-to-peer payments.

How do machine learning algorithms achieve
these improvements? Several mechanisms
operate simultaneously. First, ML models
excel at pattern recognition, enabling more
accurate real-time decision-making about
transaction routing. Neural networks can
predict which payment processors or network
paths will provide fastest, most reliable
completion based on historical performance
data, current network conditions, and
transaction characteristics.
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Global Adoption and Performance of Al-Powered Digital Payment Systems (2018-2025)

Regional Adoption of Al-Powered Payment Systems
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Fig. 3: Global Adoption and Performance

(2018-2023).

Second, predictive analytics reduce failed
transactions by identifying potential issues
before they occur. If a model predicts high
likelihood of failure due to insufficient funds
or technical problems, the system can
proactively alert the wuser rather than
proceeding to inevitable failure. Third,
biometric authentication powered by deep
learning particularly facial recognition and
fingerprint scanning reduces authentication
time while enhancing security.

Our regression analysis (detailed results
available in supplementary materials)
indicates that AI/ML adoption significantly
predicts multiple performance outcomes even

after controlling for institution size,
geographic  region, and  regulatory
environment. A one-standard-deviation

increase in our Al adoption index associates
with 0.42 standard deviation improvement in
transaction success rates (p < 0.001), average
cost reduction of $0.23 per transaction (95%
CI: $0.19-%0.27), and 1.8-point increase on a
5-point user satisfaction scale.

Table 3 presents detailed comparative
performance metrics between traditional and
Al-enhanced payment systems across seven
key  dimensions. All  improvements
statistically significant. speed, we observe

Transaction Processing Time Comparison

0
8

S

67% reduction

w

Median: 2.30s

o

1

Al-Enhanced
Systems

Traditional
_ Systems

of Al-Powered Digital Payment Systems

substantial improvements in authentication
time (73.7% reduction), cost per transaction
(25.8% decrease), and particularly dramatic
improvements in crossborder payment
processing (89.1% reduction from 38.4 hours
to 4.2 hours’ median time). This last finding
addresses a longstanding pain point in
international commerce where settlements
traditionally took days due to manual
reconciliation across banking systems and
currencies.

The false decline rate metric percentage of
legitimate transactions incorrectly rejected
warrants particular attention. Traditional
payment systems, erring on the side of
security, frequently reject legitimate
transactions when fraud detection rules
trigger inappropriately. This creates friction
and frustration for customers while costing
merchants lost sales. Al-enhanced systems
reduced false declines from 2.3% to 0.7%, a
nearly 70 % improvement. Machine learning
models achieve this by learning nuanced
patterns that distinguish legitimate but
unusual  transactions from  genuinely
fraudulent ones, rather than applying rigid
rules that cannot accommodate the diversity
of real-world transaction patterns.
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Our case study of PhonePe in India
illuminates implementation challenges and
success factors that aggregate statistics
cannot fully capture. PhonePe, launched in
2016, leveraged India’s Unified Payments
Interface (UPI) a government-backed real-
time payment system to build a mobile

1047

payment platform that now serves over 450
million users processing more than 10 billion
transactions monthly. The scale is staggering:
PhonePe handles 1,500+ transactions per
second during peak periods, each requiring
fraud screening, routing optimization, and
settlement coordination.

Table 3: Comparative Performance Metrics: Traditional vs. AI-Enhanced Payment

Systems

Metric Traditional Al- Improvement p-value
Enhanced

Avg. Processing Time 2.31 0.78 66.7% <0.001
(sec)
Transaction Success Rate 94.2 97.8 3.6 pp <0.001
(o)
Authentication Time 4.67 1.23 73.7% <0.001
(sec)
Cost per Transaction ($) 0.89 0.66 25.8% <0.001
False Decline Rate (%) 23 0.7 69.6% <0.001
Customer Satisfaction 3.6 4.4 22.2% <0.001
(1-5)
Cross-Border Time 38.4 4.2 89.1% <0.001
(hours)

Note: Results based on analysis of 125 institutions, SOM+ transactions

Machine learning pervades PhonePe’s
architecture. Neural networks analyze
transaction patterns to detect fraud in real-
time (discussed further in next section).
Reinforcement learning algorithms optimize
transaction routing across UPI’s participating
banks to maximize success rates and
minimize latency. Natural language
processing powers customer service chatbots
handling millions of inquiries monthly.
Recommendation engines suggest
personalized payment methods and financial
products based on user behavior.

Yet implementation was far from smooth.
Early ML models trained on limited Indian
transaction data performed poorly when
encountering the diversity of India’s 1.4
billion people. Regional variations in
spending patterns, linguistic diversity, and
varying levels of digital literacy created
challenges. PhonePe invested heavily in
collecting representative training data and
developing models robust to distribution

shift. They built specialized models for
different user segments rather than
attempting one-size-fits all solutions. And
they maintained human-in-the-loop systems
for handling edge cases that algorithms
struggled with.

The Alipay case study from China offers
contrasting insights. As part of Ant Group
(formerly Ant Financial), Alipay pioneered
facial recognition payment authentication the
“Smile to Pay” feature that now serves over
300 million users. Deep convolutional neural
networks use live facial images and compare
them with known biometric templates to
identify the user, with 99.2 percent accuracy
rates and very low false acceptance rates (0.1
percent). This technology saved 96 percent
over PIN or password entry and was much
more secure against account takeover fraud.
Nonetheless, the facial recognition feature of
Alipay attracted serious privacy concerns
among proponents of civil liberties,
especially government access of biometric
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information. Compared to Europe or North
America, Chinese regulatory environment is
quite different, as the government has much
more control over technology firms and much
less stringent data protection laws. This is
why the application of AI/ML in the financial
services sector cannot be considered
independent of sociopolitical conditions
under which technical capabilities have to
strike a balance regarding regulatory
requirements, cultural beliefs, and privacy
demands that differ radically in different
jurisdictions.

3.2 Fraud Detection: The Arms Race by
Algorithms

In case digital payments are the enabling
aspect of Al in financial services, the aspect
of fraud detection demonstrates its protective
aspect. Financial fraud is a tens of billions of
years cost to the global economy, with the
Association of Certified Fraud Examiners
estimating that 2022 losses will be in the
billions, and that the losses will continue to
grow to greater than 40 billion by 2027 unless
the methods of detecting such frauds
improve. Older rule-based fraud detection
solutions that mark off transactions where
they fit specific defined criteria, such as
suspicious geographic areas or suspicious
purchase volumes, have fundamental
constraints. Detection rules are constantly
being changed to help prevent fraudsters, so
it has always been a game of cat and mouse,
with the defenses constantly being outwitted
by the threats.

Machine learning provides a radically
different way. Instead of storing expert
knowledge regarding the appearance of
fraud, ML algorithms learn trends on
historical information regarding the kinds of
transactional traits that correspond to
fraudulent and legitimate behavior. This data-
driven method may be able to locate new
fraud trends that human analysts may
overlook as automated systems adjust to new
fraudster trends.

We compared the performance of five
algorithmic methods of fraud detection:
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conventional rule-based (baseline), logistic
regression, random forests, gradient boosting
machines (in particular, XGBoost), and deep
neural networks. Fig. 4 presents Receiver
Operating Characteristic (ROC) curves for
each approach, plotting true positive rates
against false positive rates across different
decision thresholds.

Each curve in Fig. 4 represents a different
detection approach evaluated on a holdout
test set of 500,000 transactions (12,000
fraudulent). The diagonal dashed line
represents random guessing. Area Under the
Curve (AUC) scores quantify overall
performance: Rule-based (0.82), Logistic
Regression (0.91), Random Forest (0.95),
XGBoost (0.97), Deep Neural Network
(0.96). Machine learning approaches
substantially outperform traditional rules,
with ensemble methods (Random Forest,
XGBoost) achieving best performance. The
small performance gap between XGBoost
and deep learning suggests diminishing
returns to model complexity for this
application.

Fig. 4 demonstrates substantial performance
advantages for machine learning approaches.
Traditional rule-based systems achieve an
AUC (Area Under the Curve) of 0.82,
indicating reasonable but limited
discriminatory power. Moving to logistic
regression the simplest ML approach
improves AUC to 0.91. More sophisticated
methods push performance higher: random
forests reach 0.95, gradient boosting
(XGBoost) achieves 0.97, and deep neural
networks reach 0.96. These differences
matter enormously in practice. At typical
operating points balancing fraud detection
against false alarm rates, XGBoost catches
approximately 43% more fraud than rule-
based systems while generating 67% fewer
false positives.

Why do machine learning models outperform
rules? Several factors contribute. First, ML
algorithms can simultaneously consider
hundreds or thousands of features and their
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complex interactions far beyond human
cognitive capacity. Fraud often manifests
through subtle combinations of factors rather
than any single red flag. Second, ML models
naturally handle continuous variables and
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transactions over $5,000 are suspicious, those
under are fine). Third, ensemble methods like
random forests and gradient boosting
aggregate predictions from many weak
learners, achieving robustness that single

probabilistic  relationships rather than  models lack.

requiring  arbitrary  thresholds (e.g.,

ROC Curves: Fraud Detection Method Comparison
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Fig. 4: ROC Curves Comparing Fraud Detection Methods.

small percentage of total transactions.
Precision (what percentage of flagged
transactions are actually fraudulent) and
recall (what percentage of actual fraud gets
detected) provide more nuanced assessment.

Table 4 presents detailed performance
metrics  across  multiple  dimensions.
Accuracy alone can be misleading for
imbalanced datasets where fraud represents a

Table 4: Performance Comparison of ML Algorithms for Fraud Detection

Algorithm Accuracy Precision Recall F1-Score FPR

Rule-Based (Baseline)  94.8% 74.2% 61.3% 0.671 1.8 %
Logistic Regression 96.2% 82.7% 78.4% 0.805 1.1%
Random Forest 97.4% 91.3% 88.7% 0.900 0.6 %
XGBoost 97.8% 94.1% 91.2% 0.926 0.5%
Deep Neural Network 97.6% 92.8% 90.1% 0914 0.6 %
Ensemble (Stacking) 98.1% 95.2% 92.8% 0.940 0.4 %

Note: Evaluated on test set of 500,000 transactions (2.4% fraud rate). FPR = False
Positive Rate.

The Fl-score harmonically combines
precision and recall into a single metric. False
positive rate (percentage of legitimate

transactions incorrectly flagged) directly
impacts customer experience excessive false
positives frustrate customers and increase
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operational costs as analysts investigate false
alarms.

XGBoost achieves the best overall
performance with 97.8% accuracy, 94.1%
precision, 91.2% recall, and only 0.5% false
positive rate. Compared to rule-based
systems, XGBoost catches 49% more fraud
(recall improvement from 61.3% to 91.2%)
while reducing false positives by 72% (from
1.8% to 0.5%). For a large financial
institution processing millions of daily
transactions, these improvements translate
into hundreds of millions of dollars in
prevented losses and substantially improved
customer satisfaction.

Interestingly, deep neural networks perform
slightly worse than XGBoost despite their
greater complexity. This likely reflects the
relatively structured, tabular nature of
transaction data where tree-based ensemble
methods excel. Deep learning’s advantages
emerge more clearly with unstructured data
like images, text, or complex sequences. We
also tested an ensemble approach stacking
predictions from multiple models, achieving
marginal further improvement to 98.1%
accuracy. Nevertheless, in some operational
situations, small  improvements  in
performance might not be worth the extra
complexity and computational expense of
going to ensemble methods.

In our case study on PayPal, which is an
example of ML fraud detection, the scale is
enormously big. PayPal handles around 22
billion transactions in one year which is
worth more than 1.3 trillion. The company
uses deep learning models that analyze more
than 4,000 features per transaction which is
well beyond human analyzing ability. These
characteristics include transaction
information (value, store, place, date),
account history (account age, previous
transaction history, how they pay), device
features (IP address, device fingerprint, type
of browser), and behavioral features
(keyboard typing patterns, mouse movements
suggesting bot or human).

The PayPal fraud models process real-time,
and decisions are made within milliseconds
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to approve or reject or send transactions to be
reviewed by a human. The company claims to
block about 28 billion dollars in potentially
fraudulent transactions every year and has
fraud loss rates of only 0.32 of revenue versus
the industry average of 1.8. This is not only
due to advanced algorithms but to an ongoing
investment into the data infrastructure, model
monitoring and adaptive learning systems
that keep on updating the models as fraud
patterns develop.

Yet challenges remain. To begin with,
explainability of models is not without issues.
Deep neural networks are regarded as black
boxes whose decision logic is not visible.
Regulators are also requiring reasons behind
negative decisions (such as rejecting
transactions) which are hard to explain by
complex ML models. PayPal partially
overcomes this by its counterfactual
explanatory methods that discover which
changes in the features would have caused
varying decision making but full
interpretability cannot be achieved.

Second, the adversarial machine learning
establishes cat and mouse game. Advanced
fraudsters strategically alter their actions in
order to avoid ML. As an example, when
models position big, suspicious transactions,
fraudsters position schemes into numerous
smaller transactions. In case of geographic
inconsistency alerts, the fraudsters make use
of VPNs that conceal locations. Defensive
ML  involves  predicting  adversarial
adaptation, which is a difficult issue on the
edge of machine learning studies.

Third, model performance is of great concern
to data quality. Machine learning algorithms
are data-driven, or garbage in, garbage out.
The required high-quality representative
training data can be ensured only at the cost
of significant investments. Biased training
data generates biased models a problem that
we revisit when addressing financial
inclusion.

The case of Mastercard Decision Intelligence
offers some supplementary information. The
Al system at Mastercard uses each
transaction to evaluate the risk of fraud by
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scoring it in less than 50 milliseconds per
year, evaluating about 125  billion
transactions per year. The system cut down
false declines by 17 percent a significant
reduction considering the huge transaction
volumes involved. MasterCard underlines
that their strategy is to integrate Al with
human intelligence and does not displace the
analysts. Machine learning is applied to
routine decisions, where the probability of
success 1s great, and to the cases which are
uncertain, and sent to human investigators
who add context and expertise.

3.3  Financial Inclusion: Democratizing
Access

The most significant effect of artificial
intelligence on financial services is, perhaps,
the increased access to underserved
populations, the 1.7 billion adult non-banked
and underbanked non-service users around
the world. Serving customers with low
incomes, in the rural areas or in the informal
sector has often been uneconomical amongst
the traditional financial institutions. Using
physical branches, costly Know Your
Customer (KYC) processes, and risk-averse
methods of credit assessment imposes
restrictions that lock-out exactly the groups
of people most likely to need financial
services.

Machine learning has provided possible
solutions to circumvent these obstacles
through a number of mechanisms. Non-
conventional credit scoring gives the
possibility of risk rating an individual who
does not have a traditional credit profile.
Small-balance accounts become  cost-
effective due to the utilization of digital
delivery channels that are operated by Al-
based chatbots and austerity customer
service. Individualized financial services
based on ML recommendation engines are
also better suited to the needs of a wide
variety of customers than a universal
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offering.Our analysis of World Bank Global
Findex data reveals substantial progress on
financial inclusion globally, with evidence
suggesting Al-powered Fin-Tech solutions
contributed meaningfully. Fig. 5 presents
trends in financial account ownership across
different regions and the relationship between
Fin-Tech adoption and inclusion outcomes.
The left panel of Fig. 5 shows encouraging
trends. Global account ownership increased
from 62% of adults in 2014 to approximately
76% in 2023, representing roughly 1.4 billion
additional people gaining financial access.
Progress occurred unevenly across regions.
East Asia and Pacific reached near-universal
coverage at 93%, while Sub-Saharan Africa
improved from 27% to 55% but still lags
substantially. South Asia made remarkable
strides from 46% to 77%, driven largely by
India’s  financial inclusion initiatives
including biometric identification systems
and mobile payment infrastructure.

The right panel presents difference-in-
differences analysis estimating AI/ML’s
causal contribution to inclusion outcomes.
We compared regions/countries with high
FinTech adoption (defined as top quartile in
our adoption index) versus those with low
adoption, examining changes in inclusion
metrics before and after significant FinTech
deployment. Results suggest that high AI/ML
adoption associates with 18 percentage point
additional  improvement in  account
ownership, 31% greater increase in credit
access, and 23% larger gains in savings
behavior compared to low-adoption regions,
after controlling for economic development,

regulatory  environment, and  digital
infrastructure.  These  estimates  carry
uncertainty  (reflected in  confidence

intervals), but the consistency across multiple
outcomes strengthens confidence that effects
are genuine rather than spurious.
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Financial Inclusion Trends and Impact of AUML Implementation
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Fig. S: Financial Inclusion Trends and Impact of AI/ML Implementation.

Left panel shows financial account ownership
rates by region (2014, 2017, 2021, 2023
estimated). Substantial gains occurred
globally, particularly in Sub-Saharan Africa
and South Asia where mobile money and
digital lending expanded rapidly. Right panel
presents difference-in-differences analysis
comparing inclusion outcomes in regions
with high versus low FinTech/Al adoption.
Treatment group (high adoption) shows
significantly greater improvement in account
ownership (18 percentage points), credit
access (31%), and savings behavior (23%)
compared to control group. Error bars
represent 95 % confidence intervals.

How specifically does machine learning
expand financial inclusion? The most direct
pathway operates through alternative credit
scoring. Traditional credit assessment relies
on credit bureau data payment histories for
loans, credit cards, utilities. But billions of
people lack such histories, not because they
are bad credit risks but simply because
they’ve never accessed formal credit. This
creates a Catch-22: you need credit history to
get credit, but you can’t build history without
getting credit.

ML-based alternative credit scoring breaks
this loop by leveraging non-traditional data
sources. Mobile phone usage patterns airtime
purchases, data consumption, communication
networks contain signals about financial
behavior. E-commerce transaction histories,
social media activity (with appropriate
consent), utility bill payments, even
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keystroke dynamics may inform
creditworthiness  assessments.  Machine

learning algorithms identify complex patterns
linking these alternative data to loan
repayment likelihood.

Research by Bjo rtkegren and Grissen (2020)
demonstrated that mobile phone metadata
predicted loan repayment in emerging
markets. Models analyzing call records, SMS
patterns, and airtime purchases achieved
similar predictive accuracy to traditional
credit bureau scores in developed countries.
This finding  holds  transformative
implications: if predictive accuracy using
alternative data equals traditional scores, then
the limiting factor becomes data availability
rather than analytical capability. And
alternative data sources are increasingly
ubiquitous as mobile phone penetration
expands globally.

Table 5 presents detailed impact metrics
across multiple dimensions: access, usage,
quality, and socioeconomic outcomes.
Beyond simply opening accounts, Al-driven
inclusion initiatives demonstrate
improvements in active usage (25% increase
in monthly active accounts), transaction
frequency (172% increase in average
monthly digital transactions), and savings
behavior (23% increase in adults maintaining
savings).

Particularly noteworthy, microloan approval
rates increased 67% from 42.7% to 71.3%
when institutions adopted ML-based
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alternative credit scoring, yet default rates
actually declined slightly from 10.7% to
9.2%. This access with long-term or better
credit quality is the holy grail of financial
inclusion. It implies that ML algorithms will
recognize individuals that have been
excluded in the past but are actually
creditworthy, not just reduced standards and
greater risk of default.

There are downstream socioeconomic
implications which seem significant but more
challenging to causally attribute. Areas that
had financial inclusion based on Al
experienced 23% growth in the number of
small businesses and 15% growth in financial
resilience indices (composite measures of the

capacity to survive economic shocks).
Notably, ensemble methods—which
combine  predictions  from  multiple

algorithms—are increasingly regarded as
best practice for high-stakes financial
decisions.

Our M-Pesa case study illustrates these
mechanisms at population scale. Launched in
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Kenya in 2007 by telecommunications
company Safaricom, M-Pesa pioneered
mobile money in Africa, enabling users to
store value and transfer funds via basic
mobile  phones  without  smartphone
requirements.  The  service  achieved
remarkable penetration approximately 30
million active users representing 80% of
Kenya’s adult population. MPesa effectively
became the country’s financial infrastructure,
processing more domestic transactions than
all Kenyan banks combined.

In 2012, M-Pesa introduced M-Shwari, a
savings and credit product leveraging
machine learning for credit scoring. Rather
than credit bureau data (which fewer than 3
% of Kenyans possess), M-Shwari’s
algorithms analyze users’ M-Pesa transaction
histories. How frequently do they receive
transfers? Do they maintain positive
balances? Do transaction patterns suggest
stable income? These behavioral signals
enabled initial credit assessments for millions
who were previously “credit invisible.”

Table 5: Socioeconomic Impact Metrics of AI-Driven Financial Inclusion Initiatives

Outcome Metric Before AI/ML  After AI/ML Change
Access Indicators
Account Ownership (%) 64.2 75.8 +18 %
Credit Product Access (%) 31.5 41.3 +31 %
Microloan Approval Rate 42.7 71.3 +67 %
(%)
Usage Indicators
Active Account Usage (% 54.8 68.4 +25 %
monthly)
Digital Transaction 3.2 8.7 +172 %
Frequency (monthly
avg.)
Savings Behavior (% with 38.6 47.5 +23 %
savings)
Quality Indicators
Default Rate (% of loans) 10.7 9.2 -14 %
Customer Satisfaction (1- 34 4.1 +21 %
5)
Average Account Balance 127 218 +72 %
$)

Socioeconomic Qutcomes
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Small Business Formation 14.2
(%)

Financial Resilience Index 52.3
(0-100)

Gender Gap (percentage 9.4
points)
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17.5 +23 %
60.1 +15%
6.2 -34 %

Note: Pooled estimates across high AI/ML adoption regions. Sample size varies by metric.

M-Shwari has disbursed over $3.2 billion in
small loans to 22 million Kenyans since
launch. Average loan sizes hover around $50
tiny by developed country standards but
meaningful for households living on $2-5
daily incomes. Crucially, the system learns
continuously. Repayment behavior on initial
small loans informs credit limits for
subsequent loans, creating pathways from
financial exclusion toward full inclusion.
Research by Jack and Suri (2014) and Suri
and Jack (2016) documented substantial
positive impacts on household resilience,
consumption smoothing, and gender equity.
Yet M-Pesa’s success reflects favorable
contextual factors beyond just technology.
Kenya’s regulatory environment enabled
telecommunication companies to offer
financial services without onerous banking
licenses. Low initial mobile banking
penetration meant M-Pesa faced limited
competition, allowing network effects to
compound. And Safaricom’s market
dominance provided the necessary scale.
Whether similar models can succeed
elsewhere remains uncertain replication
attempts in other African countries have met
mixed results.

Our Nubank case study from Brazil offers
contrasting insights. Nubank, founded in
2013, grew to over 85 million customers by
2023, making it the largest digital bank
outside Asia. Unlike M-Pesa’s mobile-first
approach for feature phones, Nubank targets
smartphone users with slick interfaces and
sophisticated Al-powered financial
management  tools. The company’s
proprietary ML models assess credit risk
using data far beyond traditional credit scores
analyzing behavioral patterns, social network
characteristics ~ (with  consent), and

transaction histories from Nubank’s own
platform.

Nubank serves disproportionately young
adults and previously unbanked populations
skeptical of traditional banks. Their ML-
driven credit score yields default rates that
are around 40 percent lower than those of the
industry in spite of it being used in more at-
risk groups. Due to the delivery of solely
digital, as well as high levels of automation,
operating costs are 83% lower than those of a
traditional bank. This cost structure allows it
to make a profit even on low balance
accounts that would not be accepted by
traditional banks as economically viable.
Nonetheless, when credit is scored using
algorithms, then fairness is compromised. In
case algorithms are trained on past data, they
can reinforce or even increase bias. A model
that is trained based on discriminatory
lending patterns is likely to recreate such
discriminatory ~ patterns  despite  not
considering any of the protected attributes
such as race or gender. This notion of fairness
by unawareness is referred to as such by ML
practitioners because it is the naive belief that
sensitive variables should be left out in order
to guarantee fairness. Indeed, proxy variables
(such as zip-codes as a proxy of racial make
up) enable algorithms to discriminate
indirectly.

Algorithms need to be consciously addressed
to deal with bias. Methods are disparate
impact testing (testing whether there are
differences in the rate of approval between
demographic groups), adversarial debiasing
(training models to jointly maximise
accuracy and fairness), and fairness-aware
learning (adding explicit fairness
requirements to the training of a model).
However, defining what fairness is itself is
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debatable they (demographic parity,
equalized odds, calibration) can be
mathematically antithetical, and the value
judgments necessary to determine which
fairness notions are most important in any
given situation (Barocas and Selbst, 2016).

4.0 Conclusion

This study explored the issue of machine
learning and the role of artificial intelligence
in changing financial services in the digital
payment, fraud detection and financial
inclusion sectors via systematic literature
review, large-scale quantitative study and
case studies. Our research provides a number
of strong results proving the transformative
effect of AI/ML and revealing some
unresolved issues. Digital payment systems
with Al make 67 percent less processing time
and achieved almost 90 percent faster cross
border settlements, which corresponds to
significant cost savings and better user
experiences in large volumes. Machine
learning-based methods of fraud detection are
far more successful than traditional rule-
based systems, with the highest-performing
algorithms having an accuracy of up to 94 -
98% and a false positive rate of less than
0.5% of one-third the false alarms of
conventional systems, which means that large
institutions could potentially save hundreds
of millions in fraud annually while also
decreasing customer friction. Al-based
alternative credit scoring significantly
increases financial inclusion in underserved
communities, with microloan approval rates
rising by 67 points when financial institutions
embraced ML-based assessment technologies
and default rates did not fall, which offers
strong arguments that the conventional credit
scoring is a systematic means of shutting out
creditworthy people. Theoretically, the study
works to bring together the disjointed
literatures in computer science, economics,
finance, and development studies and
presents AI/ML as a supporting infrastructure
that both changes and is changed by the
development of payments, fraud detection,
and inclusion and the presence of feedback
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loops, unlike the linear models used in the
previous research. In the case of financial
institutions, our results indicate that the
adoption of AI/ML is a competitive
requirement, but its effective adoption cannot
be achieved without more than buying
algorithms to the vendors, required by the
organization data infrastructure, technical
skills, and ability to manage changes. To the
policymakers, our study identifies tensions
that need to be well balanced in the
enablement of innovation and risk
management through regulatory sandboxes,
explainability = demands, and fairness
auditing, but coordinating across borders is a
challenge in particular cases since financial
services are provided globally, and regulation
is mainly national. There are a variety of
limitations that characterize our findings,
such as data limitations to mainly consider
environments with a high level of digital
infrastructure, the high rate of technological
change that may age the findings very fast,
and the fact that the causal inference of
observational data is always difficult with
quasi experimental designs. Future research
directions involve the exploration of the

interface between Al and blockchain
technologies,  further  exploration  of
adversarial machine learning dynamics,

devising methods of debiasing algorithms
that can be used in production systems, cross-
cultural studies of the activity of AI/ML in
different  sociocultural  settings, and
longitudinal studies of the financial paths of
individuals. Machine learning and artificial
intelligence are not inherently good or bad
tools, but have consequences and must be
managed with technical expertise alongside
social sensitivity, financial intellect along
with moral logic, and continuous dialogue
between technologists, policy makers, civil
society, and the communities they serve must
ensure that these systems promote the
flourishing of everyone, not just commercial
or political elites.
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