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Abstract: This study examines how machine 

learning (ML) and artificial intelligence (AI) 

technologies are fundamentally reshaping 

financial technology (FinTech), with 

particular emphasis on three interconnected 

domains: digital payments, fraud detection, 

and financial inclusion. Despite the rapid 

proliferation of AI-driven financial services, 

comprehensive empirical evidence linking 

specific algorithmic approaches to 

measurable outcomes remains fragmented 

across disciplinary boundaries. We employ a 

mixed-methods research design combining 

systematic literature review (covering 2018–

2023), quantitative analysis of adoption 

patterns across 45 countries and 125 

financial institutions, and detailed case study 

examination of six leading FinTech 

implementations. Our quantitative analysis 

incorporates transaction data from over 50 

million digital payment events, fraud 

detection records encompassing 2.3 million 

documented incidents, and financial 

inclusion metrics from the World Bank’s 

Global Findex Database. Results 

demonstrate substantial performance 

improvements across all three domains. AI-

enhanced digital payment systems achieve 

67% reduction in average processing time 

while maintaining enhanced security 

protocols. Machine learning-based fraud 

detection systems exhibit accuracy rates 

between 94–98% with false positive 

reductions approaching 70 % compared to 

rule-based alternatives. Alternative credit 

scoring models powered by ML algorithms 

expand financial access by 25–40% among 

previously underserved populations, with 

loan approval rates 67% higher than 

traditional methods while maintaining 

comparable or improved default rates. Our 

conceptual framework positions AI/ML as an 

enabling infrastructure that simultaneously 

transforms and is transformed by advances in 

payments, fraud detection, and inclusion, 

with feedback loops distinguishing our 

approach from linear input-output models 

common in earlier work. 
 

Keywords: AI/ML, FinTech, Digital 

Payments, Fraud Detection, Financial 

Inclusion, Alternative Credit Scoring. 

Edith Agberxonu 

McCombs School of Business, University of 

Texas at Dallas, Texas, USA 

Email: kafuiedith1@gmail.com 
 

Abdulateef Disu 

Department of Computer Science, School of 

Computing and Engineering Sciences, 

Babcock University, Ilishan-Remo, Ogun 

State, Nigeria 

Email: tosinekpetidisu@gmail.com 
 

Chidinma Dike 

Department of Business Administration, 

Faculty of Management Sciences, Imo State 

University, Imo State, Nigeria 

Email: Chimarv1234@gmail.com 
 

Toyosi Mustapha 

College of Business, Southern New 

Hampshire University, Manchester, New 

Hampshire, USA 

Email: Mtoyosi101@gmail.com 
 

Lawrence Abakah 

McCombs School of Business, The 

University of Texas at Austin, Texas, USA 

Email: lawrenceabakah715@gmail.com 
 

1.0 Introduction 
 

The financial services landscape has 

undergone a profound transformation over 

the past decade. Traditional banking 

infrastructure, once characterized by 

extensive branch networks and face-to-face 

interactions, now coexists—often uneasily—

with fully digital platforms that process 
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millions of transactions per second without 

direct human intervention (Arner, Barberis, 

& Buckley, 2016; Ademilua & Areghan, 

2022; Okolo 2021). This transformation, 

commonly labeled as the FinTech revolution, 

encompasses far more than mere digitization 

of existing processes. Rather, it represents a 

fundamental reconceptualization of how 

financial value flows through economic 

systems, who participates in these flows, and 

what mechanisms ensure their integrity (Lee 

& Shin, 2018). At the heart of this 

transformation lies artificial intelligence (AI), 

with machine learning (ML) constituting the 

dominant operational layer through which 

most contemporary sectors with systems 

learn, adapt, and make real-time decisions 

(Akinsanya et al., 2022). While AI has 

captured public imagination through 

advances in natural language processing and 

computer vision, its perhaps most profound 

impact has manifested in domains where 

immediate visibility remains limited to 

industry insiders: the algorithmic 

infrastructure undergirding digital financial 

services. Every tap of a contactless payment 

card, every interaction with a mobile banking 

application, and every real-time decision on 

whether a transaction is fraudulent 

increasingly depend on sophisticated 

machine learning models. These models are 

trained on billions of historical data points 

and operate at temporal scales imperceptible 

to human oversight (Gomber, Kauffman, 

Parker, & Weber, 2018). Yet despite the 

ubiquity of AI-driven financial services, 

academic understanding remains curiously 

fragmented. Computer scientists publish 

extensively about algorithmic innovations in 

fraud detection but rarely engage with 

questions of financial inclusion or regulatory 

compliance. Economists analyze financial 

access but often treat underlying technologies 

as black boxes. Development scholars 

examine inclusion outcomes without probing 

the specific algorithmic mechanisms 

producing these effects. This disciplinary 

fragmentation obscures crucial 

interconnections and creates knowledge gaps 

precisely where integrated understanding 

matters most. 

The integration of artificial intelligence into 

financial technology was neither inevitable 

nor accidental. Rather, it emerged from the 

confluence of several technological and 

economic trends (Philippon, 2016). First, the 

exponential growth in computational power 

following trajectories that would have 

seemed fantastical even two decades ago 

made previously intractable machine learning 

approaches suddenly feasible. What required 

supercomputer clusters in 2005 can now run 

on smartphone processors (Goodfellow, 

Bengio, & Courville, 2016). Second, the 

proliferation of digital transactions created 

massive datasets capturing granular 

behavioral patterns. Third, cloud computing 

infrastructure democratized access to 

scalable computational resources, enabling 

startups to compete with established 

institutions without massive capital 

investments in physical infrastructure. These 

technological enablers intersected with 

urgent business imperatives. Financial 

institutions faced mounting pressure to 

reduce operational costs while improving 

customer experience (Frost, Gambacorta, 

Huang, Shin, & Zbinden, 2019). Regulatory 

requirements demanded more sophisticated 

risk management and fraud prevention. 

Meanwhile, fintech startups recognized 

opportunities to serve market segments that 

traditional banks found uneconomical the 

proverbial “long tail” of customers with thin 

credit files or modest account balances. 

Machine learning offered promising 

solutions to all these challenges 

simultaneously. These populations—often 

excluded from formal financial systems—

represent a critical test case for evaluating 

whether AI-driven FinTech innovation 

delivers inclusive growth rather than merely 

efficiency gains. 

Despite rapid growth in FinTech scholarship, 

existing literature exhibits three persistent 

and consequential limitations. Existing 

literature, while valuable, exhibits three 

significant limitations. First, most studies 
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examine individual application domains in 

isolation digital payments or fraud detection 

or financial inclusion thereby missing the 

synergies and tensions among these 

interconnected systems. Second, much 

research remains either highly technical 

(focusing on algorithmic minutiae) or highly 

conceptual (discussing abstract implications) 

without bridging these levels of analysis. 

Third, empirical evidence often relies on 

simulated data or small-scale pilots rather 

than production systems serving millions of 

actual users (Claessens, Frost, Turner, & Zhu, 

2018). This study addresses these gaps 

through an integrated analytical framework 

examining AI and ML across three critical 

FinTech domains. This study makes four 

primary contributions. First, we develop an 

integrated theoretical framework 

synthesizing technology acceptance theory, 

innovation diffusion, and financial inclusion 

paradigms. Second, we employ a mixed-

methods design that bridges algorithmic 

performance analysis with institutional and 

developmental outcomes. Third, we provide 

large-scale empirical evidence drawn from 

production-level systems across 45 countries. 

Finally, we derive practical insights relevant 

to financial institutions, regulators, and 

development practitioners.  

Methodologically, we combine systematic 

literature review with large-scale quantitative 

analysis and detailed case studies, providing 

both breadth and depth. Empirically, we 

present evidence from production systems 

spanning 45 countries and processing billions 

of dollars in transactions, moving beyond 

laboratory demonstrations to real-world 

performance. Practically, our findings inform 

multiple stakeholder groups. Financial 

institutions gain insights into implementation 

pathways, expected performance 

improvements, and common pitfalls. 

Policymakers receive evidence about 

regulatory approaches that foster innovation 

while protecting consumers (Brummer & 

Yadav, 2019). Development organizations 

learn about effective strategies for leveraging 

AI/ML to expand financial access. 

Technology providers understand how their  

algorithms perform in diverse operational 

contexts. 

Our investigation centers on four primary 

research questions. First, how do machine 

learning and artificial intelligence 

technologies enhance the efficiency, security, 

and user experience of digital payment 

systems across different technological 

architectures and regional contexts? Second, 

what is the comparative effectiveness of AI-

based fraud detection systems versus 

traditional rule-based approaches in terms of 

accuracy, false positive rates, processing 

latency, and adaptability to evolving threat 

landscapes? Third, to what extent do AI and 

ML innovations facilitate financial inclusion 

among underserved populations, and through 

what specific mechanisms do these 

technologies expand access to credit, savings, 

and other financial services? Fourth, what 

regulatory, ethical, and technical challenges 

constrain widespread AI/ML adoption in 

financial services, and how might these 

barriers be addressed without stifling 

innovation or compromising consumer 

protection? These questions guided our data 

collection, analysis, and interpretation 

throughout the research process. 

Technologies in the FinTech Ecosystem. This 

framework illustrates the interconnected 

relationships among digital payment 

innovation, fraud detection mechanisms, and 

financial inclusion outcomes, with machine 

learning algorithms serving as the 

foundational enabler across all three 

domains. The arrows indicate both direct 

effects and feedback loops, such as how 

expanded financial inclusion generates 

additional transaction data that improves 

fraud detection capabilities. 

Fig. 1 presents our conceptual framework, 

positioning machine learning and artificial 

intelligence as foundational technologies that 

simultaneously enable and are enhanced by 

advances in digital payments, fraud detection, 

and financial inclusion. The framework 

emphasizes feedback loops for instance, how 
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expanded financial inclusion generates 

additional transactional data that, in turn,  

improves fraud detection algorithms and 

payment processing efficiency. These 

recursive relationships distinguish our 

approach from linear input-output models 

common in earlier FinTech literature. This 

paper proceeds as follows. Section 2 develops 

our theoretical framework, integrating 

perspectives from technology adoption 

theory, machine learning fundamentals, and 

domain-specific financial theories. Section 3 

details our mixed-methods research design, 

including systematic literature review 

procedures, quantitative data sources and 

analytical methods, and case study selection 

criteria. Section 4 provides research findings 

on the three main areas, both the statistical 

findings and the qualitative findings (using 

the case studies). Section 5 ends by giving 

theoretical contributions, practical 

implications, known limitations, and 

promising directions of future research. 

 
Fig.  1: Conceptual Framework: AI/ML 

1.1 Theoretical Framework 
 

A rigorous analysis of artificial intelligence 

(AI) and machine learning (ML) in financial 

services must be grounded in robust 

theoretical foundations. Given the 

interdisciplinary nature of this study—

spanning computer science, economics, 

finance, and development studies—multiple 

theoretical traditions are required. 

Accordingly, we structure our theoretical 

framework across three interrelated levels: (i) 

foundational theories of technology adoption 

and innovation, (ii) technical foundations of 

machine learning methodologies, and (iii) 

domain-specific financial theories relevant to 

each application area 

1.1.1 Diffusion of Technology Adoption 

and Innovation 
 

 

The Technology Acceptance Model (TAM), 

which was initially developed by Davis 

(1989) hypothesizes that the adoption of 

technology depends on two factors, which are 
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perceived usefulness and perceived ease of 

use. Although TAM has been criticized as 

oversimplified, the main point it makes is 

quite important: technologies should provide 

concrete value by means of interfaces that are 

easy to use. Within the FinTech setting, 

perceived usefulness is expressed in the form 

of reduced transaction time, lower charges, or 

the availability of services that were not 

available previously. Perceived ease of use 

manifests through intuitive mobile interfaces, 

biometric authentication mechanisms, and 

AI-enabled customer support systems such as 

chatbots. However, TAM primarily operates 

at the individual level and does not fully 

capture the dynamics of institutional 

adoption. Rogers (2003) determines five 

factors that determine the adoption of 

innovations and these include relative 

advantage (level of improvement relative to 

the current solutions), compatibility (how 

much it coincides with the current values and 

practices), complexity (how difficult it is to 

understand and implement), trialability (how 

easy it is to experiment the innovation before 

committing to it), and observability (how 

well the results are visible to other people). 

In the context of AI/ML adoption in financial 

services, the relative advantage is substantial, 

including enhanced fraud detection accuracy, 

reduced transaction costs, and expanded 

market coverage. However, it is still very 

complex, and specialized knowledge that is 

often not possessed by most institutions is 

necessary. This conflict can be used to clarify 

patterns of adoption in which advanced 

financial institutions and venture-capital-

backed startups are on the forefront of 

implementation, and small community banks 

fall behind. Compatibility challenges are 

particularly pronounced in legacy financial 

institutions, where decades-old core banking 

systems often conflict with modern machine 

learning pipelines. 
 

1.2  Principles of Machine Learning 

To assess the impact of AI on financial 

services, a basic understanding of machine 

learning methodologies is essential. Machine 

learning is a general class of computational 

techniques that allow systems to perform 

better on certain tasks as a result of 

experience, without being coded to cover all 

contingencies (Bishop, 2006). 

Supervised learning algorithms learn 

mappings from input features to output labels 

using labeled training data. In fraud 

detection, this means training models on 

historical transactions labeled as legitimate or 

fraudulent. Common supervised learning 

approaches include logistic regression, 

decision trees, random forests, support vector 

machines, and neural networks. The choice 

among these depends on factors including 

dataset size, feature dimensionality, 

interpretability requirements, and 

computational constraints. 

Deep learning, a subset of machine learning 

employing multi-layer neural networks, has 

demonstrated strong performance in tasks 

involving high-dimensional and unstructured 

data (Goodfellow et al., 2016). Recurrent 

neural networks (RNNs) and their more 

sophisticated variants like Long Short-Term 

Memory (LSTM) networks excel at 

sequential data crucial for analyzing 

transaction sequences over time. 

Convolutional neural networks, despite their 

primary association with image processing, 

have found applications in document 

verification and biometric authentication 

(Pumsirirat & Yan, 2018). 

Unsupervised learning methods identify 

patterns in data without pre-existing labels. 

Clustering algorithms group similar 

transactions or customers, enabling market 

segmentation and personalized service 

offerings. Anomaly detection algorithms 

identify unusual patterns that might indicate 

fraud or system errors, particularly valuable 

when labeled fraud examples are scarce 

(Abdallah, Maarof, & Zainal, 2016). 

Reinforcement learning approaches, while 

less common in traditional financial 

applications, show promise for dynamic 

pricing, algorithmic trading, and adaptive 

fraud detection systems where agents learn 

optimal strategies through trial-and-error 
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interactions with their environment (Sutton & 

Barto, 2018). Table 1 summarizes major 

algorithm families and their typical FinTech 

applications. The diversity of approaches 

reflects the heterogeneity of financial service 

challenges. No single algorithm dominates 

across all contexts; rather, practitioners select 

methods based on specific requirements, data 

characteristics, and operational constraints. 

Notably, ensemble methodswhich combine 

predictions from multiple algorithms 

increasingly represent best practice for high-

stakes decisions where maximizing accuracy 

justifies additional computational 

complexity. 
 

1.3  Domain-Specific Financial Theories 
 

 

In addition to overall technology adoption 

models and ML underlying technologies, we 

analyze using domain-specific theories. In 

the case of digital payments, we will read 

literature that investigates payment systems 

architecture, especially studies that consider 

tradeoffs between centralization and 

decentralization, settlement finality, cross-

border interoperability (Bech, Faruqui, 

Ougaard, and Picillo, 2017; Dahlberg, Guo, 

and Ondrus, 2015). Network effects—where 

system value increases with the number of 

participants—play a critical role in payment 

system efficiency, often encouraging market 

concentration while potentially constraining 

competition and innovation(Ozili, 2023). 

Fraud detection theory emphasizes the cat-

and-mouse dynamics between fraud 

perpetrators and detection systems (Bolton & 

Hand, 2002). Traditional rule-based systems 

encode expert knowledge about fraud 

patterns but struggle with adaptation when 

perpetrators adjust tactics. Machine learning 

approaches, by learning patterns from data, 

can potentially identify novel fraud schemes. 

However, this dynamic creates an adversarial 

learning environment, in which fraudsters 

continuously adapt their behavior to evade 

detection systems. Advanced techniques such 

as deep learning architectures have shown 

particular promise in addressing imbalanced 

classification problems inherent in fraud 

detection (Dal Pozzolo, Caelen, Johnson, & 

Bontempi, 2015). Financial inclusion theory 

builds on Sen’s (1999) capability approach, 

viewing access to financial services not as an 

end itself but as a means toward economic 

agency and opportunity. The theoretical 

framework distinguishes access (availability 

of financial services), usage (actual uptake of 

services), and quality (whether services meet 

users’ needs). Machine learning contributes 

to financial inclusion primarily through 

alternative credit scoring mechanisms that 

leverage non-traditional data sources to 

determine creditworthiness in cases of non-

existent or thin conventional credit histories. 

Recent empirical studies demonstrate that 

FinTech innovations significantly reduce 

barriers to financial access, particularly in 

developing economies (Demirgu¨c¸-Kunt et 

al., 2020). 
 

2.0 Methodology 
 
 

 

This study employs a mixed-methods 

research design, integrating quantitative and 

qualitative approaches to capture both 

breadth and depth in examining AI/ML 

applications in financial services. This 

section elaborates our systematic literature 

review procedure, sources of quantitative 

data and analytical methods, and methods of 

selection and analysis of our case studies. 
 

2.1  Systematic Literature Review 
 
 

To find, filter, and integrate the relevant 

studies, we performed a systematic literature 

review based on PRISMA (Preferred 

Reporting Items to Systematic Reviews and 

Meta-Analyses) principles. Relevant studies 

were identified using Boolean operators such 

as (machine learning OR artificial 

intelligence OR deep learning) AND (fintech 

OR financial technology OR digital 

payments OR fraud detection OR financial 

inclusion). Searches were conducted across 

Web of Science, Scopus, IEEE, and Google 

Scholar databases.     

Our screening is shown in Fig.  2. The first 

search provided 3,847 possibly relevant. 

After removing duplicates and screening 

based on title and abstract, 412 articles 
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underwent full-text assessment. Final 

inclusion criteria emphasized empirical 

studies and theoretical contributions directly 

addressing AI/ML applications in our three 

focal domains, resulting in 156 articles for 

detailed synthesis. The high exclusion rate 

reflects our focus on rigorous, peer-reviewed  

research rather than grey literature or purely 

speculative pieces. 

2.2 Quantitative Data Collection and 

Analysis 
 

Quantitative analysis leveraged multiple 

complementary data sources to assess AI/ML 

adoption and performance outcomes across 

our three domains. Data included transaction 

amount, timestamp, merchant category, 

authentication method, processing duration, 

and success/failure status. 

After duplicate removal and title/abstract 

screening, 412 articles underwent full-text 

review against predetermined inclusion 

criteria: (1) focus on ML/AI applications in 

financial services, (2) empirical evidence or 

theoretical contribution rather than purely 

speculative discussion, (3) publication in 

peer-reviewed venues, and (4) publication 

between 2018 and 2022 to capture recent  

developments while excluding outdated 

approaches. This process identified 156 

articles for detailed synthesis. 

From the selected articles, we extracted 

information on research questions, 

methodologies, datasets, algorithms, 

performance metrics, and limitations. 

Thematic coding identified recurring patterns 

and literature gaps, confirming the need for 

an integrated, cross-domain analytical 

approach. Thematic coding identified 

recurring patterns and gaps in existing 

literature. We found that while individual 

domains (payments, fraud detection, 

inclusion) have received substantial attention, 

integrated perspectives spanning multiple 

domains remain rare. This reinforced our 

decision to pursue a holistic analytical 

approach. 

 

Table 1: Overview of ML/AI Algorithms and FinTech Applications. 

 
Algorithm 

Family 

Specific Techniques Primary FinTech Applications 

Supervised 

Learning 

Logistic Regression, 

Random Forests, Gradient

 Boosting (XGBoost),

 Support 

Vector Machines 

Credit scoring, fraud classification, 

default prediction, payment 

authentication, customer churn 

prediction 

Deep Learning Feedforward Neural Networks,

 Recurrent Neural 

Networks (LSTM, GRU),

 Convolutional Neural 

Networks, Autoen- 

coders 

Analysis of the sequence of 

transactions, biometric authentication, 

verification of documents, chatbot 

customer service, detection of 

complex fraud patterns. 

Unsupervised 

Learning 

K-means Clustering, 

Hierarchical Clustering, 

DBSCAN, Isolation 

Forest, One-Class SVM 

Customer segmentation, anomaly 

detection, market basket analysis, 

network-based fraud detection, outlier 

identification 
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Reinforcement 

Learning 

Q-Learning, Deep QNetworks, 

Policy Gradient Methods 

Dynamic pricing, algorithmic trading, 

personalized product 

recommendations, adaptive fraud 

detective systems 

Ensemble 

Methods 

Bagging, Boosting, Stacking, 

Voting Clas- 

sifiers 

High-stakes decisions requiring 

maximum accuracy (loan approval, 

fraud detection), combining multiple 

model predictions 

 
Fig.  2: PRISMA Flow Diagram for Systematic Literature Review. Initial database 

searches yielded 3,847 potentially relevant articles. 
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Crucially, we excluded personally 

identifiable information throughout our 

analysis, maintaining strict compliance with 

data protection regulations. 

Fraud detection analysis leveraged publicly 

available fraud reporting data from the 

Federal Trade Commission’s Consumer 

Sentinel Network and the FBI’s Internet 

Crime Complaint Center, supplemented by 

aggregated statistics from industry reports by 

McKinsey, Deloitte, and the Association for 

Financial Professionals. These sources 

provided insights into fraud typologies, 

incident volumes, financial losses, and 

detection rates across different 

methodologies. 

Financial inclusion metrics came primarily 

from the World Bank’s Global Findex 

Database, which surveys approximately 

150,000 adults across 140+ countries 

regarding financial service usage 

(Demirgu¨c¸-Kunt et al., 2022). We focused 

on the 2017 and 2021 waves, analyzing trends 

in account ownership, digital payment 

adoption, credit access, and savings behavior. 

This data enabled cross-national comparisons 

and identification of regional patterns. 

Our analytical approach employed multiple 

statistical methods appropriate to specific 

research questions. Descriptive statistics 

established baseline patterns and 

distributions. Multiple regression analysis 

examined relationships between AI/ML 

adoption and performance outcomes, 

controlling for potential confounders like 

economic development, regulatory 

environment, and digital infrastructure 

quality. Difference-in-differences (DiD) 

analysis estimated causal effects of AI/ML 

implementation by comparing outcomes 

before and after adoption relative to control 

groups without such adoption. 

Table 2 defines key variables in our 

quantitative analysis. To operationalize 

abstract constructs such as ‘AI/ML adoption,’ 

we developed a composite adoption index 

incorporating the proportion of 

algorithmically processed transactions, the 

number of ML models deployed, and an 

algorithmic complexity score. This 

multidimensional measure captures adoption 

more comprehensively than a simple binary 

indicator. This multidimensional approach 

provides richer insights than binary adoption 

indicators while remaining practically 

measurable. 
 

2.3 Qualitative Case Study Analysis 
 

To complement large-scale statistical 

analysis with nuanced understanding of 

implementation contexts, mechanisms, and 

challenges, we conducted detailed case 

studies of six leading FinTech 

implementations: PhonePe (India) and 

Alipay (China) for digital payments; PayPal 

and Mastercard Decision Intelligence for 

fraud detection; and M-Pesa (Kenya) and 

Nubank (Brazil) for financial inclusion.  

Cases were purposively selected to maximize 

variation in geography, business model, and 

technological approach, while ensuring 

sufficient documentation and data 

availability. 

Data collection employed multiple methods, 

including semi-structured interviews with 45 

stakeholders—executives, data scientists, 

regulators, and end users—and document 

analysis of white papers, technical blogs, 

regulatory filings, media reports, and 

academic studies.  We supplemented 

interviews with extensive document analysis 

of company white papers, technical blog 

posts, regulatory filings, media coverage, and 

academic case studies. 

Qualitative data analysis followed 

established procedures for thematic coding. 

Interview transcripts and documents were 

coded using NVivo software to identify 

recurring themes, patterns, and insights. We 

employed both deductive coding (based on 

our theoretical framework) and inductive 

coding (allowing themes to emerge from 

data). Crosscase synthesis identified common 

patterns and context-specific variations, 

enriching our understanding beyond what 

aggregate statistics alone could provide. 
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Table 2: Variable Definitions and Measurement Instruments 

 

Variable Type Measurement 

Independent Variables  

AI/ML Adoption Level Continuous Composite score (0–100) based on: 

percentage of transactions processed 

by ML algorithms, number of ML 

models in production, algorithmic 

complexity index 

Algorithm Type   Categorical Classification: rule-based ( baseline), 

supervised learning, deep learning, 

ensemble methods 

Data Quality Index Continuous Composite measure of completeness, 

accuracy, timeliness, and consistency 

Dependent Variables 

(0–100 scale) 

Transaction Success 

Rate 

Continuous Percentage of initiated transactions 

successfully completed 

Processing Time Continuous Milliseconds from initiation to 

completion 

Fraud Detection 

Accuracy 

Continuous Percentage of correctly classified 

transactions (true positives + true 

negatives) / total 

False Positive Rate Continuous Percentage of legitimate transactions 

incorrectly flagged as fraudulent 

Financial Access Continuous Percentage of adult population with 

formal financial account 

Credit Approval Rate Continuous Percentage of applicants approved for 

Control Variables 

 credit products 

GDP per Capita Continuous World Bank data, current US dollars 

Regulatory

 Environment 

Continuous Index measuring 

innovationfriendliness, consumer 

protection, data privacy (0–100) 

Digital Infrastructure Continuous Internet penetration rate, mobile 

subscription rate, 4G/5G coverage 

Financial Literacy Continuous Percentage of population meeting 

basic financial literacy threshold 

 

2.4 Ethical Considerations and 

Limitations 
 

Several ethical considerations shaped our 

research design. We obtained Institutional 

Review Board approval before any data 

collection involving human subjects. All 

interview participants provided informed 

consent after receiving detailed information 

about research purposes and data usage. 

Transaction data came pre-anonymized, with 

multiple layers of de-identification ensuring 

no possibility of re-identifying individuals. 



Communication in Physical Sciences, 2023, 9(4): 1037-1057 1046   
 

 

We did not collect or analyze any data on 

protected characteristics (race, religion, etc.) 

unless publicly reported in aggregate form by 

authoritative sources. 

There are limitations to our methodology to 

which we can admit. Transaction data were 

obtained through partnerships with specific 

processors, which may introduce selection 

bias if these processors are not fully 

representative of the broader market. While 

the case studies provide in-depth insights, 

findings may not be fully generalizable 

across different institutional or geographic 

contexts.There are inherent problems with 

causal inference based on observational data 

even though we use quasi-experimental 

techniques such as difference-in-differences.  

Given the rapid pace of technological 

innovation, findings may become outdated, 

underscoring the need for ongoing research.  
 

3.0 Results and Discussion 
 
 

This section details our systematic literature 

review procedures, quantitative data sources 

and analytical methods, and the selection and 

analysis of case studies. For each domain, we 

synthesize quantitative results, qualitative 

case study insights, and connections to 

theoretical frameworks developed earlier. 
 

3.1 Digital Payments: Speed, Security, 

and User Experience 
 

The digital payments landscape has evolved 

dramatically over the past decade. What 

began as relatively simple online credit card 

processing has expanded into a complex 

ecosystem encompassing mobile wallets, 

contactless cards, peer-to-peer transfer 

applications, cryptocurrency exchanges, and 

more. Artificial intelligence and machine 

learning pervade nearly every component of 

modern payment infrastructure. 

Our quantitative analysis reveals substantial 

performance improvements associated with 

AI/ML adoption in payment systems. Fig.  3 

presents adoption trends and performance 

metrics across our sample of 125 financial 

institutions spanning 45 countries. The left 

panel shows steady growth in AI-powered 

payment transaction volume from 

approximately 15% of total transactions in 

2018 to nearly 68% by 2023. This growth 

occurred more rapidly in Asia-Pacific and 

Latin American markets, where mobile-first 

digital banking faced fewer legacy 

infrastructure constraints compared to North 

America and Europe. The right panel of Fig.  

3 compares transaction processing times 

between traditional and AI-enhanced 

payment systems.  

The median processing time dropped from 

2.3 seconds in traditional systems to 0.8 

seconds with AI implementation a 67% 

reduction. While this may seem modest in 

absolute terms, consider that these sub-

second improvements occur across billions of 

transactions. At scale, such efficiency gains 

translate into meaningful cost reductions and 

improved user experiences.  

Left panel: Percentage of payment 

transactions processed using ML/AI 

algorithms, shown by region. Asia-Pacific 

leads adoption, driven primarily by China and 

India’s mobile payment ecosystems. Right 

panel: Average transaction processing time 

comparison. AI-enhanced systems achieve 

median processing times of 0.8 seconds 

versus 2.3 seconds for traditional systems, 

representing 67% reduction. Box plots show 

distribution across all institutions in sample, 

with outliers indicating particularly fast or 

slow processors. 

The broader distributions evident in box plots 

reflect heterogeneity across institutions and  

transaction types; complex international 

transfers naturally require longer processing 

than domestic peer-to-peer payments. 

How do machine learning algorithms achieve 

these improvements? Several mechanisms 

operate simultaneously. First, ML models 

excel at pattern recognition, enabling more 

accurate real-time decision-making about 

transaction routing. Neural networks can 

predict which payment processors or network 

paths will provide fastest, most reliable 

completion based on historical performance 

data, current network conditions, and 

transaction characteristics. 
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Fig.  3: Global Adoption and Performance of AI-Powered Digital Payment Systems 

(2018–2023). 

Second, predictive analytics reduce failed 

transactions by identifying potential issues 

before they occur. If a model predicts high 

likelihood of failure due to insufficient funds 

or technical problems, the system can 

proactively alert the user rather than 

proceeding to inevitable failure. Third, 

biometric authentication powered by deep 

learning particularly facial recognition and 

fingerprint scanning reduces authentication 

time while enhancing security. 

Our regression analysis (detailed results 

available in supplementary materials) 

indicates that AI/ML adoption significantly 

predicts multiple performance outcomes even 

after controlling for institution size, 

geographic region, and regulatory 

environment. A one-standard-deviation 

increase in our AI adoption index associates 

with 0.42 standard deviation improvement in 

transaction success rates (p < 0.001), average 

cost reduction of $0.23 per transaction (95% 

CI: $0.19–$0.27), and 1.8-point increase on a 

5-point user satisfaction scale. 

Table 3 presents detailed comparative 

performance metrics between traditional and 

AI-enhanced payment systems across seven 

key dimensions. All improvements 

statistically significant. speed, we observe 

substantial improvements in authentication 

time (73.7% reduction), cost per transaction 

(25.8% decrease), and particularly dramatic 

improvements in crossborder payment 

processing (89.1% reduction from 38.4 hours 

to 4.2 hours’ median time). This last finding 

addresses a longstanding pain point in 

international commerce where settlements 

traditionally took days due to manual 

reconciliation across banking systems and 

currencies. 

The false decline rate metric percentage of 

legitimate transactions incorrectly rejected 

warrants particular attention. Traditional 

payment systems, erring on the side of 

security, frequently reject legitimate 

transactions when fraud detection rules 

trigger inappropriately. This creates friction 

and frustration for customers while costing 

merchants lost sales. AI-enhanced systems 

reduced false declines from 2.3% to 0.7%, a 

nearly 70 % improvement. Machine learning 

models achieve this by learning nuanced 

patterns that distinguish legitimate but 

unusual transactions from genuinely 

fraudulent ones, rather than applying rigid 

rules that cannot accommodate the diversity 

of real-world transaction patterns. 
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Our case study of PhonePe in India 

illuminates implementation challenges and 

success factors that aggregate statistics 

cannot fully capture. PhonePe, launched in 

2016, leveraged India’s Unified Payments 

Interface (UPI) a government-backed real-

time payment system to build a mobile 

payment platform that now serves over 450 

million users processing more than 10 billion 

transactions monthly. The scale is staggering: 

PhonePe handles 1,500+ transactions per 

second during peak periods, each requiring 

fraud screening, routing optimization, and 

settlement coordination. 
 

Table 3: Comparative Performance Metrics: Traditional vs. AI-Enhanced Payment 

Systems 
 

Metric Traditional AI-

Enhanced 

Improvement p-value 

Avg. Processing Time 

(sec) 

2.31 0.78 66.7% <0.001 

Transaction Success Rate 

(%) 

94.2 97.8 3.6 pp <0.001 

Authentication Time 

(sec) 

4.67 1.23 73.7% <0.001 

Cost per Transaction ($) 0.89 0.66 25.8% <0.001 

False Decline Rate (%) 2.3 0.7 69.6% <0.001 

Customer Satisfaction 

(1–5) 

3.6 4.4 22.2% <0.001 

Cross-Border Time 

(hours) 

38.4 4.2 89.1% <0.001 

Note: Results based on analysis of 125 institutions, 50M+ transactions
 

Machine learning pervades PhonePe’s 

architecture. Neural networks analyze 

transaction patterns to detect fraud in real-

time (discussed further in next section). 

Reinforcement learning algorithms optimize 

transaction routing across UPI’s participating 

banks to maximize success rates and 

minimize latency. Natural language 

processing powers customer service chatbots 

handling millions of inquiries monthly. 

Recommendation engines suggest 

personalized payment methods and financial 

products based on user behavior. 

Yet implementation was far from smooth. 

Early ML models trained on limited Indian 

transaction data performed poorly when 

encountering the diversity of India’s 1.4 

billion people. Regional variations in 

spending patterns, linguistic diversity, and 

varying levels of digital literacy created 

challenges. PhonePe invested heavily in 

collecting representative training data and 

developing models robust to distribution 

shift. They built specialized models for 

different user segments rather than 

attempting one-size-fits all solutions. And 

they maintained human-in-the-loop systems 

for handling edge cases that algorithms 

struggled with. 

The Alipay case study from China offers 

contrasting insights. As part of Ant Group 

(formerly Ant Financial), Alipay pioneered 

facial recognition payment authentication the 

“Smile to Pay” feature that now serves over 

300 million users. Deep convolutional neural 

networks use live facial images and compare 

them with known biometric templates to 

identify the user, with 99.2 percent accuracy 

rates and very low false acceptance rates (0.1 

percent). This technology saved 96 percent 

over PIN or password entry and was much 

more secure against account takeover fraud. 

Nonetheless, the facial recognition feature of 

Alipay attracted serious privacy concerns 

among proponents of civil liberties, 

especially government access of biometric 
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information. Compared to Europe or North 

America, Chinese regulatory environment is 

quite different, as the government has much 

more control over technology firms and much 

less stringent data protection laws. This is 

why the application of AI/ML in the financial 

services sector cannot be considered 

independent of sociopolitical conditions 

under which technical capabilities have to 

strike a balance regarding regulatory 

requirements, cultural beliefs, and privacy 

demands that differ radically in different 

jurisdictions. 
 

 3.2 Fraud Detection: The Arms Race by 

Algorithms 
 

In case digital payments are the enabling 

aspect of AI in financial services, the aspect 

of fraud detection demonstrates its protective 

aspect. Financial fraud is a tens of billions of 

years cost to the global economy, with the 

Association of Certified Fraud Examiners 

estimating that 2022 losses will be in the 

billions, and that the losses will continue to 

grow to greater than 40 billion by 2027 unless 

the methods of detecting such frauds 

improve. Older rule-based fraud detection 

solutions that mark off transactions where 

they fit specific defined criteria, such as 

suspicious geographic areas or suspicious 

purchase volumes, have fundamental 

constraints. Detection rules are constantly 

being changed to help prevent fraudsters, so 

it has always been a game of cat and mouse, 

with the defenses constantly being outwitted 

by the threats. 

Machine learning provides a radically 

different way. Instead of storing expert 

knowledge regarding the appearance of 

fraud, ML algorithms learn trends on 

historical information regarding the kinds of 

transactional traits that correspond to 

fraudulent and legitimate behavior. This data-

driven method may be able to locate new 

fraud trends that human analysts may 

overlook as automated systems adjust to new 

fraudster trends. 

We compared the performance of five 

algorithmic methods of fraud detection: 

conventional rule-based (baseline), logistic 

regression, random forests, gradient boosting 

machines (in particular, XGBoost), and deep 

neural networks. Fig.  4 presents Receiver 

Operating Characteristic (ROC) curves for 

each approach, plotting true positive rates 

against false positive rates across different 

decision thresholds. 

 

Each curve in Fig. 4 represents a different 

detection approach evaluated on a holdout 

test set of 500,000 transactions (12,000 

fraudulent). The diagonal dashed line 

represents random guessing. Area Under the 

Curve (AUC) scores quantify overall 

performance: Rule-based (0.82), Logistic 

Regression (0.91), Random Forest (0.95), 

XGBoost (0.97), Deep Neural Network 

(0.96). Machine learning approaches 

substantially outperform traditional rules, 

with ensemble methods (Random Forest, 

XGBoost) achieving best performance. The 

small performance gap between XGBoost 

and deep learning suggests diminishing 

returns to model complexity for this 

application. 

 

Fig.  4 demonstrates substantial performance 

advantages for machine learning approaches. 

Traditional rule-based systems achieve an 

AUC (Area Under the Curve) of 0.82, 

indicating reasonable but limited 

discriminatory power. Moving to logistic 

regression the simplest ML approach 

improves AUC to 0.91. More sophisticated 

methods push performance higher: random 

forests reach 0.95, gradient boosting 

(XGBoost) achieves 0.97, and deep neural 

networks reach 0.96. These differences 

matter enormously in practice. At typical 

operating points balancing fraud detection 

against false alarm rates, XGBoost catches 

approximately 43% more fraud than rule-

based systems while generating 67% fewer 

false positives. 

Why do machine learning models outperform 

rules? Several factors contribute. First, ML 

algorithms can simultaneously consider 

hundreds or thousands of features and their 
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complex interactions far beyond human 

cognitive capacity. Fraud often manifests 

through subtle combinations of factors rather 

than any single red flag. Second, ML models 

naturally handle continuous variables and 

probabilistic relationships rather than 

requiring arbitrary thresholds (e.g., 

transactions over $5,000 are suspicious, those 

under are fine). Third, ensemble methods like 

random forests and gradient boosting 

aggregate predictions from many weak 

learners, achieving robustness that single 

models lack. 

 
Fig.  4: ROC Curves Comparing Fraud Detection Methods. 

  

Table 4 presents detailed performance 

metrics across multiple dimensions. 

Accuracy alone can be misleading for 

imbalanced datasets where fraud represents a 

small percentage of total transactions. 

Precision (what percentage of flagged 

transactions are actually fraudulent) and 

recall (what percentage of actual fraud gets 

detected) provide more nuanced assessment.
 

Table 4: Performance Comparison of ML Algorithms for Fraud Detection 

 
Algorithm Accuracy Precision Recall F1-Score FPR 

Rule-Based (Baseline) 94.8% 74.2% 61.3% 0.671 1.8 % 

Logistic Regression 96.2% 82.7% 78.4% 0.805 1.1 % 

Random Forest 97.4% 91.3% 88.7% 0.900 0.6 % 

XGBoost 97.8% 94.1% 91.2% 0.926 0.5 % 

Deep Neural Network 97.6% 92.8% 90.1% 0.914 0.6 % 

Ensemble (Stacking) 98.1% 95.2% 92.8% 0.940 0.4 % 

Note: Evaluated on test set of 500,000 transactions (2.4% fraud rate). FPR = False 

Positive Rate. 

The F1-score harmonically combines 

precision and recall into a single metric. False 

positive rate (percentage of legitimate 

transactions incorrectly flagged) directly 

impacts customer experience excessive false 

positives frustrate customers and increase 
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operational costs as analysts investigate false 

alarms. 

XGBoost achieves the best overall 

performance with 97.8% accuracy, 94.1% 

precision, 91.2% recall, and only 0.5% false 

positive rate. Compared to rule-based 

systems, XGBoost catches 49% more fraud 

(recall improvement from 61.3% to 91.2%) 

while reducing false positives by 72% (from 

1.8% to 0.5%). For a large financial 

institution processing millions of daily 

transactions, these improvements translate 

into hundreds of millions of dollars in 

prevented losses and substantially improved 

customer satisfaction. 

Interestingly, deep neural networks perform 

slightly worse than XGBoost despite their 

greater complexity. This likely reflects the 

relatively structured, tabular nature of 

transaction data where tree-based ensemble 

methods excel. Deep learning’s advantages 

emerge more clearly with unstructured data 

like images, text, or complex sequences. We 

also tested an ensemble approach stacking 

predictions from multiple models, achieving 

marginal further improvement to 98.1% 

accuracy. Nevertheless, in some operational 

situations, small improvements in 

performance might not be worth the extra 

complexity and computational expense of 

going to ensemble methods. 

In our case study on PayPal, which is an 

example of ML fraud detection, the scale is 

enormously big. PayPal handles around 22 

billion transactions in one year which is 

worth more than 1.3 trillion. The company 

uses deep learning models that analyze more 

than 4,000 features per transaction which is 

well beyond human analyzing ability. These 

characteristics include transaction 

information (value, store, place, date), 

account history (account age, previous 

transaction history, how they pay), device 

features (IP address, device fingerprint, type 

of browser), and behavioral features 

(keyboard typing patterns, mouse movements 

suggesting bot or human). 

The PayPal fraud models process real-time, 

and decisions are made within milliseconds 

to approve or reject or send transactions to be 

reviewed by a human. The company claims to 

block about 28 billion dollars in potentially 

fraudulent transactions every year and has 

fraud loss rates of only 0.32 of revenue versus 

the industry average of 1.8. This is not only 

due to advanced algorithms but to an ongoing 

investment into the data infrastructure, model 

monitoring and adaptive learning systems 

that keep on updating the models as fraud 

patterns develop. 

Yet challenges remain. To begin with, 

explainability of models is not without issues. 

Deep neural networks are regarded as black 

boxes whose decision logic is not visible. 

Regulators are also requiring reasons behind 

negative decisions (such as rejecting 

transactions) which are hard to explain by 

complex ML models. PayPal partially 

overcomes this by its counterfactual 

explanatory methods that discover which 

changes in the features would have caused 

varying decision making but full 

interpretability cannot be achieved. 

Second, the adversarial machine learning 

establishes cat and mouse game. Advanced 

fraudsters strategically alter their actions in 

order to avoid ML. As an example, when 

models position big, suspicious transactions, 

fraudsters position schemes into numerous 

smaller transactions. In case of geographic 

inconsistency alerts, the fraudsters make use 

of VPNs that conceal locations. Defensive 

ML involves predicting adversarial 

adaptation, which is a difficult issue on the 

edge of machine learning studies. 

Third, model performance is of great concern 

to data quality. Machine learning algorithms 

are data-driven, or garbage in, garbage out. 

The required high-quality representative 

training data can be ensured only at the cost 

of significant investments. Biased training 

data generates biased models a problem that 

we revisit when addressing financial 

inclusion. 

The case of Mastercard Decision Intelligence 

offers some supplementary information. The 

AI system at Mastercard uses each 

transaction to evaluate the risk of fraud by 
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scoring it in less than 50 milliseconds per 

year, evaluating about 125 billion 

transactions per year. The system cut down 

false declines by 17 percent a significant 

reduction considering the huge transaction 

volumes involved. MasterCard underlines 

that their strategy is to integrate AI with 

human intelligence and does not displace the 

analysts. Machine learning is applied to 

routine decisions, where the probability of 

success is great, and to the cases which are 

uncertain, and sent to human investigators 

who add context and expertise. 

3.3 Financial Inclusion: Democratizing 

Access 

The most significant effect of artificial 

intelligence on financial services is, perhaps, 

the increased access to underserved 

populations, the 1.7 billion adult non-banked 

and underbanked non-service users around 

the world. Serving customers with low 

incomes, in the rural areas or in the informal 

sector has often been uneconomical amongst 

the traditional financial institutions. Using 

physical branches, costly Know Your 

Customer (KYC) processes, and risk-averse 

methods of credit assessment imposes 

restrictions that lock-out exactly the groups 

of people most likely to need financial 

services. 

Machine learning has provided possible 

solutions to circumvent these obstacles 

through a number of mechanisms. Non-

conventional credit scoring gives the 

possibility of risk rating an individual who 

does not have a traditional credit profile. 

Small-balance accounts become cost-

effective due to the utilization of digital 

delivery channels that are operated by AI-

based chatbots and austerity customer 

service. Individualized financial services 

based on ML recommendation engines are 

also better suited to the needs of a wide 

variety of customers than a universal 

offering.Our analysis of World Bank Global 

Findex data reveals substantial progress on 

financial inclusion globally, with evidence 

suggesting AI-powered Fin-Tech solutions 

contributed meaningfully. Fig.  5 presents 

trends in financial account ownership across 

different regions and the relationship between 

Fin-Tech adoption and inclusion outcomes. 

The left panel of Fig.  5 shows encouraging 

trends. Global account ownership increased 

from 62% of adults in 2014 to approximately 

76% in 2023, representing roughly 1.4 billion 

additional people gaining financial access. 

Progress occurred unevenly across regions. 

East Asia and Pacific reached near-universal 

coverage at 93%, while Sub-Saharan Africa 

improved from 27% to 55% but still lags 

substantially. South Asia made remarkable 

strides from 46% to 77%, driven largely by 

India’s financial inclusion initiatives 

including biometric identification systems 

and mobile payment infrastructure. 

The right panel presents difference-in-

differences analysis estimating AI/ML’s 

causal contribution to inclusion outcomes. 

We compared regions/countries with high 

FinTech adoption (defined as top quartile in 

our adoption index) versus those with low 

adoption, examining changes in inclusion 

metrics before and after significant FinTech 

deployment. Results suggest that high AI/ML 

adoption associates with 18 percentage point 

additional improvement in account 

ownership, 31% greater increase in credit 

access, and 23% larger gains in savings 

behavior compared to low-adoption regions, 

after controlling for economic development, 

regulatory environment, and digital 

infrastructure. These estimates carry 

uncertainty (reflected in confidence 

intervals), but the consistency across multiple 

outcomes strengthens confidence that effects 

are genuine rather than spurious. 
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Fig.  5: Financial Inclusion Trends and Impact of AI/ML Implementation. 

Left panel shows financial account ownership 

rates by region (2014, 2017, 2021, 2023 

estimated). Substantial gains occurred 

globally, particularly in Sub-Saharan Africa 

and South Asia where mobile money and 

digital lending expanded rapidly. Right panel 

presents difference-in-differences analysis 

comparing inclusion outcomes in regions 

with high versus low FinTech/AI adoption. 

Treatment group (high adoption) shows 

significantly greater improvement in account 

ownership (18 percentage points), credit 

access (31%), and savings behavior (23%) 

compared to control group. Error bars 

represent 95 % confidence intervals. 

How specifically does machine learning 

expand financial inclusion? The most direct 

pathway operates through alternative credit 

scoring. Traditional credit assessment relies 

on credit bureau data payment histories for 

loans, credit cards, utilities. But billions of 

people lack such histories, not because they 

are bad credit risks but simply because 

they’ve never accessed formal credit. This 

creates a Catch-22: you need credit history to 

get credit, but you can’t build history without 

getting credit. 

ML-based alternative credit scoring breaks 

this loop by leveraging non-traditional data 

sources. Mobile phone usage patterns airtime 

purchases, data consumption, communication 

networks contain signals about financial 

behavior. E-commerce transaction histories, 

social media activity (with appropriate 

consent), utility bill payments, even 

keystroke dynamics may inform 

creditworthiness assessments. Machine 

learning algorithms identify complex patterns 

linking these alternative data to loan 

repayment likelihood. 

Research by Bjo¨rkegren and Grissen (2020) 

demonstrated that mobile phone metadata 

predicted loan repayment in emerging 

markets. Models analyzing call records, SMS 

patterns, and airtime purchases achieved 

similar predictive accuracy to traditional 

credit bureau scores in developed countries. 

This finding holds transformative 

implications: if predictive accuracy using 

alternative data equals traditional scores, then 

the limiting factor becomes data availability 

rather than analytical capability. And 

alternative data sources are increasingly 

ubiquitous as mobile phone penetration 

expands globally. 

 

Table 5 presents detailed impact metrics 

across multiple dimensions: access, usage, 

quality, and socioeconomic outcomes. 

Beyond simply opening accounts, AI-driven 

inclusion initiatives demonstrate 

improvements in active usage (25% increase 

in monthly active accounts), transaction 

frequency (172% increase in average 

monthly digital transactions), and savings 

behavior (23% increase in adults maintaining 

savings). 

Particularly noteworthy, microloan approval 

rates increased 67% from 42.7% to 71.3% 

when institutions adopted ML-based 
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alternative credit scoring, yet default rates 

actually declined slightly from 10.7% to 

9.2%. This access with long-term or better 

credit quality is the holy grail of financial 

inclusion. It implies that ML algorithms will 

recognize individuals that have been 

excluded in the past but are actually 

creditworthy, not just reduced standards and 

greater risk of default. 

There are downstream socioeconomic 

implications which seem significant but more 

challenging to causally attribute. Areas that 

had financial inclusion based on AI 

experienced 23% growth in the number of 

small businesses and 15% growth in financial 

resilience indices (composite measures of the 

capacity to survive economic shocks). 

Notably, ensemble methods—which 

combine predictions from multiple 

algorithms—are increasingly regarded as 

best practice for high-stakes financial 

decisions. 

Our M-Pesa case study illustrates these 

mechanisms at population scale. Launched in 

Kenya in 2007 by telecommunications 

company Safaricom, M-Pesa pioneered 

mobile money in Africa, enabling users to 

store value and transfer funds via basic 

mobile phones without smartphone 

requirements. The service achieved 

remarkable penetration approximately 30 

million active users representing 80% of 

Kenya’s adult population. MPesa effectively 

became the country’s financial infrastructure, 

processing more domestic transactions than 

all Kenyan banks combined. 

In 2012, M-Pesa introduced M-Shwari, a 

savings and credit product leveraging 

machine learning for credit scoring. Rather 

than credit bureau data (which fewer than 3 

% of Kenyans possess), M-Shwari’s 

algorithms analyze users’ M-Pesa transaction 

histories. How frequently do they receive 

transfers? Do they maintain positive 

balances? Do transaction patterns suggest 

stable income? These behavioral signals 

enabled initial credit assessments for millions 

who were previously “credit invisible.” 
 

Table 5: Socioeconomic Impact Metrics of AI-Driven Financial Inclusion Initiatives 

 
Outcome Metric Before AI/ML After AI/ML Change 

Access Indicators    

Account Ownership (%) 64.2 75.8 +18 % 

Credit Product Access (%) 31.5 41.3 +31 % 

Microloan Approval Rate 

( % ) 

Usage Indicators 

42.7 71.3 +67 % 

Active Account Usage (% 

monthly) 

54.8 68.4 +25 % 

Digital Transaction

 Frequency (monthly 

avg.) 

3.2 8.7 +172 % 

Savings Behavior (% with 

savings) 

Quality Indicators 

38.6 47.5 +23 % 

Default Rate (% of loans) 10.7 9.2 -14 % 

Customer Satisfaction (1– 

5) 

3.4 4.1 +21 % 

Average Account Balance 

($) 

Socioeconomic Outcomes 

127 218 +72 % 
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Small Business Formation 

( % ) 

14.2 17.5 +23 % 

Financial Resilience Index 

(0–100) 

52.3 60.1 +15 % 

Gender Gap (percentage 

points) 

9.4 6.2 -34 % 

Note: Pooled estimates across high AI/ML adoption regions. Sample size varies by metric. 

M-Shwari has disbursed over $3.2 billion in 

small loans to 22 million Kenyans since 

launch. Average loan sizes hover around $50 

tiny by developed country standards but 

meaningful for households living on $2–5 

daily incomes. Crucially, the system learns 

continuously. Repayment behavior on initial 

small loans informs credit limits for 

subsequent loans, creating pathways from 

financial exclusion toward full inclusion. 

Research by Jack and Suri (2014) and Suri 

and Jack (2016) documented substantial 

positive impacts on household resilience, 

consumption smoothing, and gender equity. 

Yet M-Pesa’s success reflects favorable 

contextual factors beyond just technology. 

Kenya’s regulatory environment enabled 

telecommunication companies to offer 

financial services without onerous banking 

licenses. Low initial mobile banking 

penetration meant M-Pesa faced limited 

competition, allowing network effects to 

compound. And Safaricom’s market 

dominance provided the necessary scale. 

Whether similar models can succeed 

elsewhere remains uncertain replication 

attempts in other African countries have met 

mixed results. 

Our Nubank case study from Brazil offers 

contrasting insights. Nubank, founded in 

2013, grew to over 85 million customers by 

2023, making it the largest digital bank 

outside Asia. Unlike M-Pesa’s mobile-first 

approach for feature phones, Nubank targets 

smartphone users with slick interfaces and 

sophisticated AI-powered financial 

management tools. The company’s 

proprietary ML models assess credit risk 

using data far beyond traditional credit scores 

analyzing behavioral patterns, social network 

characteristics (with consent), and 

transaction histories from Nubank’s own 

platform. 

Nubank serves disproportionately young 

adults and previously unbanked populations 

skeptical of traditional banks. Their ML-

driven credit score yields default rates that 

are around 40 percent lower than those of the 

industry in spite of it being used in more at-

risk groups. Due to the delivery of solely 

digital, as well as high levels of automation, 

operating costs are 83% lower than those of a 

traditional bank. This cost structure allows it 

to make a profit even on low balance 

accounts that would not be accepted by 

traditional banks as economically viable. 

Nonetheless, when credit is scored using 

algorithms, then fairness is compromised. In 

case algorithms are trained on past data, they 

can reinforce or even increase bias. A model 

that is trained based on discriminatory 

lending patterns is likely to recreate such 

discriminatory patterns despite not 

considering any of the protected attributes 

such as race or gender. This notion of fairness 

by unawareness is referred to as such by ML 

practitioners because it is the naive belief that 

sensitive variables should be left out in order 

to guarantee fairness. Indeed, proxy variables 

(such as zip-codes as a proxy of racial make 

up) enable algorithms to discriminate 

indirectly. 

Algorithms need to be consciously addressed 

to deal with bias. Methods are disparate 

impact testing (testing whether there are 

differences in the rate of approval between 

demographic groups), adversarial debiasing 

(training models to jointly maximise 

accuracy and fairness), and fairness-aware 

learning (adding explicit fairness 

requirements to the training of a model). 

However, defining what fairness is itself is 
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debatable they (demographic parity, 

equalized odds, calibration) can be 

mathematically antithetical, and the value 

judgments necessary to determine which 

fairness notions are most important in any 

given situation (Barocas and Selbst, 2016). 
 
 

4.0 Conclusion 
 

This study explored the issue of machine 

learning and the role of artificial intelligence 

in changing financial services in the digital 

payment, fraud detection and financial 

inclusion sectors via systematic literature 

review, large-scale quantitative study and 

case studies. Our research provides a number 

of strong results proving the transformative 

effect of AI/ML and revealing some 

unresolved issues. Digital payment systems 

with AI make 67 percent less processing time 

and achieved almost 90 percent faster cross 

border settlements, which corresponds to 

significant cost savings and better user 

experiences in large volumes. Machine 

learning-based methods of fraud detection are 

far more successful than traditional rule-

based systems, with the highest-performing 

algorithms having an accuracy of up to 94 -

98% and a false positive rate of less than 

0.5% of one-third the false alarms of 

conventional systems, which means that large 

institutions could potentially save hundreds 

of millions in fraud annually while also 

decreasing customer friction. AI-based 

alternative credit scoring significantly 

increases financial inclusion in underserved 

communities, with microloan approval rates 

rising by 67 points when financial institutions 

embraced ML-based assessment technologies 

and default rates did not fall, which offers 

strong arguments that the conventional credit 

scoring is a systematic means of shutting out 

creditworthy people. Theoretically, the study 

works to bring together the disjointed 

literatures in computer science, economics, 

finance, and development studies and 

presents AI/ML as a supporting infrastructure 

that both changes and is changed by the 

development of payments, fraud detection, 

and inclusion and the presence of feedback 

loops, unlike the linear models used in the 

previous research. In the case of financial 

institutions, our results indicate that the 

adoption of AI/ML is a competitive 

requirement, but its effective adoption cannot 

be achieved without more than buying 

algorithms to the vendors, required by the 

organization data infrastructure, technical 

skills, and ability to manage changes. To the 

policymakers, our study identifies tensions 

that need to be well balanced in the 

enablement of innovation and risk 

management through regulatory sandboxes, 

explainability demands, and fairness 

auditing, but coordinating across borders is a 

challenge in particular cases since financial 

services are provided globally, and regulation 

is mainly national. There are a variety of 

limitations that characterize our findings, 

such as data limitations to mainly consider 

environments with a high level of digital 

infrastructure, the high rate of technological 

change that may age the findings very fast, 

and the fact that the causal inference of 

observational data is always difficult with 

quasi experimental designs. Future research 

directions involve the exploration of the 

interface between AI and blockchain 

technologies, further exploration of 

adversarial machine learning dynamics, 

devising methods of debiasing algorithms 

that can be used in production systems, cross-

cultural studies of the activity of AI/ML in 

different sociocultural settings, and 

longitudinal studies of the financial paths of 

individuals. Machine learning and artificial 

intelligence are not inherently good or bad 

tools, but have consequences and must be 

managed with technical expertise alongside 

social sensitivity, financial intellect along 

with moral logic, and continuous dialogue 

between technologists, policy makers, civil 

society, and the communities they serve must 

ensure that these systems promote the 

flourishing of everyone, not just commercial 

or political elites. 
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