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Abstract

When a diagnostic test is based on some observed variable, an assessment of the overall value of the test can be made
through the use of receiver operating characteristic (ROC) curve. We present the methodology for assessing some
dichotomous and continuous variable in a diagnostic process. The approach uses logistic regression (LR) model to obtain
the best linear combination of markers. The area under the ROC curve of this combination is maximised among all
possible linear combinations. We further demonstrate using confusion matrix and Youden Index (Yl) that the
discriminating power of this multiple marker combination is higher than for all other combinations. The corresponding
optimum critical threshold value to the Youden Index is derived for all possible combinations. Finally, an illustration of
this methodology is given using prostate cancer diagnostic data from Universitv of Nigeria Teaching Hospital (UNTH)

Enugn.
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1. Introduction
Mixed variable logistic regression (LR) model
for binary response data has frequently been
applied in analysis of data with nested levels
(Ten Have, et al., 1999; and Hedeker, 1997). One
example given by Ten Have, et al, is the fitting
of what they referred to as three-level probit
models to educational binary data with students
and classes or with classes and schools serving
as nested clustering factors. The other areas of
application of LR model in analysing binary data
which arise in studying relationships between
diseases and environment or  genetic
characteristics, can be found in Breslow and Day
(1980, ch.4), Prentice and Pyke (1979) and
Farewell (1979). One advantage of this model as
pointed out by Cox and Snell (1989) is that it
presupposes a stable statistical relation such that
once a vector of explanatory variables is given,
then the probability that an individual belongs to
one of the two groups is determined. The
distribution of the variables 1s therefore
irrelevant. This feature renders the LR model
more robust than the linear discrimination
analysis which has been shown to be more
efficient in combining markers if the normality
assumption on the variables is satisfied (Ruiz-
Valasco (1991), Efron (1975).

In this paper, we provide the optimal
linear combination of markers involving some
dichotomous and continuous variables such that

the area under the corresponding ROC curve of
the combination is maximised. Many authors
have recommended the use of ROC curve in the
assessment of diagnostic markers. A marker’s
usefulness 1s generally assessed based on its
‘sensitivity’ and ‘specificity’ defined
respectively as the probability that the test result
is positive given that the subject is truly diseased
and the probability that the test result is negative
given that the subject is truly non-diseased
(Pepe, 1997). This paper is devoid of
distributional assumptions or transformations in
estimating the ROC curve (Su and Liu, 1993;
Zou & Hall, 2000, 2002; Faraggi, 2003). We
have adopted a simple and direct modelling
approach, which we consider an advantage.

For statistical analysis, a recommended
index of accuracy associated with a ROC curve
is the area under the curve (Swets and Pickett
1982). The area under the population ROC curve
represents the probability that when the variable
is observed for a randomly selected individual
from the diseased population and a randomly
selected individual from the normal population,
the result will indicate that the diseased value is
higher than the normal value. Bamber (1975) has
proved that the area under the ROC curve could
be evaluated asA=P(X >Y) where X
represents the diseased population and Y the
healthy population. Beam and Wieand (1991)
developed a  statistical method for the
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comparison of a discrete with several continuous
diagnostic tests. They noted that the comparison
of arecas under the ROC curve could be
intrinsically biased against the discrete test.
Some regression related methods for estimating
the ROC curve and evaluating the effect of
factors that may influence test accuracy could be
found in Pepe (1998,2000), and Faraggi (2003).
Also in use as a measure of markers
discriminating accuracy is the Youden Index,
defined as max {P + q -1}, where P is the
specificity and q is the sensitivity. The maximum
is taken over all P’s and q’s on the ROC curve or
equivalently over all possible threshold values.
The critical threshold value C* |, which
corresponds to the Youden Index, is frequently
used as a criterion for determining whether
subjects are considered healthy or diseased if
their observed marker value is less than or equal
to, or greater than C* respectively. Faraggi
(2003) and Greiner, et al. (2000) have provided a
recent discussion on this and other criteria for
obtaining the critical threshold value.

Nakas et al, (2003) showed that
goodness-of-fit of uniformity of the distribution
of the false positive (true positive) rates can be
used instead of test based on the area index. He
used a semi-parametric approach based on a
completely specified distribution of marker
measurements for either the healthy or diseased
and extended it to the one and two marker case
when neither distribution is specified (non-
parametric case). He concluded that ROC based
tests 1s more powerful than goodness-of-fit test
for location differences between the distribution
of healthy and diseased subjects. He further
asserted that ROC-based tests are less powerful
when location-scale differences exist. Various
methods of evaluating and comparing the
performances of two or more diagnostic markers
have been presented based on differences of
areas under ROC curves, some examples can be
found in Delong, et al., (1988), Hanley &
McNeil (1982,1983) and McClish (1987). Some
modifications of these comparisons at some
fixed level and weighted averages of sensitivity
were also considered by Linnet (1987) and
Wieand, et al, (1989). This approach in
combining dichotomous and continuous variable
through the use of LR model has not been
considered in the literature. Su and Liu, (1993)
who used Fisher’s linear discriminating function
noted that different markers are usually sensitive

to different aspects of disease in real situation.
They further stated that it is important to use two
or more good diagnostic markers simultaneously
so that one may obtain a new diagnostic marker
with higher sensitivity. This paper is aimed at
showing this assertion using a different
approach.

The paper is planned such that section 2
introduces the motivating example that discusses
the data collected on prostate cancer patients.
Section 3 is devoted to the fitting of the LR
model while section 4, discusses the estimation
of ROC curve using the best linear combination.
In section 5, the methodology developed is
applied to the prostate cancer data, together with
other methods of prediction accuracy. The results
and discussion arising from the analysis are
given in section 6, which is then followed by
concluding remarks.

2. Motivating Study

Prostate cancer like any other cancer is a very
serious disease causing considerable mortality
and morbidity among the population. This
disgase could be localised if diagnosed at the
incipient stages. The treatment regime to be
adopted for patients who have been diagnosed as
having cancer of the prostate is crucially
dependent upon whether or not the cancer has
spread to the surrounding nodes. However, a
laparotomy (a surgical incision into the
abdominal cavity) may be performed to ascertain
the extent of nodal involvement but due to the
rising cost of medical treatment, it has become
necessary for an alternative method of diagnosis
that reduces the cost of treatment to be used.
Some variables, which can be measured, are
indicative of nodal involvement; thcse are x-ray
examination result, tumour size and serum acid
phosphatase (Serum prostate specific antigen).
Studies have shown that serum acid phosphatase
usually rise in men who have prostate cancer and
other infections of the prostate (Renard, et al.,
2003).

Cancer of the prostate is conventionally treated
as a two-category (binary) response variable in
most diagnostic procedure; i.e. a sufferer is either
diagnosed as having the nodes affected or not
having the nodes affected. This is more so since
the correct treatment regime depends on the
extent of nodal involvement. In a related work
on pancreatic cancer, Pepe (2000) developed a
regression methodology for identifying factors



Mixed Variable Logistic Regression Model 79

that can influence the discriminatory capacity of
a biomarker screening test or, more generally,
that of a medical diagnostic test and applied it to
the particular problem of comparing two serum
antigen markers. S

This study involves a sample of 259 prostate
cancer patients at University of Nigeria Teaching
Hospital (UNTH) Enugu. Three tests were
conducted on all the patients to determine the
extent of nodal involvement. The outcome of the
three diagnostic markers were recorded for
continuous variables and coded for discrete
variables. The results of x-ray examination were
assigned O if negative and 1 if positive, the size
of the tumour as determined by a rectal
examination is assigned the value O if small and
1 if large while the level of serum acid
phosphatase were measured in king Armstrong
units. The first two variables are recorded as
dichotomous while the third is recorded as a
continuous variable. The data collected were
divided into two populations or groups. The first
population comprises patients who were
diagnosed of nodal involvement after a surgical
intervention. The second population comprises
of patients who were not diagnosed of nodal
involvement. The two categories of patients were
identified with 136 most severe cases having
nodal involvement and 123 others without nodal
involvement. It is therefore of interest to study
the predictive capacity of a linear combination of

these mixed variables in prostate cancer
diagnosis.
3. Modelling Approach

Define Y, to be a binary variable for the j-th

biomarker in i-th individual. For each individual,
we also have a covariate vector X, with some

dichotomous and continuous variable. The
outcome of the test for every individual in the
sample is either diseased or non-diseased. A LR
model is commonly used to model the
relationship between Y, andX,. If 7, is the
probability of ith individual coming from
diseased population, then according to Lee, E.T.
(1992),

P =P, =1/X,)

exp(ﬁo + i_ ﬂjxij]

(1)

where Y, is the binary outcome for jth biomarker

in individual i.
X,1s

biomarker in individual 1.

Bo is the scale parameter and £, j =1...r is the
other parameters.

the covariate vector for jth

We can then obtain the logit of (1) as,

P r
log, ——=B,+Y B,x, 2)
j=1

1-P

The parameters f3;’s are estimated through the
maximisation of the log-likelihood as suggested
by Cox (1970) and Hosmer & Lemeshow (1989).

Some statistical tests to determine the
adequacy of the LR model were carried out. The
first was the likelihood ratio 'test where the
hypothesis that the parameters of the model are
Zero was tested, i.e.
testH, : B =f,=A = =0. This is done
using the G statistic given by 2(I_ —1/,) which has

a x° distribution with r degrees of freedom
(Belsley, 1991). I is the log-likelihood for the
full model with the r parameters determined and
Iyis the log-likelihood with the constant term

only for the ‘null’ model. If the likelihood ratio
test is found to be significant at an o = 0.05 then
we can proceed to test each of the individual
parameters. This could be done using Wald test
(Rao, 1973), with a test statistics given by,

z:ﬂf

n A

sepf,

~N (0,1) 3)

This is a two-sided test which would reject the
null hypothesis if [Zy| > Zys.

To determine the accuracy of fit of the model, it
is often useful to consider misclassification rates
(Anderson & Phillips (1981)) between the two
eroups. Table 1 show the notation in obtained
frequencie~ when a binary classifier is used to
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predict the class of unseen observations in a
confusion matrix (Gordis, 1996).

Table 1. Notation for the binary classification
matrix.

Predicted
Groupl Group2
Observed
Groupl n, n,
Group2 ny, Ny,

We can obtain an expository value of sensitivity
and specificity from this matrix by using the
formula,

Sensitivity =2 and Specificity
ny t iy
D @
myy +

where the sensitivity is the diseased proportion
that were correctly classified and specificity is
the non-diseased proportions that were also
correctly classified as such. Both values are
expected to be high for the classification to be
reliable.

The final consideration of model adequacy is by
Lemeshow & Hosmer goodness-of —Fit test. The
test statistic given by Lemeshow & Hosmer
(1982) is

c:i——(ok —E) )
=5 i)k(l‘*i)k)

where E, =ZP; is the expected number of
j=1

successes for the kth group.

Ok is the observed number of successes in the

kth group and P, =—1-ZPj. is the estimated
k J=1

probability of the kth group and g is the total
number of groups.

Under the null hypothesis that the model is
adequate, the distribution of C is approximated
by the chi-square distribution with g-2 degrees of
freedom. Finally, the correlation coefficients
between the variables were obtained to

determine their degree of association. If any two
variables are strongly correlated, one will be
selected for inclusion in the model.

4. Roc Curve Estimation

As has been observed earlier, the LR model
makes predictions as a probability rather than a
binary value hence the estimation of ROC curve
is more simplified.

Given that for the sample of individuals under
consideration, define

_|Lif diseased
Yi = 0,otherwise

Upon each individual in the sample we record

the covariate vector X i with some dichotomous

and continuous variable. As usual we assume
that higher values of the variable are associated
with the diseased population and lower values
with the non-diseased. To use the outcomes
obtained from these subjects, we assumed that
the two populations are identically and
independently distributed (iid) with survivor
functions for the diseased group given by
F(c) = p(X,; >c| diseased) and for the non-

diseased group H(c) = p(X; > c| non-diseased),

where ¢ is the threshold value. Then
equivalently,

F(c)=1-p(y; =1| X, =¢) and
H()=1-p(y,=0| X, =c¢) (6)

The ROC curve is the monotone increasing
function in [0,1], obtained from the diagnostic
markers by generating values of sensitivity
{F(c)} and the corresponding 1-specificity
{H(c)} to form a locus [{F(c), H(c)}, ¢ € (-o0, oo}]
(Pepe, 2000; Zou, et al., 2002, and Heagerty et
al., 2000).
Hence ysing the trapezoidal rule (Bamber, 1975),
the area under the ROC curve A(c) can then be
estimated given the threshold values. The higher
the ROC curve is in the quadrant [0,1] x [0,1],
the better is its capacity for discriminating
diseased from non-diseased individuals.

5. Application to the Prostate Cancer Data
In this section, we aim at applying the proposed
methodology to the prostate cancer data



Mixed Variable Logistic Regression Model 81

introduced in section (2). We have identified the
covariate vector X; = (x,,%,,%;), with X, and
X,, being dichotomous and X, continuous
variable. Using equation (1) and (6), the
marker’s sensitivity and 1-specificity for the
threshold value ¢ is given as

F((_) =1-P(yq ;'_'llxlj =Lx,; :l’xS,i =¢)
explfy + B+ B+ fic)
L+exp(By + B, + By + Bic)

(7)

and,

expf +£c) (®)
1+expi +£c)

The ROC curve for the linear combination of
markers using the LR model is shown in Fig. 1.
The interpretation of the area could be given as
the estimated probability that a randomly
selected individual with nodal involvement will
be assigned a higher predicted probability by the
logistic model than another randomly selected
individual without nodal involvement. However,
the values of the dichotomous variable will
usually assume lower values for non-discase
occurrence and higher values for disease
occurrence.

H(0)=1-RAYy,=0] x, =0x,; =0x, =c) =

<

@<}
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Fig. 1. ROC Curves with the best linear combination of the variables.

5.1 The Youden Index.

The Youden index (YI), (Youden, 1950, Faraggi,
2003) has also been suggested as an appropriate
measure of accuracy for the diagnostic markers.
This can be obtained given the threshold value ¢
as

YI(c)=max{F(c)+ H(c)}-1" 9)

-

where

F(o)+H(c) = exdf+B+ B +Be) ,_exdfy+Be)

. (10)
1+exf B + B+ B +Bc) 1+exiB +Be)

The critical threshold value C* is the value of ¢
which brings equation (10) to its maximum

value. This can be obtained by setting the log of
the first derivative of (10) with respect to c to 0
and solving the resulting equation, giving the
solution

-104, - (B, + B,) —In4
108,

C*()= (11)

Hence, on substitution of the critical threshold,
we then obtain the index as,
YI(c) ={F(C*)+ H(C*)}-1

_|_ expfi+B+B+BCY) | expfi +BC) -1 (12)
1+expf} +4 +ﬁl+ﬁc*)] 1+expf} +6C*)
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This index can vary from minus one to
plus one, with plus one being perfect accuracy
and minus one being the worst accuracy. An
evaluation of the Youden index (YI) for different
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threshold values for the predicted probability
from the best linear LR model is shown in Fig. 2.
We can observe that the curve clearly decreases
very sharply with increase in the threshold value.

1.0

05

Yl
0.0
1

T
0

Threshold values

Fig. 2. Youden Index (YI) as function of threshold value c.

6. Results and Discussion

The test for model adequacy using the
likelihood ratio test gave a chi-square value of
18256 at p = 0.0004 which indicates
significance at 5% level. Table 2 shows the

values of the estimated parameters, the standard

error and the result of the Wald test with the
significance level indicated. The result shows
that all the variables should be included in the
model since they are all significant. However,
Lee (1992) did show that the significance of p-
value should not be the only bases for inclusion
of a covariate in the LR model.

. The percent correct classification as given in
Table 3 is 72.97%, which is also appreciably
high. The corresponding sensitivity and
specificity obtained from the confusion matrix is
0.8608 and 0.5248 respectively. These values are
pretty high which goes to show that the correct
classification for nodal involvement and non-
nodal involvement is very high. In addition to
the above tests, the Lemeshow & Hosmer

goodness-of-Fit test showed a value of C =
7.4279 with a P value of 0.4912 which indicates
a.high significant value.

F The estimates of the area (A) under the
ROC curve using the trapezoid rule (Barber,
1975), the Youden Index (YI) and the critical
threshold (C*) for the combination of markers
are given in Table 4. The area under the ROC
curve for the three markers (X,,X,,X,) is

0.8689 which is maximised over all other
combinations. The curve also produced the
highest sensitivity at every specificity. The ROC
curve for single variable X, showed a straight

line, which implies that with single marker under
this model one would expect to obtain 50%
proportion correct accuracy by guessing with no
prior information. Hence it will be a bad

prediction  for individuals with  nodal
involvement and those without nodal
involvement.
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Table 2. Summary resuits of the estimated parameters; the standard error, the Wald test and
the significance values of the test.

Variables B S.E Wald df  Sig

Constant 0.1069 (0.9894) 0.0117 1 09140
X-ray result (x1) 1.8050 (0.6925) 6.7941 1 00091
Tumour size (x2) 1.4675 (0.6549) 5.0218 1 0.0250
Acid phosphatase level (x3) | -2.1657 (1.1419)  3.5969 I 0.0579

Table 3. Prediction results in a confusion matrix.

Predicted
Groupl Group2 percent correct
Observed
Groupl 53 48 52.48%
Group2 22 136 86.08%
Overall 72.97%
Table 4. Summary result of the area under the ROC curve (A), the Youden Index (YI) and the
critical threshold (C¥%)
Markers Area(A) Y1 C*
X, X5, X3 0.8985 -0.0378 0.8689
X1, X3 0.7637 -0.0569 0.5301
X7, X3 0.7211 -0.0607 0.4522
X3 0.5000 -0.0692 0.1134

Table 5. The correlation coefficients amongst the three variables X-ray result (X;), Tumour size

(X2), and Serum acid phosphatase (X3).

X, X X3
X 1.0000 0.1979 0.0725
Xo 0.1979 1.0000 -0.0741
X3 0.0725 -0.0743 1.0000

7. Concluding Remarks

The model fitted indicates that on the in
fodds] scale, there is a linear relationship
between the probability of nodal involvement
and the three explanatory variables. This
relationship has a different slope and intercept
depending on the levels of the biomarkers. Table
5 shows the correlation coefficient between the
variables, which are quite low, paving the way
for inclusion of all the variables in the LR model.

There has been in use numerous indices for
summarising the information contained in the
ROC curve but the most popular quantitative

index of diagnostic accuracy is the area under the
ROC curve. It is generally believed that in one
marker situation, the larger the area the more
information it contains. Generalising this
criterion, we call a linear combination coefficient
of markers the best if the area under the ROC
curve generated by that combination is the
largest among all other linear combinations. In
conclusion, one can say that the diagnostic
decision is best made using the three biomarkers.
However, the x-ray result combined with the
acid phosphatase level appears to give more
information than the latter's combination with
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tumour size. It is worthy of note that the use of a
single biomarker could be very misleading since
its sensitivity at every specificity is the lowest.
The result is further confirmed by the Youden
Index, which shows a remarkable decrease in
value (Table 4) from the linear combination of
three diagnostic markers to one diagnostic
marker. Although the values of the Youden
index appear to be low, their ranking still
corresponds with the areas under the ROC curve.

This formulation has several advantages: (1)
they are more robust since the probability that an
individual belongs to one of the two groups is
determined once the explanatory variables are
given. (2) They permit simple construction of a

ROC curve. However, one disadvantage of the
approach is the limitation on the threshold values
of the dichotomous variable. A further
consideration of the estimation of ROC curve
when all the biomarkers are dichotomous is
ongoing.
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