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Abstract: Predictive maintenance has become 

essential in modern industrial systems for 

reducing unplanned downtime, lowering 

maintenance costs, and improving equipment 

reliability. This study presents a hybrid deep 

learning framework that combines Long Short-

Term Memory (LSTM) and Multilayer 

Perceptron (MLP) networks for accurate 

machine failure prediction. The model was 

trained using multivariate sensor data, 

including air temperature, process 

temperature, rotational speed, torque, and tool 

wear, enabling comprehensive monitoring of 

machine health. The hybrid architecture 

integrates LSTM’s strength in temporal 

sequence learning with MLP’s capability for 

nonlinear feature-based classification. 

Training results showed a steady reduction in 

loss and convergence in accuracy over 30 

epochs, with the model achieving a training 

accuracy of 98.10%. During testing, the hybrid 

model achieved an overall prediction accuracy 

of 99.20%, outperforming standalone LSTM 

and MLP models. The system effectively 

detected multiple failure modes, including 

power failure, overstrain failure, and heat 

dissipation failure, while maintaining strong 

performance in distinguishing normal 

operating conditions. To demonstrate real-

world applicability, the model was deployed 

via a Streamlit-based web interface for real-

time monitoring and prediction. An integrated 

automated email alert system provided 

immediate notifications when potential failures 

were detected, supporting proactive 

maintenance decisions. Although minor 

performance variation was observed for less 

frequent failure categories due to class 

imbalance, the overall results confirm the 

robustness and scalability of the proposed 

framework. The findings highlight the 

significant potential of hybrid deep learning 

models in transforming maintenance strategies 

from preventive to data-driven predictive 

approaches, ultimately enhancing operational 

efficiency and system longevity in industrial 

environments. 
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1.0 Introduction 
 

Unscheduled equipment downtime remains 

one of the most significant operational 

challenges in modern industrial systems, 

leading to substantial financial losses, reduced 

productivity, and increased safety risks (Smith 
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et al., 2022). Maintaining continuous 

equipment operation is therefore essential for 

maximizing asset utilization, reducing 

maintenance costs, and minimizing health, 

safety, and environmental risks (Johnson et al., 

2021). The goal of a predictive maintenance 

strategy is to extend the useful service life of 

the equipment and prevent failures (Li et al., 

2020). Anomaly detection is a common 

approach because it identifies when a device is 

behaving differently than expected (Ben et al., 

2021). Anomaly detection solutions are often 

more accurate than simple rule-based failure-

detection methods and they are useful in the 

prevention of expensive failures and outages 

(Hesabi et al., 2021).  

Predictive maintenance (PdM) focuses on 

forecasting equipment failures using 

operational data collected from sensors 

embedded in industrial machines during 

runtime (Smith et al., 2023). Commonly 

deployed sensors including temperature, 

vibration, pressure, torque, and voltage sensors 

provide continuous streams of data that 

describe machine health and performance.  

Predictive maintenance offers several 

advantages over preventive maintenance and 

reactive maintenance strategies. It avoids the 

drawbacks of underutilization of a part's life in 

preventive maintenance and minimizes 

unscheduled downtime in reactive maintenance 

(Hesabi et al., 2021). 

By analyzing the historical health data of the 

equipment, predictive maintenance can 

anticipate future points of failure, enabling the 

scheduling of part replacements just before 

actual failures occur (Bampoula et al., 2021). 

This proactive approach optimizes 

maintenance activities, extends the useful 

service life of the equipment, and prevents 

costly downtime and risks associated with 

machine failures (Sohaib & Khan, 2022).  

Despite the large volumes of sensor data 

generated daily on factory floors, much of this 

information remains underutilized for 

intelligent maintenance decision-making. This 

underutilization limits the potential for 

optimizing equipment reliability and 

operational efficiency in manufacturing 

systems.  Deep learning (DL) models, 

particularly Long Short-Term Memory 

(LSTM) networks and Multilayer Perceptrons 

(MLPs), have shown strong capabilities in 

modeling complex nonlinear relationships and 

temporal patterns in industrial data. LSTM 

networks are especially effective for time-

series forecasting, while MLPs are widely used 

for classification tasks involving structured 

features (Bampoula et al., 2021; Fredj et al., 

2020). However, many existing predictive 

maintenance approaches rely on single-model 

architectures that either focus on temporal 

dependencies or static feature relationships, but 

rarely both. Such methods may fail to fully 

capture the complex interactions present in 

multivariate industrial sensor data. 

Furthermore, limited attention has been given 

to integrating high-performance predictive 

models into real-time monitoring frameworks 

suitable for practical industrial deployment. To 

address these limitations, this study proposes 

the development of an enhanced hybrid 

predictive maintenance model that integrates 

LSTM networks for temporal sequence 

learning with an MLP classifier for feature-

based decision-making. The framework 

leverages real-time sensor data to improve 

failure prediction accuracy and optimize 

maintenance scheduling in industrial systems.  

The significance of this study lies in its dual 

contribution to both research and industry. 

Scientifically, it demonstrates the effectiveness 

of hybrid deep learning architectures in 

predictive maintenance applications. 

Practically, the model is deployed using a 

Streamlit-based real-time monitoring interface, 

enabling proactive maintenance decisions and 

supporting the transition toward intelligent and 

automated industrial operations.  

1.1  Literature Review 
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 Recent studies indicate that deep learning 

(DL) models often outperform traditional 

statistical and machine learning approaches in 

predicting equipment failures. Li et al. (2020) 

demonstrated the effectiveness of DL 

techniques for predictive maintenance (PdM), 

highlighting their ability to capture complex 

nonlinear degradation patterns in industrial 

equipment. For example, a study conducted at 

the University of California, Berkeley, reported 

that a DL-based model achieved 95% accuracy 

in predicting wind turbine failures. It addressed 

the underutilization of data generated by 

manufacturing industrial systems and 

machines/devices by introducing advanced 

deep-learning models for predictive 

maintenance. These models have shown great 

promise in accurately estimating equipment 

health and detecting cybersecurity threats.  

Despite these advancements, challenges related 

to data quality, data availability, and model 

robustness remain major barriers to the 

widespread industrial adoption of DL-based 

predictive maintenance solutions. This section 

reviews existing research on predictive 

maintenance in intelligent manufacturing 

systems, with particular emphasis on deep 

learning and hybrid modeling approaches.  

 An intelligent manufacturing system is 

generally defined as a fully integrated and 

collaborative production environment capable 

of responding dynamically to changing 

operational conditions, supply chain demands, 

and customer requirements in real time 

(Yingfeng et al., 2019). Advances in sensing 

technologies, data analytics, and intelligent 

algorithms have accelerated the transformation 

of traditional manufacturing into highly 

autonomous systems capable of self-

organization and adaptive decision-making 

(Zelei et al., 2016; Zhang et al., 2017). 

As manufacturing systems become more 

complex and automated, the likelihood of 

system faults and unexpected downtime 

increases. Performing maintenance too early 

may waste component life, while delayed 

interventions can lead to catastrophic failures. 

Predictive maintenance (PdM) addresses this 

challenge by identifying the optimal time to 

perform maintenance actions based on 

equipment condition data (Atamuradov et al., 

2020; Zhang et al., 2019). 

Aivaliotis et al. (2019) proposed a predictive 

maintenance approach based on digital twin 

technology, where virtual replicas of physical 

systems were used to simulate machine 

behavior and estimate Remaining Useful Life 

(RUL). The digital twin method involves 

creating a virtual representation of the physical 

system to simulate its behavior. Physics-based 

simulation models and digital twin concepts 

were used to calculate the Remaining useful 

life (RUL) of mechanical machines. The 

technology was studied based on the predictive 

maintenance of a single machine.  However, 

the study focused primarily on single-machine 

scenarios, limiting its applicability to complex 

multi-machine manufacturing environments. 

Luo et al. (2020) studied a hybrid method 

driven by digital twins. The hybridization was 

on a predictive digital twin method with a data-

driven method. Under the proposed 

framework, a hybrid predictive maintenance 

algorithm based on the digital twin model and 

digital twin data was studied. However, the 

investigation was limited to tool fault 

prediction in Computer Numerical Control 

(CNC) machines, with relatively narrow fault 

categories. Broader system-level fault 

prediction across diverse machine types was 

not addressed.  

Stodola (2019) proposed a mathematical 

model for predictive maintenance. This model 

can evaluate the actual maintenance of labor 

intensity and reduce human error. However, the 

strategy relied on fixed monthly and annual 

schedules rather than condition-based 

predictions, which may still lead to 

unnecessary maintenance costs.   
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Liu et al. (2019) proposed a method of 

implementing routine diagnostic decisions 

based on empirical constant thresholds. In the 

proposed framework, the thresholds of 

monitoring parameters can be changed 

according to the real-time operating conditions 

and the reliability estimation results. 

Simulation results showed that routine 

diagnostic decisions while compared with the 

traditional methods, could make more timely 

maintenance decisions. Although the approach 

enabled more timely maintenance decisions 

compared to traditional methods, it lacked the 

capability to accurately classify fault types, 

making it difficult to implement targeted 

maintenance strategies.  

Xiang et al. (2020) proposed an LSTM 

network based on weight amplification for gear 

life prediction. An attention mechanism was 

added to the method, which amplified the input 

weight and recursive weight of the hidden layer 

to varying degrees.  However, the model 

primarily provided binary fault classification 

(“broken” or “healthy”), limiting its ability to 

distinguish between different fault types at 

early stages.  

Yang et al. (2020) proposed an LSTM network 

for the prediction of the remaining useful life 

of rotating machinery. To verify the 

effectiveness of the LSTM method, it was 

compared with the BP neural network, gray 

prediction model, support vector machine, and 

other methods. The results showed that the 

LSTM method can predict the degradation 

trend of rotating machinery and significantly 

improve the prediction accuracy of the 

remaining useful life.  

Qun et al. (2020) proposed a gearbox fault 

prediction method based on the LSTM 

network, which mainly included offline 

modeling and online monitoring. The results 

showed that this method not only had better 

predictive performance but also could predict 

the occurrence of faults earlier. The results 

showed that it reports gearbox faults as either 

“Broken or Healthy” but has a deficiency in 

identifying different fault types in a gearbox 

earlier. 

Generally, existing studies demonstrate the 

effectiveness of deep learning models—

particularly LSTM networks—in predictive 

maintenance applications. However, many 

approaches rely on single-model architectures 

and focus on limited fault categories or specific 

machine types. There remains a need for hybrid 

deep learning frameworks capable of 

integrating temporal sequence learning with 

feature-based classification to improve fault 

differentiation and system-level predictive 

performance. 

 Building upon the limitations identified in 

prior studies, this research proposes a hybrid 

predictive maintenance framework that 

integrates LSTM and Multilayer Perceptron 

(MLP) models to enhance fault classification 

and prediction accuracy. Unlike earlier systems 

that focused on binary fault detection, the 

proposed approach aims to provide more 

detailed fault insights using multivariate sensor 

data. Additionally, the framework incorporates 

an automated alert mechanism to support real-

time maintenance decision-making, thereby 

reducing unplanned downtime and improving 

overall system reliability in intelligent 

manufacturing environments. 

Drawing from existing research in this study, 

(Qun et al. (2020) focused on gearbox fault 

prediction methods based on only LSTM, 

which reports gearbox faults as either “Broken 

or Healthy” but has a deficiency in identifying 

different fault types in a gearbox. Based on the 

study of Qun et al. (2020), the current system 

is leveraging this gap by hybridizing the 

existing limitation using LSTM and Multilayer 

Perceptron (MLP) and integrating active email 

alert in the model. However, it's worth noting 

that in all the literature reviewed, the entire 

system experienced downtime during 

maintenance, which could potentially disrupt 

production progress. In light of the above-
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mentioned general intelligent manufacturing 

system architecture, this study suggests a 

specific hybridization method for PDM within 

the intelligent manufacturing system. This 

approach includes dynamic predictions of 

operational states and maintenance services, 

aiming to optimize the manufacturing system's 

overall performance. 

 Building upon the limitations identified in 

prior studies, this research proposes a hybrid 

predictive maintenance framework that 

integrates LSTM and Multilayer Perceptron 

(MLP) models to enhance fault classification 

and prediction accuracy. Unlike earlier systems 

that focused on binary fault detection, the 

proposed approach aims to provide more 

detailed fault insights using multivariate sensor 

data. Additionally, the framework incorporates 

an automated alert mechanism to support real-

time maintenance decision-making, thereby 

reducing unplanned downtime and improving 

overall system reliability in intelligent 

manufacturing environments. 

1.2 Predictive Maintenance and Deep 

Learning  

Recent research trends emphasize the 

integration of multiple deep learning 

techniques to enhance predictive maintenance 

performance. Hybrid architectures combining 

temporal and non-temporal data modeling are 

increasingly explored to address the limitations 

of single-model approaches. These 

developments provide the conceptual 

foundation for the hybrid framework proposed 

in this study. Predictive Maintenance (PdM) is 

a condition-based maintenance strategy that 

uses real-time sensor data, analytics, and 

machine learning techniques to predict 

equipment failures before they occur. Unlike 

reactive maintenance, which occurs after 

failure, or preventive maintenance, which 

follows fixed schedules, PdM optimizes 

maintenance timing to reduce downtime, lower 

costs, and extend equipment lifespan. 

Deep learning is a subset of machine learning 

based on artificial neural networks with 

multiple processing layers that enable 

automatic feature extraction and representation 

learning (Han et al., 2011). Deep learning 

techniques have demonstrated superior 

performance over traditional machine learning 

approaches, particularly when handling large-

scale and high-dimensional industrial datasets 

(Sarker et al., 2020; Xin et al., 2018). 
 

1.3 Types of Deep Learning Models  

1.3.1 Multilayer Perceptron (MLP) 
 

The base architecture of deep learning, which 

is also known as the feed-forward artificial 

neural network, is called a multilayer 

perceptron (MLP) (Pedregosa et al., 2011). A 

typical MLP is a fully connected network 

consisting of an input layer, one or more hidden 

layers, and an output layer. MLP utilizes the 

Backpropagation technique (Han et al., 2011), 

the most fundamental building block in a 

neural network, to adjust the weight values 

internally while building the model.  However, 

MLP performance is sensitive to feature 

scaling and hyperparameter selection, which 

can increase computational cost during model 

optimization. 
 

1.3.2 Long Short-Term Memory (LSTM) 
 

Long short-term memory (LSTM) is an 

artificial recurrent neural network (RNN) 

architecture used in the area of deep learning 

(Goodfellow et al., 2016).  LSTM has feedback 

links, unlike normal feed-forward neural 

networks. LSTM networks are well-suited for 

analyzing and learning sequential data, such as 

classifying, processing, and predicting data 

based on time series data, which differentiates 

it from other conventional networks. Due to its 

memory cell structure and gating mechanisms, 

LSTM is widely applied in time-series 

forecasting, condition monitoring, and 

predictive maintenance of industrial 

equipment.  
 

2.0 Materials and Methods 
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2.1 Data Description 

The dataset used for fault prediction in wind 

turbines consists of multiple operational and 

environmental parameters that describe 

machine health and working conditions. 

Machine history variables include torque and 

tool wear, while generator speed is represented 

through rotational speed measurements. 

Gearbox condition is monitored using process 

temperature, and environmental conditions are 

captured through air temperature readings. The 

data were recorded at a sampling rate of 30 Hz, 

enabling the extraction of both time-domain 

and frequency-domain features for predictive 

analysis. 

The dataset contains both operational and 

environmental variables. Operational variables 

include power generation, current, voltage, and 

multiple temperature readings associated with 

machine components. External environmental 

variables include wind speed, wind direction, 

and ambient temperature. These variables 

collectively provide a comprehensive 

representation of turbine operating conditions 

and external influences that may contribute to 

equipment degradation. 

2.2 Software and Tools 

Model development and data processing were 

carried out using the Python programming 

language. Jupyter Notebook served as the 

development environment for experimentation 

and model training. Scikit-learn was used for 

implementing machine learning components, 

while TensorFlow supported deep learning 

model development. Data visualization was 

performed using Matplotlib and Seaborn. 

Pandas was employed for data manipulation 

and preprocessing tasks. For deployment 

purposes, Flask and Streamlit frameworks were 

utilized to provide web-based model access and 

real-time monitoring capabilities. 

2.3 Hardware 

The system was implemented on a personal 

computer equipped with a minimum Pentium 4 

processor, 16 GB RAM, and 1 TB storage 

capacity. A printer was also used for 

documentation and reporting purposes. 

2.4 Data Collection and Preprocessing 

The dataset consists of sensor readings and 

machine logs that include air temperature, 

process temperature, rotational speed, torque, 

tool wear, and labeled failure types. The data 

were loaded from CSV files using the Pandas 

library. Missing values were identified and 

handled either through imputation or removal 

to ensure data quality. Feature scaling was 

performed using normalization or 

standardization techniques to ensure uniform 

feature ranges, particularly for air temperature, 

process temperature, rotational speed, torque, 

and tool wear. Categorical variables such as 

machine type and failure type were converted 

into numerical representations using one-hot 

encoding. 

2.5 Feature Engineering 

Feature engineering involved separating 

temporal and non-temporal variables based on 

model requirements. Time-series features, 

including rotational speed, torque, and tool 

wear, were structured into sequential input data 

suitable for the LSTM model. Non-temporal 

features such as air temperature and process 

temperature were prepared for input into the 

MLP model. This separation allowed each 

model to specialize in learning different data 

characteristics. 

2.6 Model Development 

2.6.1 Multilayer Perceptron (MLP) 

The Multilayer Perceptron model was used as 

a feedforward artificial neural network capable 

of learning nonlinear relationships among 

features. The network consisted of an input 

layer, one or more hidden layers, and an output 

layer. Model training involved initializing 

weights with small random values, performing 

forward propagation to compute outputs, 

calculating error derivatives, and updating 

weights using backpropagation and gradient 

descent optimization. The number of hidden 
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layers and neurons was tuned to balance model 

complexity and performance. 

2.6.2 Long Short-Term Memory (LSTM) 

The LSTM network was implemented to 

capture temporal dependencies in sequential 

sensor data. Each LSTM cell maintained 

hidden and cell states that were updated at 

every time step through gating mechanisms 

controlling information flow. During training, 

sequences of sensor readings were processed 

step-by-step, loss was computed against 

expected outputs, and backpropagation through 

time was applied to update network weights. 

The LSTM model is well-suited for time-series 

prediction tasks due to its ability to retain long-

term dependencies. 

2.6.3 Hybrid Model (Stacking Approach) 

A stacking ensemble method was employed to 

combine predictions from both the LSTM and 

MLP models. The outputs from the two models 

were aggregated using an averaging or 

weighted probability scheme to produce final 

fault predictions. This hybrid approach 

leverages the temporal learning capability of 

LSTM and the feature interaction modeling 

strength of MLP. 

2.7 Model Evaluation 

Model performance was evaluated using 

accuracy, precision, recall, and F1-score 

metrics. Accuracy measured the overall 

proportion of correct predictions, while 

precision assessed the correctness of predicted 

failure cases. Recall measured the model’s 

ability to detect actual failures, and the F1-

score provided a harmonic balance between 

precision and recall. Cross-validation was also 

performed to reduce overfitting and ensure 

model robustness. 

Table 1 shows that the MLP model performed 

exceptionally well in identifying normal 

operating conditions but struggled with 

minority failure classes such as Random 

Failures and Tool Wear Failure. 

Table 2 indicates that the LSTM model also 

achieved high performance for the dominant 

“No Failure” class but had difficulty detecting 

rare fault categories. 
 

2.8 Hybrid Model Performance 
 

The performance of the hybrid model during 

training was evaluated using training loss and  

training accuracy curves, as illustrated in Fig. 

1. The training loss curve shows a steady 

decline over 30 epochs, indicating that the 

model progressively minimized prediction 

errors during learning. At the same time, the 

training accuracy curve demonstrates 

consistent improvement before reaching 

convergence, confirming the model’s ability to 

learn meaningful patterns from the data (Fig. 

1). 

 

Table 1. Classification Report for the MLP Model 
 

Class Precision Recall F1-Score Support 

Heat Dissipation Failure 0.55 0.40 0.46 15 

No Failure 0.98 0.99 0.99 1935 

Overstrain Failure 1.00 0.62 0.76 13 

Power Failure 0.75 0.90 0.82 20 

Random Failures 0.00 0.00 0.00 6 

Tool Wear Failure 0.50 0.09 0.15 11 
 

 

 

Table 2. Classification Report for the LSTM Model 
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Class Precision Recall F1-Score Support 

Heat Dissipation Failure 0.55 0.40 0.46 15 

No Failure 0.98 0.99 0.99 1935 

Overstrain Failure 1.00 0.62 0.76 13 

Power Failure 0.75 0.90 0.82 20 

Random Failures 0.00 0.00 0.00 6 

Tool Wear Failure 0.00 0.00 0.00 11 

 

 
Fig. 1: Training Loss and Training Accuracy Curves for the Hybrid Model 

 

The training loss curve shows a consistent 

decrease over 30 epochs, indicating effective 

learning, while the training accuracy curve 

demonstrates progressive improvement and 

convergence. A comparative evaluation of the 

predictive performance of the MLP, LSTM, 

and hybrid models is presented in Fig. 2. The 

figure highlights that the hybrid model 

achieved superior overall accuracy compared 

to the individual models, demonstrating the 

advantage of combining temporal and non-

temporal learning approaches (Fig. 2). 
 

2.9 Model Deployment 

The final hybrid predictive maintenance model 

was deployed using the Streamlit framework to 

enable real-time interaction. The deployed 

system allows users to input machine sensor 

data and receive instant predictions regarding 

potential failure modes  

or normal operation. The trained model was 

serialized into a PKL file format for efficient 

loading within the Streamlit application. An 

integrated alert system triggers notifications, 

such as email alerts, whenever the model 

predicts an impending equipment failure based 

on predefined probability thresholds 
 

3.0  Results and Discussion 
 

The performance evaluation of the proposed 

hybrid predictive maintenance system confirms 

the effectiveness of combining Long Short-

Term Memory (LSTM) and Multilayer 

Perceptron (MLP) models for industrial fault 

prediction. The hybrid framework leverages 

the temporal learning capability of LSTM and 

the nonlinear feature interaction strength of 

MLP, enabling robust detection of machine 

failure patterns from multivariate sensor data. 

The model was trained using key operational 

parameters, including air temperature, process 

temperature, rotational speed, torque, and tool 

wear. These variables are known to strongly 

influence machine health and degradation 
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behavior. The hybrid architecture successfully 

captured both time-dependent degradation 

trends and static feature relationships, which 

are often difficult for single-model approaches 

to learn simultaneously. 

 
Fig. 2 Performance Comparison between MLP, LSTM, and Hybrid Models 

 

Model training behavior demonstrates stable  

and efficient learning. As shown in Fig. 1, the 

training loss curve decreases consistently over 

30 epochs, indicating effective optimization 

and progressive reduction of prediction error. 

Simultaneously, the training accuracy curve 

increases steadily before converging, 

demonstrating that the model generalizes well 

without signs of unstable oscillation or 

divergence. The final training accuracy reached 

98.10%, confirming that the hybrid network 

learned meaningful patterns from the dataset. 

A comparative performance analysis further 

validates the advantage of the hybrid approach. 

As illustrated in Fig. 2, the hybrid LSTM–MLP 

model outperformed the standalone LSTM and 

MLP models in overall prediction accuracy. 

The hybrid model achieved a testing accuracy 

of 99.20%, which is higher than that of the 

individual models. This improvement 

highlights the benefit of integrating temporal 

sequence modeling with deep feature-based 

classification, particularly in complex 

industrial systems where faults evolve over 

time. 

Class-specific evaluation showed that the 

model achieved excellent prediction 

performance for normal operating conditions 

(“No Failure”) and major failure types such as 

Power Failure, Overstrain Failure, and Heat 

Dissipation Failure. However, prediction 

performance for rarer failure categories, such 

as Random Failure and Tool Wear Failure, was 

comparatively lower. This discrepancy is 

attributed to dataset imbalance, where normal 

operational records dominate failure instances. 

Future work could address this challenge 

through data augmentation, resampling 

strategies, or cost-sensitive learning 

techniques. 

Beyond model accuracy, practical system 

deployment was successfully demonstrated 

through a real-time web-based interface 

developed using the Streamlit framework. The 

interface allows users to input machine sensor 

readings and instantly receive failure 

predictions. The operational dashboard and 

prediction outputs are presented in Fig. 3, 

which shows different machine states predicted 

by the model, including “No Failure,” “Power 

Failure,” and “Heat Dissipation Failure.” These 



Communication in Physical Sciences, 2026, 13(1): 124-138 133 
 

 
 

results confirm that the system can distinguish 

between multiple fault conditions in real time. 

An important practical contribution of this 

work is the integration of an automated email 

alert system for proactive maintenance. When 

the model detects a high-probability failure, an 

alert is automatically sent to maintenance 

personnel. Sample alert notifications are shown 

in Fig. 4, where emails corresponding to 

predicted fault conditions were successfully 

delivered. This feature enhances industrial 

responsiveness by enabling early intervention 

before severe equipment damage occurs. 

Overall, the findings demonstrate that the 

proposed hybrid deep learning framework is 

both technically reliable and practically 

applicable. The high predictive accuracy (Fig. 

2), stable training behavior (Fig. 1), real-time 

prediction capability (Fig. 3), and automated 

alert mechanism (Fig. 4) collectively establish 

the system as a strong candidate for intelligent 

predictive maintenance in modern industrial 

environments. The integration of deep learning 

with real-time monitoring tools supports the 

transition from reactive and preventive 

maintenance toward data-driven, condition-

based maintenance strategies. 

 
Fig. 3:  Actual Test Result versus Expected Test Result 

 

Actual Test Result Expected Test Result 
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Fig. 4: Email Alert Output Result 

 

4.0 Conclusion 

This study developed and implemented a 

hybrid deep learning–based predictive 

maintenance system that integrates Long 

Short-Term Memory (LSTM) and Multilayer 

Perceptron (MLP) networks for intelligent 

industrial fault prediction. By combining 

temporal sequence learning with nonlinear 

feature-based classification, the model 

effectively captured complex degradation 

patterns in machinery using real-time sensor 

inputs such as temperature, rotational speed, 

torque, and tool wear. 

The hybrid model demonstrated superior 

predictive capability compared to individual 

models, achieving a high training accuracy of 

98.10% and a testing accuracy of 99.20%. 

These results confirm that the proposed 

approach can reliably distinguish between 

normal operating conditions and multiple 

failure modes, including power failure, 

overstrain failure, and heat dissipation failure. 

Although performance for rare fault categories 

such as random failure and tool wear failure 

was slightly lower due to data imbalance, 

overall model performance remained strong 

across evaluation metrics including accuracy, 

precision, recall, and F1-score. 

Beyond algorithmic performance, the study 

successfully translated the predictive model 

into a practical decision-support tool. 

Deployment through a Streamlit-based 

interface enabled real-time machine health 

monitoring and instant failure prediction. The 

integration of an automated email alert system 

further enhanced the system’s practical value 

by supporting proactive maintenance actions 

and reducing the risk of unexpected downtime. 

In summary, the proposed hybrid predictive 

maintenance framework provides a reliable, 

scalable, and intelligent solution for modern 

industrial systems. By shifting maintenance 

strategy from routine preventive schedules to 

data-driven condition-based monitoring, the 

system has strong potential to improve 

operational efficiency, reduce maintenance 

costs, and extend equipment lifespan. Future 

work should focus on expanding the dataset, 

addressing class imbalance, and incorporating 

additional sensor modalities to further enhance 

robustness and generalizability across diverse 

industrial environments. 
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