Communication in Physical Sciences, 2026, 13(1): 124-138

Development of an Enhanced Predictive Maintenance Model for
Industrial Systems using Deep Learning Techniques

Confidence Ifeoma Odoh, Nweze Rosemary Chika, Maduahonwu Ukamaka Victoria
Received : 16 November 2025/Accepted: 26 January 2026 /Published: 30 January 2026

https://dx.doi.org/10.4314/cps.vi3il. 11

Abstract: Predictive maintenance has become
essential in modern industrial systems for
reducing unplanned downtime, lowering
maintenance costs, and improving equipment
reliability. This study presents a hybrid deep
learning framework that combines Long Short-
Term Memory (LSTM) and Multilayer
Perceptron (MLP) networks for accurate
machine failure prediction. The model was
trained using multivariate sensor data,
including air temperature, process
temperature, rotational speed, torque, and tool
wear, enabling comprehensive monitoring of
machine health. The hybrid architecture
integrates LSTM’s strength in temporal
sequence learning with MLP’s capability for
nonlinear  feature-based classification.
Training results showed a steady reduction in
loss and convergence in accuracy over 30
epochs, with the model achieving a training
accuracy of 98.10%. During testing, the hybrid
model achieved an overall prediction accuracy
of 99.20%, outperforming standalone LSTM
and MLP models. The system effectively
detected multiple failure modes, including
power failure, overstrain failure, and heat
dissipation failure, while maintaining strong
performance in  distinguishing  normal
operating conditions. To demonstrate real-
world applicability, the model was deployed
via a Streamlit-based web interface for real-
time monitoring and prediction. An integrated
automated email alert system provided
immediate notifications when potential failures
were  detected, supporting  proactive
maintenance decisions.  Although minor
performance variation was observed for less
frequent failure categories due to class
imbalance, the overall results confirm the

robustness and scalability of the proposed
framework. The findings highlight the
significant potential of hybrid deep learning
models in transforming maintenance strategies
from preventive to data-driven predictive
approaches, ultimately enhancing operational
efficiency and system longevity in industrial
environments.
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1.0 Introduction

Unscheduled equipment downtime remains
one of the most significant operational
challenges in modern industrial systems,
leading to substantial financial losses, reduced
productivity, and increased safety risks (Smith
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et al., 2022). Maintaining continuous
equipment operation is therefore essential for
maximizing asset utilization, reducing
maintenance costs, and minimizing health,
safety, and environmental risks (Johnson et al.,
2021). The goal of a predictive maintenance
strategy is to extend the useful service life of
the equipment and prevent failures (Li et al.,
2020). Anomaly detection is a common
approach because it identifies when a device is
behaving differently than expected (Ben ef al.,
2021). Anomaly detection solutions are often
more accurate than simple rule-based failure-
detection methods and they are useful in the
prevention of expensive failures and outages
(Hesabi et al., 2021).

Predictive maintenance (PdM) focuses on

forecasting  equipment  failures  using
operational data collected from sensors
embedded in industrial machines during

runtime (Smith et al,, 2023). Commonly
deployed sensors including temperature,
vibration, pressure, torque, and voltage sensors
provide continuous streams of data that
describe machine health and performance.
Predictive  maintenance  offers  several
advantages over preventive maintenance and
reactive maintenance strategies. It avoids the
drawbacks of underutilization of a part's life in
preventive maintenance and minimizes
unscheduled downtime in reactive maintenance
(Hesabi et al., 2021).

By analyzing the historical health data of the
equipment, predictive maintenance can
anticipate future points of failure, enabling the
scheduling of part replacements just before
actual failures occur (Bampoula et al., 2021).
This proactive approach optimizes
maintenance activities, extends the useful
service life of the equipment, and prevents
costly downtime and risks associated with
machine failures (Sohaib & Khan, 2022).
Despite the large volumes of sensor data
generated daily on factory floors, much of this
information  remains  underutilized for

intelligent maintenance decision-making. This
underutilization limits the potential for
optimizing  equipment  reliability  and
operational efficiency in manufacturing
systems. Deep learning (DL) models,
particularly Long Short-Term  Memory
(LSTM) networks and Multilayer Perceptrons
(MLPs), have shown strong capabilities in
modeling complex nonlinear relationships and
temporal patterns in industrial data. LSTM
networks are especially effective for time-
series forecasting, while MLPs are widely used
for classification tasks involving structured
features (Bampoula et al., 2021; Fredj et al.,
2020). However, many existing predictive
maintenance approaches rely on single-model
architectures that either focus on temporal
dependencies or static feature relationships, but
rarely both. Such methods may fail to fully
capture the complex interactions present in
multivariate industrial sensor data.
Furthermore, limited attention has been given
to integrating high-performance predictive
models into real-time monitoring frameworks
suitable for practical industrial deployment. To
address these limitations, this study proposes
the development of an enhanced hybrid
predictive maintenance model that integrates
LSTM networks for temporal sequence
learning with an MLP classifier for feature-
based decision-making. The framework
leverages real-time sensor data to improve
failure prediction accuracy and optimize
maintenance scheduling in industrial systems.
The significance of this study lies in its dual
contribution to both research and industry.
Scientifically, it demonstrates the effectiveness
of hybrid deep learning architectures in
predictive maintenance applications.
Practically, the model is deployed using a
Streamlit-based real-time monitoring interface,
enabling proactive maintenance decisions and
supporting the transition toward intelligent and
automated industrial operations.

1.1 Literature Review
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Recent studies indicate that deep learning
(DL) models often outperform traditional
statistical and machine learning approaches in
predicting equipment failures. Li et al. (2020)
demonstrated the effectiveness of DL
techniques for predictive maintenance (PdM),
highlighting their ability to capture complex
nonlinear degradation patterns in industrial
equipment. For example, a study conducted at
the University of California, Berkeley, reported
that a DL-based model achieved 95% accuracy
in predicting wind turbine failures. It addressed
the underutilization of data generated by
manufacturing  industrial ~ systems  and
machines/devices by introducing advanced
deep-learning  models  for  predictive
maintenance. These models have shown great
promise in accurately estimating equipment
health and detecting cybersecurity threats.
Despite these advancements, challenges related
to data quality, data availability, and model
robustness remain major barriers to the
widespread industrial adoption of DL-based
predictive maintenance solutions. This section
reviews existing research on predictive
maintenance in intelligent manufacturing
systems, with particular emphasis on deep
learning and hybrid modeling approaches.

An intelligent manufacturing system is
generally defined as a fully integrated and
collaborative production environment capable
of responding dynamically to changing
operational conditions, supply chain demands,
and customer requirements in real time
(Yingfeng et al., 2019). Advances in sensing
technologies, data analytics, and intelligent
algorithms have accelerated the transformation
of traditional manufacturing into highly
autonomous  systems capable of self-
organization and adaptive decision-making
(Zelei et al., 2016; Zhang et al., 2017).

As manufacturing systems become more
complex and automated, the likelihood of
system faults and unexpected downtime
increases. Performing maintenance too early

may waste component life, while delayed
interventions can lead to catastrophic failures.
Predictive maintenance (PdM) addresses this
challenge by identifying the optimal time to
perform maintenance actions based on
equipment condition data (Atamuradov et al.,
2020; Zhang et al., 2019).

Aivaliotis et al. (2019) proposed a predictive
maintenance approach based on digital twin
technology, where virtual replicas of physical
systems were used to simulate machine
behavior and estimate Remaining Useful Life
(RUL). The digital twin method involves
creating a virtual representation of the physical
system to simulate its behavior. Physics-based
simulation models and digital twin concepts
were used to calculate the Remaining useful
life (RUL) of mechanical machines. The
technology was studied based on the predictive
maintenance of a single machine. However,
the study focused primarily on single-machine
scenarios, limiting its applicability to complex
multi-machine manufacturing environments.
Luo et al. (2020) studied a hybrid method
driven by digital twins. The hybridization was
on a predictive digital twin method with a data-
driven method. Under the proposed
framework, a hybrid predictive maintenance
algorithm based on the digital twin model and
digital twin data was studied. However, the
investigation was limited to tool fault
prediction in Computer Numerical Control
(CNC) machines, with relatively narrow fault
categories. Broader  system-level fault
prediction across diverse machine types was
not addressed.

Stodola (2019) proposed a  mathematical
model for predictive maintenance. This model
can evaluate the actual maintenance of labor
intensity and reduce human error. However, the
strategy relied on fixed monthly and annual
schedules  rather than  condition-based
predictions, which may still lead to
unnecessary maintenance costs.
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Liuet al. (2019) proposed a method of
implementing routine diagnostic decisions
based on empirical constant thresholds. In the
proposed framework, the thresholds of
monitoring parameters can be changed
according to the real-time operating conditions
and the reliability estimation results.
Simulation results showed that routine
diagnostic decisions while compared with the
traditional methods, could make more timely
maintenance decisions. Although the approach
enabled more timely maintenance decisions
compared to traditional methods, it lacked the
capability to accurately classify fault types,
making it difficult to implement targeted
maintenance strategies.

Xiang et al. (2020) proposed an LSTM
network based on weight amplification for gear
life prediction. An attention mechanism was
added to the method, which amplified the input
weight and recursive weight of the hidden layer
to varying degrees. However, the model
primarily provided binary fault classification
(“broken” or “healthy”), limiting its ability to
distinguish between different fault types at
early stages.

Yang et al. (2020) proposed an LSTM network
for the prediction of the remaining useful life
of rotating machinery. To verify the
effectiveness of the LSTM method, it was
compared with the BP neural network, gray
prediction model, support vector machine, and
other methods. The results showed that the
LSTM method can predict the degradation
trend of rotating machinery and significantly
improve the prediction accuracy of the
remaining useful life.

Qunet al. (2020) proposed a gearbox fault
prediction method based on the LSTM
network, which mainly included offline
modeling and online monitoring. The results
showed that this method not only had better
predictive performance but also could predict
the occurrence of faults earlier. The results
showed that it reports gearbox faults as either

“Broken or Healthy” but has a deficiency in
identifying different fault types in a gearbox
earlier.

Generally, existing studies demonstrate the
effectiveness of deep learning models—
particularly LSTM networks—in predictive
maintenance applications. However, many
approaches rely on single-model architectures
and focus on limited fault categories or specific
machine types. There remains a need for hybrid
deep learning frameworks capable of
integrating temporal sequence learning with
feature-based classification to improve fault
differentiation and system-level predictive
performance.

Building upon the limitations identified in
prior studies, this research proposes a hybrid
predictive  maintenance framework that
integrates LSTM and Multilayer Perceptron
(MLP) models to enhance fault classification
and prediction accuracy. Unlike earlier systems
that focused on binary fault detection, the
proposed approach aims to provide more
detailed fault insights using multivariate sensor
data. Additionally, the framework incorporates
an automated alert mechanism to support real-
time maintenance decision-making, thereby
reducing unplanned downtime and improving
overall system reliability in intelligent
manufacturing environments.

Drawing from existing research in this study,
(Qun et al. (2020) focused on gearbox fault
prediction methods based on only LSTM,
which reports gearbox faults as either “Broken
or Healthy” but has a deficiency in identifying
different fault types in a gearbox. Based on the
study of Qun ef al. (2020), the current system
is leveraging this gap by hybridizing the
existing limitation using LSTM and Multilayer
Perceptron (MLP) and integrating active email
alert in the model. However, it's worth noting
that in all the literature reviewed, the entire
system  experienced downtime  during
maintenance, which could potentially disrupt
production progress. In light of the above-
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mentioned general intelligent manufacturing
system architecture, this study suggests a
specific hybridization method for PDM within
the intelligent manufacturing system. This
approach includes dynamic predictions of
operational states and maintenance services,
aiming to optimize the manufacturing system's
overall performance.

Building upon the limitations identified in
prior studies, this research proposes a hybrid
predictive  maintenance framework that
integrates LSTM and Multilayer Perceptron
(MLP) models to enhance fault classification
and prediction accuracy. Unlike earlier systems
that focused on binary fault detection, the
proposed approach aims to provide more
detailed fault insights using multivariate sensor
data. Additionally, the framework incorporates
an automated alert mechanism to support real-
time maintenance decision-making, thereby
reducing unplanned downtime and improving
overall system reliability in intelligent
manufacturing environments.

1.2 Predictive Maintenance and Deep

Learning
Recent research trends emphasize the
integration of multiple deep learning

techniques to enhance predictive maintenance
performance. Hybrid architectures combining
temporal and non-temporal data modeling are
increasingly explored to address the limitations
of  single-model approaches. These
developments  provide the conceptual
foundation for the hybrid framework proposed
in this study. Predictive Maintenance (PdM) is
a condition-based maintenance strategy that
uses real-time sensor data, analytics, and
machine learning techniques to predict
equipment failures before they occur. Unlike
reactive maintenance, which occurs after
failure, or preventive maintenance, which
follows fixed schedules, PdM optimizes
maintenance timing to reduce downtime, lower
costs, and extend equipment lifespan.

Deep learning is a subset of machine learning
based on artificial neural networks with
multiple processing layers that enable
automatic feature extraction and representation
learning (Han et al., 2011). Deep learning
techniques have demonstrated superior
performance over traditional machine learning
approaches, particularly when handling large-
scale and high-dimensional industrial datasets
(Sarker et al., 2020; Xin et al., 2018).

1.3 Types of Deep Learning Models

1.3.1 Multilayer Perceptron (MLP)

The base architecture of deep learning, which
is also known as the feed-forward artificial
neural network, is called a multilayer
perceptron (MLP) (Pedregosa et al., 2011). A
typical MLP is a fully connected network
consisting of an input layer, one or more hidden
layers, and an output layer. MLP utilizes the
Backpropagation technique (Han et al., 2011),
the most fundamental building block in a
neural network, to adjust the weight values
internally while building the model. However,
MLP performance is sensitive to feature
scaling and hyperparameter selection, which
can increase computational cost during model
optimization.

1.3.2 Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) is an
artificial recurrent neural network (RNN)
architecture used in the area of deep learning
(Goodfellow et al., 2016). LSTM has feedback
links, unlike normal feed-forward neural
networks. LSTM networks are well-suited for
analyzing and learning sequential data, such as
classifying, processing, and predicting data
based on time series data, which differentiates
it from other conventional networks. Due to its
memory cell structure and gating mechanisms,

LSTM is widely applied in time-series
forecasting, condition monitoring, and
predictive ~ maintenance = of  industrial
equipment.

2.0 Materials and Methods
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2.1 Data Description

The dataset used for fault prediction in wind
turbines consists of multiple operational and
environmental parameters that describe
machine health and working conditions.
Machine history variables include torque and
tool wear, while generator speed is represented
through rotational speed measurements.
Gearbox condition is monitored using process
temperature, and environmental conditions are
captured through air temperature readings. The
data were recorded at a sampling rate of 30 Hz,
enabling the extraction of both time-domain
and frequency-domain features for predictive
analysis.

The dataset contains both operational and
environmental variables. Operational variables
include power generation, current, voltage, and
multiple temperature readings associated with
machine components. External environmental
variables include wind speed, wind direction,
and ambient temperature. These variables
collectively provide a  comprehensive
representation of turbine operating conditions
and external influences that may contribute to
equipment degradation.

2.2 Software and Tools

Model development and data processing were
carried out using the Python programming
language. Jupyter Notebook served as the
development environment for experimentation
and model training. Scikit-learn was used for
implementing machine learning components,
while TensorFlow supported deep learning
model development. Data visualization was
performed using Matplotlib and Seaborn.
Pandas was employed for data manipulation
and preprocessing tasks. For deployment
purposes, Flask and Streamlit frameworks were
utilized to provide web-based model access and
real-time monitoring capabilities.

2.3 Hardware

The system was implemented on a personal
computer equipped with a minimum Pentium 4
processor, 16 GB RAM, and 1 TB storage

capacity. A printer was also wused for
documentation and reporting purposes.

2.4 Data Collection and Preprocessing

The dataset consists of sensor readings and
machine logs that include air temperature,
process temperature, rotational speed, torque,
tool wear, and labeled failure types. The data
were loaded from CSV files using the Pandas
library. Missing values were identified and
handled either through imputation or removal
to ensure data quality. Feature scaling was
performed using normalization or
standardization techniques to ensure uniform
feature ranges, particularly for air temperature,
process temperature, rotational speed, torque,
and tool wear. Categorical variables such as
machine type and failure type were converted
into numerical representations using one-hot

encoding.
2.5 Feature Engineering
Feature engineering involved separating

temporal and non-temporal variables based on
model requirements. Time-series features,
including rotational speed, torque, and tool
wear, were structured into sequential input data
suitable for the LSTM model. Non-temporal
features such as air temperature and process
temperature were prepared for input into the
MLP model. This separation allowed each
model to specialize in learning different data
characteristics.

2.6 Model Development

2.6.1 Multilayer Perceptron (MLP)

The Multilayer Perceptron model was used as
a feedforward artificial neural network capable
of learning nonlinear relationships among
features. The network consisted of an input
layer, one or more hidden layers, and an output
layer. Model training involved initializing
weights with small random values, performing
forward propagation to compute outputs,
calculating error derivatives, and updating
weights using backpropagation and gradient
descent optimization. The number of hidden
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layers and neurons was tuned to balance model
complexity and performance.

2.6.2 Long Short-Term Memory (LSTM)

The LSTM network was implemented to
capture temporal dependencies in sequential
sensor data. Each LSTM cell maintained
hidden and cell states that were updated at
every time step through gating mechanisms
controlling information flow. During training,
sequences of sensor readings were processed
step-by-step, loss was computed against
expected outputs, and backpropagation through
time was applied to update network weights.
The LSTM model is well-suited for time-series
prediction tasks due to its ability to retain long-
term dependencies.

2.6.3 Hybrid Model (Stacking Approach)

A stacking ensemble method was employed to
combine predictions from both the LSTM and
MLP models. The outputs from the two models
were aggregated using an averaging or
weighted probability scheme to produce final
fault predictions. This hybrid approach
leverages the temporal learning capability of
LSTM and the feature interaction modeling
strength of MLP.

2.7 Model Evaluation

Model performance was evaluated using
accuracy, precision, recall, and Fl-score
metrics. Accuracy measured the overall
proportion of correct predictions, while

130

precision assessed the correctness of predicted
failure cases. Recall measured the model’s
ability to detect actual failures, and the F1-
score provided a harmonic balance between
precision and recall. Cross-validation was also
performed to reduce overfitting and ensure
model robustness.

Table 1 shows that the MLP model performed
exceptionally well in identifying normal
operating conditions but struggled with
minority failure classes such as Random
Failures and Tool Wear Failure.

Table 2 indicates that the LSTM model also
achieved high performance for the dominant
“No Failure” class but had difficulty detecting
rare fault categories.

2.8 Hybrid Model Performance

The performance of the hybrid model during
training was evaluated using training loss and

training accuracy curves, as illustrated in Fig.
1. The training loss curve shows a steady
decline over 30 epochs, indicating that the
model progressively minimized prediction
errors during learning. At the same time, the
training  accuracy curve  demonstrates
consistent improvement before reaching
convergence, confirming the model’s ability to
learn meaningful patterns from the data (Fig.

).

Table 1. Classification Report for the MLP Model

Class Precision Recall F1-Score Support
Heat Dissipation Failure 0.55 0.40 0.46 15
No Failure 0.98 0.99 0.99 1935
Overstrain Failure 1.00 0.62 0.76 13
Power Failure 0.75 0.90 0.82 20
Random Failures 0.00 0.00 0.00 6
Tool Wear Failure 0.50 0.09 0.15 11

Table 2. Classification Report for the LSTM Model
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Class Precision Recall F1-Score Support
Heat Dissipation Failure 0.55 0.40 0.46 15
No Failure 0.98 0.99 0.99 1935
Overstrain Failure 1.00 0.62 0.76 13
Power Failure 0.75 0.90 0.82 20
Random Failures 0.00 0.00 0.00 6
Tool Wear Failure 0.00 0.00 0.00 11
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Fig. 1: Training Loss and Training Accuracy Curves for the Hybrid Model

The training loss curve shows a consistent
decrease over 30 epochs, indicating effective
learning, while the training accuracy curve
demonstrates progressive improvement and
convergence. A comparative evaluation of the
predictive performance of the MLP, LSTM,
and hybrid models is presented in Fig. 2. The
figure highlights that the hybrid model
achieved superior overall accuracy compared
to the individual models, demonstrating the
advantage of combining temporal and non-
temporal learning approaches (Fig. 2).

2.9 Model Deployment

The final hybrid predictive maintenance model
was deployed using the Streamlit framework to
enable real-time interaction. The deployed
system allows users to input machine sensor
data and receive instant predictions regarding
potential failure modes

or normal operation. The trained model was
serialized into a PKL file format for efficient

loading within the Streamlit application. An
integrated alert system triggers notifications,
such as email alerts, whenever the model
predicts an impending equipment failure based
on predefined probability thresholds

3.0 Results and Discussion

The performance evaluation of the proposed
hybrid predictive maintenance system confirms
the effectiveness of combining Long Short-
Term Memory (LSTM) and Multilayer
Perceptron (MLP) models for industrial fault
prediction. The hybrid framework leverages
the temporal learning capability of LSTM and
the nonlinear feature interaction strength of
MLP, enabling robust detection of machine
failure patterns from multivariate sensor data.
The model was trained using key operational
parameters, including air temperature, process
temperature, rotational speed, torque, and tool
wear. These variables are known to strongly
influence machine health and degradation
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behavior. The hybrid architecture successfully
captured both time-dependent degradation
trends and static feature relationships, which

ag oModel Accuracy and Training Accuracy Comparison
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are often difficult for single-model approaches
to learn simultaneously.
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Fig. 2 Performance Comparison between MLP, LSTM, and Hybrid Models

Model training behavior demonstrates stable

and efficient learning. As shown in Fig. 1, the
training loss curve decreases consistently over
30 epochs, indicating effective optimization
and progressive reduction of prediction error.
Simultaneously, the training accuracy curve
increases  steadily  before  converging,
demonstrating that the model generalizes well
without signs of unstable oscillation or
divergence. The final training accuracy reached
98.10%, confirming that the hybrid network
learned meaningful patterns from the dataset.

A comparative performance analysis further
validates the advantage of the hybrid approach.
As illustrated in Fig. 2, the hybrid LSTM-MLP
model outperformed the standalone LSTM and
MLP models in overall prediction accuracy.
The hybrid model achieved a testing accuracy
of 99.20%, which is higher than that of the
individual ~models. This improvement
highlights the benefit of integrating temporal
sequence modeling with deep feature-based
classification, particularly in  complex

industrial systems where faults evolve over
time.

Class-specific evaluation showed that the
model  achieved  excellent  prediction
performance for normal operating conditions
(“No Failure”) and major failure types such as
Power Failure, Overstrain Failure, and Heat
Dissipation Failure. However, prediction
performance for rarer failure categories, such
as Random Failure and Tool Wear Failure, was
comparatively lower. This discrepancy is
attributed to dataset imbalance, where normal
operational records dominate failure instances.
Future work could address this challenge

through data augmentation, resampling
strategies, = or  cost-sensitive  learning
techniques.

Beyond model accuracy, practical system
deployment was successfully demonstrated
through a real-time web-based interface
developed using the Streamlit framework. The
interface allows users to input machine sensor
readings and instantly receive failure
predictions. The operational dashboard and
prediction outputs are presented in Fig. 3,
which shows different machine states predicted
by the model, including “No Failure,” “Power
Failure,” and “Heat Dissipation Failure.” These
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results confirm that the system can distinguish
between multiple fault conditions in real time.
An important practical contribution of this
work is the integration of an automated email
alert system for proactive maintenance. When
the model detects a high-probability failure, an
alert is automatically sent to maintenance
personnel. Sample alert notifications are shown
in Fig. 4, where emails corresponding to
predicted fault conditions were successfully
delivered. This feature enhances industrial
responsiveness by enabling early intervention
before severe equipment damage occurs.

Actual Test Result
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Overall, the findings demonstrate that the
proposed hybrid deep learning framework is
both technically reliable and practically
applicable. The high predictive accuracy (Fig.
2), stable training behavior (Fig. 1), real-time
prediction capability (Fig. 3), and automated
alert mechanism (Fig. 4) collectively establish
the system as a strong candidate for intelligent
predictive maintenance in modern industrial
environments. The integration of deep learning
with real-time monitoring tools supports the
transition from reactive and preventive
maintenance toward data-driven, condition-

based maintenance strategies.
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Fig. 3: Actual Test Result versus Expected Test Result




Communication in Physical Sciences, 2026, 13(1): 124-138 134

~ i ® ® Kk = e 3 w = L LR - ] ® + = -] =
& =] sl.goaghe. /T # =] &
-] - u o r @ Em @ - P . - e
= ¥ Gmail Q, Sear e o & ‘.
& = S} = -]
&  Compose d
Predictive Maintenance Alert 1
&0  inbox PRy
@ = - odohconiy@octino com.ng “r
i : =]
S -
O Gvad 2
- sdohconfy@octina.com.ng r
shad + g
& odohconty@octing.comng 2
- .
B cdohconlyBacting.com.ng o b
- =
»
E o @ O ¢S E E NG e @ e
am o L = @ o € ¢ " E 3 @ d M & - PRt

Fig. 4: Email Alert Output Result

4.0  Conclusion

This study developed and implemented a
hybrid deep learning-based predictive
maintenance system that integrates Long
Short-Term Memory (LSTM) and Multilayer
Perceptron (MLP) networks for intelligent
industrial fault prediction. By combining
temporal sequence learning with nonlinear
feature-based  classification, the model
effectively captured complex degradation
patterns in machinery using real-time sensor
inputs such as temperature, rotational speed,
torque, and tool wear.

The hybrid model demonstrated superior
predictive capability compared to individual
models, achieving a high training accuracy of
98.10% and a testing accuracy of 99.20%.
These results confirm that the proposed
approach can reliably distinguish between
normal operating conditions and multiple
failure modes, including power failure,
overstrain failure, and heat dissipation failure.
Although performance for rare fault categories
such as random failure and tool wear failure
was slightly lower due to data imbalance,
overall model performance remained strong
across evaluation metrics including accuracy,
precision, recall, and F1-score.

Beyond algorithmic performance, the study
successfully translated the predictive model
into a practical decision-support tool.
Deployment through a  Streamlit-based
interface enabled real-time machine health
monitoring and instant failure prediction. The
integration of an automated email alert system
further enhanced the system’s practical value
by supporting proactive maintenance actions
and reducing the risk of unexpected downtime.
In summary, the proposed hybrid predictive
maintenance framework provides a reliable,
scalable, and intelligent solution for modern
industrial systems. By shifting maintenance
strategy from routine preventive schedules to
data-driven condition-based monitoring, the
system has strong potential to improve
operational efficiency, reduce maintenance
costs, and extend equipment lifespan. Future
work should focus on expanding the dataset,
addressing class imbalance, and incorporating
additional sensor modalities to further enhance
robustness and generalizability across diverse
industrial environments.
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