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Abstract: Geochemical signature analysis
has been a basic technique of mineral
exploration over the years, but the nonlinear
and complicated nature of multi-element
geochemical data has proven hard to capture
using traditional tools of statistical analysis.
This is because the incorporation of machine
learning  algorithms into  geochemical
analysis is a paradigm shift that will allow
more sophisticated pattern recognition and
predictive modeling of mineral prospectivity
maps. This review summarizes the existing
information on machine learning as applied
to the geochemical signature analysis,
including the theoretical basis of the method,
algorithms, and application in different
geological environments. We delve into how
supervised approaches to learning, including
Random Forest, Support Vector Machines,
and neural networks, have revolutionized the
field of anomaly detection and target
generation and unsupervised approaches to
learning, including clustering algorithms and
dimensionality reduction procedures, are
used to discover the unknown geochemical
worlds. A review is done of the successful
case studies using various types of deposits
and in geological environments with a focus
on uses in underexplored areas such as
African  metallogenic  provinces.  The
problematic issues, such as the complexity of
data preprocessing, the interpretability of the
models, and the ability to generalize and
apply the models to various geological
settings are addressed. New directions in
architecture, like deep learning and
explainable artificial intelligence, as well as
multi-source data integration, are also
indicative of more advanced exploration
processes. This detailed discussion shows
that geochemical analysis based on machine
learning does not only increases the level of
target identification but also redefines the
principles of exploration, providing avenues

to exploration in both developed and frontier
geology and responding to the pressing
demand of new mineral resources in an era of
energy transition.
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1.0 Introduction
Machine learning (ML) and artificial
intelligence (AD are increasingly

transforming  geoscientific research by
enabling the analysis of complex, high-
dimensional datasets that exceed the
capabilities of conventional statistical tools.
In mineral exploration, these approaches
support the identification of subtle,
multivariate geochemical patterns linked to
concealed mineralization, improving the
predictive accuracy of prospectivity mapping
(Ademilua, 2021). Their integration
facilitates innovative methods for real-time
analysis and automated decision-making
across sectors (Ufomba & Ndibe, 2023). Al
and ML reshape research by processing large
datasets and enhancing autonomous
performance (Ndibe, 2024). The widespread
adoption of these tools supports intelligent
frameworks that strengthen analytical
precision and operational efficiency (Sanni,
2024). By enabling intelligent automation
and data-driven reasoning, they offer


https://dx.doi.org/10.4314/cps.v13i1.4
mailto:assamaki@mtu.edu
https://orcid.org/0009-0009-8144-997X
mailto:vbarohun@mtu.edu
https://orcid.org/0009-0001-6210-1523

Communication in Physical Sciences, 2026, 13(1): 36-59 37

transformative  solutions to  modern
challenges. Their applications improve data
modeling, decision-making, and smart
navigation  (Okolo, 2023). Advanced
techniques enhance computational
intelligence and predictive modeling, while
their convergence optimizes real-time
operations and dataset management. Overall,
Al and ML redefine automation, analytical
accuracy, and intelligent system design.

The exploration of new mineral deposits has
gotten more complex as the near-surface and
easily detectable mineral resources have
largely been exhausted and exploration has
had to dive deeper, to areas that are more
remote and geologically challenging to
explore (Porwal & Carranza, 2015).
Geochemical surveys have traditionally been
essential sources of important vectoring data
to areas of mineralization, and trends in
element distribution in different sample
media have shown the imprint of the
processes that form the ores beneath the
surface (Cohen et al., 2010). The ways of
interpreting geochemical data that were in
use before the development of multivariate
data analysis tools were predominantly based
on univariate statistical analysis, finding
anomalies using a threshold, and human
interpretation of the results, which, though
useful, were not always able to reflect the
multivariate  complexity and element
relationships of many types of deposits
(Yousefi & Carranza, 2015).

Machine learning has completely changed
this landscape. Machine learning algorithms
are able to discover complex, high-
dimensional patterns in geochemical data
without making a priori assumptions about
data distributions, unlike standard statistical
techniques, = which  presume linear
relationships and require explicit
specification of the model (Zuo & Carranza,
2011). This capability is especially valuable
because geochemical data are often noisy,
compositional in nature, and spatially
correlated. Such capability is especially
useful when the underlying data,
geochemical, is very noisy, compositional,

and spatially correlated. Since the
introduction of the first neural networks in the
1990s up to the latest deep learning
architecture, the development of
computational techniques has paralleled
advances in understanding geochemical
dispersion processes and ore-forming
systems (Harris & Grunsky, 2015).

Several aspects have combined to expedite
the use of machine learning in mineral
exploration geochemistry. The growth in the
size and complexity of high-density and
multi-element analysis methods has produced
datasets of scales and dimensions never
before seen by conventional methods of
interpretation (Grunsky & de Caritat, 2020).
At the same time, the progress in computing
capabilities and the creation of available and
open-source machine learning libraries have
made advanced techniques in analysis more
accessible, making them accessible to
exploration geologists globally. Probably,
most crucially, the mounting pressure to
increase the rates of discovery within an
increasingly competitive global minerals
industry has led to the industry adopting data-
based approaches to conduct discovery,
which has proven to be more efficient in
terms of targeting (Porwal et al., 2015).
Recent studies show a methodological shift
from linear statistical models toward
ensemble learning and deep neural networks,
reflecting the need to model increasingly
complex, nonlinear geochemical signatures
Nevertheless, the introduction of machine
learning to the geochemical exploration
process has not been without problems. The
issue of model interpretability, a phenomenon
known as the closure problem (Aitchison,
1986), the so-called black box problem, is
still debatable, especially in an industry
where knowledge of geological processes is
fundamental to a plausible target generation
(Zuo et al., 2019). Sampling biases due to the
spatial clustering of known deposits and
absence of labelled training data in most
exploration scenarios result in the danger of
model generalization. Also, the
compositional properties of geochemical
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data, in which the sum of elements in a
sample is a constant, do not satisfy most
general machine learning algorithms, and
require specific preprocessing methods
(Aitchison, 1986; Pawlowsky-Glahn &
Egozcue, 2000).

Nevertheless, the future of machine learning
applications in geochemical signature
analysis is clear and shows advantages in
terms of increasing the capabilities and
increasing its usage. Despite these advances,
the existing body of research remains
fragmented across algorithm types, deposit
models, and geological settings. Few studies

provide an integrated synthesis of
preprocessing strategies, algorithm
performance comparisons, model
transferability across terrains, and the

emerging role of explainable artificial
intelligence. In particular, machine learning
applications in underexplored metallogenic
provinces—such as those in Africa—remain
underrepresented in the literature. This lack
of consolidation limits the translation of
methodological advances into practical,
globally applicable exploration strategies.
This review aims to provide a systematic and
comprehensive synthesis of machine learning
techniques applied to geochemical signature
analysis for mineral prospectivity mapping.
This review will give the most concise and
comprehensive synthesis of the current body
of knowledge, focusing on the theoretical
basis and practical applications of the
machine learning techniques in the mineral
prospectivity mapping using geochemical
data. Specifically, this review evaluates
algorithmic methodologies, compares their
performance across deposit types and
geological environments, and identifies
current methodological limitations and future
research  directions. By consolidating
dispersed knowledge and highlighting
methodological best practices, this review
provides a valuable reference for exploration
geologists, data scientists, and policy
stakeholders seeking data-driven strategies to
support  sustainable = mineral resource
discovery in the context of the global energy

transition. This introduction is followed by
five main parts of the article. Section 2
presents the principles of geochemical
signature analysis and discusses the
preprocessing issues that are specific to
geochemical data and how to deal with those.
Section 3 entails a closer analysis of machine
learning algorithms that are utilized to
analyze geochemical data, that include
supervised, unsupervised, and deep learning
algorithms alongside their benefits and
considerations to apply. Section 4 is a list of
applications and case studies in practice that
can be used in different systems of minerals
and geology. Lastly, Section 5 concludes by
summarizing research directions of the
future, key issues, and final insights into the
potential transformative aspect of machine
learning as a tool to transform the paradigm
of mineral exploration.

The flowchart shows the development of the
raw geochemical data collection to
preprocessing, feature engineering, model
training and validation, to the final generation
of a prospectivity map. Feedback loops refer
to processes of refinement. (Adapted from
Zuo et al., 2019).

Figure 1 depicts the machine learning-based
geochemical prospectivity mapping
workflow, highlighting the iterative nature of
model development and the critical role of
preprocessing prior to algorithm application.
This process is very different in terms of the
conventional linear  perspectives and
integrates feedback processes in which it is
constantly improved as new information is
shipped or geological knowledge advances.
Table 1 illustrates the main contrast between
traditional statistical techniques and machine
learning models, which explains their
growing popularity in the processing of more
and more complex data sets that are typical of
the contemporary exploration programs.

20 Geochemical Signature Analysis:
Principles and Data Preprocessing

Geochemical signatures are characteristic
distributions of element concentrations
produced by ore-forming and subsequent
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dispersion processes operating at multiple
spatial scales (Carranza, 2011). These
signatures are recorded in various sampling
media, including stream sediments, soils,
rocks, and glacial tills, each governed by
distinct  transport and  accumulation
mechanisms that must be understood for
accurate interpretation (Reimann et al.,
2005). Pathfinder elements include not only
elements geochemically associated with
mineralization, but also those indirectly

39
linked through alteration processes, co-
precipitation, weathering, or secondary

dispersion (Plant ez al., 1988). As an example,
arsenic and antimony are more likely to be
pathfinders of an orogenic gold system,
molybdenum and tellurium are common
pathfinders of porphyry copper systems, and
nickel-cobalt associations are typical of
mafic-ultramafic hosted mineralization.
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Fig. 1: Workflow diagram of the new relationship between geochemical data and machine
learning algorithms in prospectivity mapping of minerals

; Geochemical data acquisition nowadays has
significantly improved, with contemporary
analytical platforms having the ability to
measure 50 or more elements at once across
several orders of magnitude in concentration
ranges (Grunsky et al., 2014; Arohunmolase
& Samakinde 2025). High-precision and
high-throughput analysis is now available by

inductively ~ coupled  plasma  mass
spectrometry (ICP-MS), X-ray fluorescence
(XRF) and laser ablation methods and yields
large volumes of data that demand advanced
computational methods to be interpreted
meaningfully. But the complexity of this
analytical refinement has complications of its
own. Elements and analytical sessions have
different detection limits, resulting in left-
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censored data that cannot be reliably replaced
with zeros without introducing statistical bias
(Reimann et al., 2008; Samakinde et al.,
2023). Missing values are due to the
incomplete sampling coverage, sample losses
in the preparation or failure in analysis.

Outliers, which may represent either genuine
geochemical anomalies or  analytical
artefacts, must be carefully evaluated in order
to avoid both Type I error (false anomaly) and
Type II error (missed target).

Table 1: Comparison of Traditional Statistical and Machine Learning Approaches for
Geochemical Data Analysis in Mineral Exploration

Characteristic Traditional Methods Machine Learning
Methods

Data relationships  Assumes linear or simple Captures complex nonlinear
nonlinear patterns

Model specification Requires explicit statistical Self-learning from data
models patterns

Multivariate Limited to a few variables Handles high-

handling dimensional data

Anomaly detection Threshold-based, univariate  Pattern-based, multivariate

Expert input Heavy reliance on subjective Balances data-driven and
interpretation expert knowledge

Computational Low to moderate Moderate to high

demand

Interpretability High transparency Variable, sometimes opaque

Scalability Limited by analyst capacity =~ Highly scalable with data

volume

(Modified from Carranza and Laborte, 2015; Porwal and Carranza, 2015)

One of the most important but also
undervalued parts of machine learning driven
geochemical analysis is data preprocessing.
Raw geochemical datasets frequently violate
assumptions underlying many machine
learning algorithms, and hence, before
modelling, there must be a transformation
(Filzmoser et al., 2009). There are especially
thorny challenges posed by the compositional
character of geochemical data. Since the
concentrations of elements in any given
sample have to add to 100% (or unity on a
unitary scale when expressed as proportions),
the data are in a restricted space called the
simplex, and conventional arithmetic
operations and statistical tests give spurious
correlations and false interpretations of the
data, a phenomenon known as the closure
problem (Aitchison, 1986). Compositional
data analysis offers an intensive structure of

solving these problems by applying log-ratio
transformations that project compositional
data from the simplex into real Euclidean
space, where standard statistical and machine
learning techniques can be validly applied
(Pawlowsky-Glahn & Egozcue, 2006).

Many log-ratio transformation methods have
been created and each is suitable for specific
benefits based on the analytical goals. The
centered log-ratio (CLR) transformation is
the transformation that represents each
component in terms of the geometric mean of
all the components, retaining all the original
variables, but introducing singularity to the
covariance matrix (Aitchison, 1986). The
isometric transformation of log-ratio (also
known as isometric log-ratio, ILR)
transformation produces orthogonal
coordinates that avoid covariance singularity,
although individual transformed variables are
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less directly interpretable (Egozcue et al.,
2003). The additive log-ratio (ALR)
transformation identifies a component that is
used to measure others but the results depend
on the choice of the reference component. In
the case of machine learning in mineral

(a) Univariate Threshold Method

{b) Multivariate Anomaly Detection
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exploration, CLR transformations have
become popular since all element information
is preserved, although the resulting singular
covariance  structure  requires  careful
handling in certain algorithms (Reimann et
al.,2012).

(c) Fractal/Multifractal Method
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Fig. 2: Distribution patterns of geochemical data and methods of identifying anomalies

In panel (a), the element concentrations
follow an average lognormal distribution and
they are defined by the conventional
threshold-based definition of anomalies. The
multivariate anomaly detection in panel (b)
represents cases where a sample that plots out
of the confidence ellipsoids form the
potential targets. The fractal/multifractal
techniques in panel (c) show the presence of
a nesting population of anomalies. (Modified
from Zuo, 2011).

In addition to composition aspects,
normalization and standardization processes
are vital to algorithms that are sensitive to the
size of variables, such as distance-based
algorithms, such as k-nearest neighbors (k-
NN) and support vector machines (SVM)
(Raschka, 2014). Min-max scaling is used to
make the variables fall into a fixed range
(normally [ 0,1]) so that the shape of the
original distribution is retained and scale
differences are removed. Z-score
standardization varies variables around a
mean of zero with unit variance which is less

influenced by scale differences but may still
be sensitive to extreme outliers but not
preserving distribution shape. Robust scaling
methods based on the median and
interquartile range instead of the mean and
standard deviation can be more resistant to
extreme values, which is important since
geochemical data tend to be demonstrated by
outliers (Reimann and Filzmoser, 2000).

Dimensionality reduction methods address
the ‘curse of dimensionality,” a phenomenon
in which model performance degrades when
the number of variables approaches or
exceeds the number of observations
(Bellman, 1961). Principal Component
Analysis (PCA) converts correlated variables
into orthogonal but ranked principal
components based on the variation which
explains a higher proportion of the variance,
facilitating visualization and computational
efficiency while retaining most of the
dataset’s  variance  (Jolliffe,  2002).
Nevertheless, the assumption of linear
relationships of PCA restricts its usability in



Communication in Physical Sciences, 2026, 13(1): 36-59 42

complex geochemical systems. The ICA
attempts to find statistically independent
sources that combine to form the observed
data, making it effective for separating
overlapping geochemical processes that exist
at the same geographic location yet are
independent of each other (Hyvarinen & Oja,
2000). Autoencoders is a neural network
dimensionality reduction method which
learns nonlinear latent representations using
an encoding-decoding architecture and can
capture nonlinear geochemical relationships
not identifiable through linear techniques
(Hinton & Salakhutdinov, 2006).

Fig. 2 illustrates the use of different
geochemical anomaly identification
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techniques, which are based on either
univariate threshold processes (such as
single-element-based) or  multivariate
geochemical elements (using element
associations). The weakness of simple
threshold methods is seen in situations where
mineralization occurs with the form of subtle
element ratios changes, and not an increase in
absolute concentrations. As shown in Fig. 3,
the varying preprocessing strategies have an
influence on the data structure and,
accordingly, on the model performance, with
an emphasis on the fact that the preprocessing
decisions are modeling decisions that have
physical effects on the final results.
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Fig. 3: Comparison of preprocessing techniques on geochemical data. Image (a) Scatter
plots of the raw data of closure effects and spurious correlations. (b) CLR-transformed
data that shows the elimination of compositional artefacts. (¢) Sample in PCA
dimensionality reduced feature space with a clustering of samples. (d) Receiver Operating
Characteristic (ROC) curves of performance of models with various preprocessing
strategies (Based on methodologies from Fizmoser ez al., 2009; Grunsky and de Caritat,
2020).

The reference frameworks of the study in
Tables 2 and 3 help us comprehend the
association of the elements that are particular

to the deposit and judge the preprocessing
methodologies. The concept of pathfinder
can be very important in the examples where
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direct detection of ore elements is limited by
depth of cover, nugget effects, or analysis.
The  acknowledgement that relevant
preprocessing will require the data properties,
as well as the demands of the selected
algorithm, will highlight the iterative and
contextual nature of successful geochemical
modeling.

3.0 Machine Learning Algorithms for
Geochemical Analysis

Training by supervised learning algorithms
are algorithms used to learn associations
between input variables (geochemical
variables) and known outputs (mineralized

versus barren). Applications that have known
deposits of training data dominate supervised
learning algorithms. The unsupervised ones,
which determine patterns without any
reference to labeled results, are useful in
exploratory analysis and in those cases when
training data are limited or unavailable. A
more advanced subtype of neural networks,
deep learning architectures, provides the
ability to learn hierarchical feature
representations, but requires large amounts of
computational resources and training data
(LeCun et al., 2015).

Table 2: Typical pathfinder elements of various deposit types, which display the main ore
elements, and pathfinder elements which can have stronger or more comprehensive

dispersion halo

Deposit Type Primary Elements Pathfinder Elements
Orogenic gold Au As, Sb, W, Bi, Te, Ag
Porphyry copper Cu, Mo Re, Se, Te, Bi, Au, Ag
VMS Zn, Cu, Pb As, Sb, Ba, Mn, Co, Se
10CG Fe, Cu, Au REE, U, P, F, Co, Bi
Ni-Cu sulfide Ni, Cu Cr, Co, PGE, Te, Se

Carlin-type gold Au
Epithermal Au-Ag Au, Ag

As, Sb, Hg, Tl, Ag
As, Sb, Hg, Se, Te, Mn

(Compiled by Cameron et al., 2004; Coker et al., 2009).

Random Forest has become, perhaps, the
most extensively used algorithm to map
geochemical prospectivity because it is
robust, interpretable, and highly functioning
in a wide range of geologic settings
(Rodriguez-Galiano et al., 2015). In this
ensemble approach, there are several decision
trees prepared throughout the training
process; each tree is prepared on a bootstrap
sample of data, and random subsets of
features are considered at each split
(Breiman, 2001). Final predictions combine
the predictions of individual trees by majority
vote (classification) or average (regression).
Random Forest is especially suitable to
geochemical data due to several of its
characteristics. The algorithm operates on
high-dimensional spaces of features without
prior dimensionality reduction, copes with
missing data values, and returns quantitative
abilities of variable importance, which can be

used to interpret geology (Chen et al., 2016).
The ensemble character renders the
overfitting resistance, which has always been
an issue when the size of the sample does not
exceed the number of features.

Feature importance metrics derived from
Random Forest, typically measured by mean
decrease in impurity or permutation
importance reveal which elements or element
ratios most strongly discriminate mineralized
from barren samples, offering insights into
mineralizing processes (Sun et al., 2010).
The Support Vector Machines (SVM) method
is based on a completely different paradigm,
and aims at finding optimal hyperplanes that
maximise the distance between classes in
high-dimensional feature space (Vapnik,
1995). It is through the kernel trick that SVMs
can implicitly transform data to spaces of
even greater dimensions where nonlinear
decision boundaries have been converted into



Communication in Physical Sciences, 2026, 13(1): 36-59 44

linear forms without any explicit calculation
of the transformation (Boser ef al., 1992).

The most popular kernel functions are linear,
polynomial, radial basis function (RBF), and
sigmoid, each having varying assumptions
regarding the geometry of decision

boundaries. SVMs have been proven to be
effective in  geochemical prospectivity
mapping and are especially well used in
situations where there is a sharp distinction
between mineralized and non-mineralized
populations (Zuo & Carranza, 2011).

3: Summary on data preprocessing methods and how these are used in the analysis of
geochemical data, along with the merits and demerits of each method used

Technique Purpose Advantages Limitations

CLR Address compositional Preserves all Singular

transformation  closure variables covariance

Min-max Normalize to [0,1] range Simple, Sensitive to

scaling interpretable outliers

Z-score Center and scale data Widely Assumes

standardization applicable normality

Robust scaling Outlier-resistant Resistant to May underweight
normalization extremes anomalies

Log Reduce skewness Handles Fails with zeros

transformation lognormal data

PCA Linear dimensionality Variance Assumes
reduction preserving linearity

ICA Statistical independence Separates mixed =~ Computationally

sources intensive

(Synthesized based on Reimann et al., 2008; Filzmoser et al., 2009)

The theoretical basis of the method of
statistical learning theory is able to offer
performance  guarantees, whereas the
maximum margin principle encourages the
generalization to unseen data. Nevertheless,
SVMs have been shown to be sensitive to
parameter choice, especially the
regularization parameter C and parameters of
kernels, so they need to be optimized through
cross-validation (Hastie et al., 2009). The
computational cost rises negatively with
sample size, so without subsampling
techniques can be used with very large
geochemical datasetsChemical.

Artificial Neural Networks (ANNs) are
modeled after the biological neural systems
and they are composed of interconnected
nodes arranged on layers and which process
the inputs in a sequence of weighted sums and

nonlinear activation functions (Haykin,
1998). The most common architecture of the
tabular geochemical data is the multilayer
perceptrons (MLPs), which have one or
multiple hidden layers between the input and
output layers and the backpropagation
algorithms that modify the connection
weights to reduce the prediction error on the
training data (Rumelhart et al., 1986). The
universal approximation property of neural
networks, which is theoretically the capacity
to estimate any continuous function given
enough hidden units, renders neural networks
powerful ability to discover a complex
geochemical relationship (Hornik et al.,
1989). The success of neural networks was
demonstrated in the study of Brown et al.
(2000) who selected varied exploration data
to map gold prospectivity in Nova Scotia, the
neural network demonstrated better results
than the traditional data mining techniques.
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However, neural networks have
implementation problems such as overfitting
on small training sets, initial weight settings,
and interpretation issues, in comparison to
more transparent algorithms, such as decision
trees (Hastie et al., 2009)

Gradient Boosting algorithms, such as
XGBoost (Chen & Guestrin, 2016) and
LightGBM (Ke et al., 2017) are state-of-the-
art ensemble methods, in which weak learners
(usually shallow decision trees) are
constructed sequentially, with each new
learner learning to pay attention to the errors
made by its predecessors. The error
correction nature of this iteration process can
perform better as a predictor than the random
forest, but is more prone to overfitting unless
regularized (Friedman, 2001). The XGBoost
has a high level of regularization, sparse data
control, and inherent cross-validation, and as
a result, it becomes very popular in
geochemical model applications, where the
greatest importance is paid to maximizing
predictive accuracy (Xiong et al., 2020). The
gain, cover or frequency of splits derived as
the feature importance metrics of the
algorithm are interpretive features similar to
those of the Random Forest.

Unsupervised  learning  techniques in
geochemical analysis are used with different
aims, which are mainly aimed at finding
natural groupings in data or dimensional
reduction to be visualized and further
modeled. K-means clustering divides samples
into k clusters via repeated reassigning
samples to their closest centroid and re-
calculating new centroid till a convergence is
achieved (MacQueen, 1967). Hierarchical
clustering constructs cluster hierarchies by
agglomerating (bottom-up) or divisively (top-
down) hierarchies and dendrograms display
the relationship between various scales
(Kaufman & Rousseeuw, 1990). The Self-
Organizing Maps (SOM) maps high-
dimensional data onto low-dimensional grids,
and maintains the topological relationships
between the data, when visualizing
geochemical domains and discovering
anomalous samples groupings (Kohonen,

2001). Templ et al. (2008) used SOMs on
regional geochemistry data to trace
geochemical provinces and recognize
anthropogenic and lithogenic sources of
elements, showing that the method can be
useful in exploratory geochemical studies.

In geoscience applications, deep learning
architectures are a more recent application,
but their use in geochemical prospectivity
mapping is still in its early developmental
stages in comparison to other applications
(Bergen et al., 2019). Convolutional Neural
Networks (CNNs), which were initially
created to classify images, can be used to
execute gridded geochemical maps as images
in an attempt to learn hierarchical spatial
behavior as determined by convolutional and
pooling layers (LeCun et al., 1989). This
approach proves particularly promising when
geochemical data exhibit spatial patterns such
as zoning around deposits—that CNNs excel
at recognizing (Zuo and Xu, 2023).
Autoencoders, comprising encoder and
decoder networks that learn compressed
representations of input data, enable
nonlinear dimensionality reduction and
anomaly detection by identifying samples
that the network struggles to reconstruct
(Vincent et al., 2010). Recurrent Neural
Networks (RNNs) and their variants like
Long Short-Term Memory (LSTM) networks
handle sequential data, with potential
applications in analyzing drill hole
geochemistry where depth-ordered sequences
contain information about stratigraphic or
alteration zoning (Hochreiter &
Schmidhuber, 1997).

Ensemble and hybrid models combine
predictions from multiple algorithms to
leverage their complementary strengths while
mitigating individual weaknesses (Dietterich,
2000). Stacking approaches train a meta-
learner on the predictions of base models,
learning optimal ways to combine different
perspectives on the data (Wolpert, 1992).
Weighted voting schemes  aggregate
predictions with weights reflecting each
model’s estimated reliability. Such ensemble
strategies have demonstrated improved
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robustness and generalization in geochemical

prospectivity applications where no single
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2010).
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Fig. 4: Architectural diagrams of key machine learning algorithms used in geochemical
analysis. (a) Random Forest ensemble showing multiple decision trees with bootstrap
sampling. (b) Support Vector Machine illustrating maximum margin hyperplane and
support vectors in feature space. (c) Artificial Neural Network architecture with input,
hidden, and output layers. (d) Convolutional Neural Network structure for processing
spatial geochemical data. (Conceptual diagrams based on LeCun et al., 2015; Chen and

Guestrin, 2016).

The choice of algorithm is a critical modeling
decision influenced by dataset characteristics,
computational resources, interpretability
requirements, and performance objectives.
The smaller the dataset, the simpler the model
is preferred to prevent overfitting, whereas
the larger the dataset, the more the complexity
of the architecture can be used to its full
potential. The presence or absence of spatial
structure also informs algorithm selection

where spatial relationships are explicitly
modelled or where samples are treated
separately. The level of interpretability
required depends on the stage of the project-
some early-stage regional reconnaissance
might require knowing what geochemical

characteristics are driving predictions
whereas advanced-stage targeting may
prioritize  predictive  accuracy ~ over
interpretability.
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Fig. 5: Performance comparison of different machine learning algorithms on benchmark
geochemical datasets. (a) ROC curves showing true positive rate versus false positive rate
for multiple algorithms. (b) Precision-recall curves highlighting performance on
imbalanced datasets. (¢) Box plot of cross-validation scores of accuracy that displays
differences in the stability of the models. (d) Confusion matrices of best performing
algorithms (Rodriguez-Galiano et al., 2015; Xiong et al., 2020).

Performance metrics must align with
exploration objectives and account for the
strong class imbalance typical of mineral
prospectivity datasets (He and Garcia, 2009).
Accuracy alone can be misleading in highly
imbalanced datasets, where a model
predicting all samples as barren may achieve
high accuracy yet fail to identify any
mineralized targets. AUC-ROC is a method
used to measure discrimination performance
on the basis of classification threshold, but it
can be excessively optimistic on skewed
datasets (Fawcett, 2006). Precision (positive

predictive value) and recall (sensitivity) offer
relative insights, with precision highlighting
the percentage of the predicted targets that are
mineralized whereas recall highlights the
percentage of the real mineralized targets
correctly identified. The Fl-score is a
combination of precision and recall by their
harmonic mean. To balance unequal
geochemical data, precision-recall curves and
the area under the curve (AUC-PR) provide
more informative performance evaluation
than ROC curves in highly imbalanced
scenarios (Davis & Goadrich, 2006).

Table 4: Comparative Analysis of Machine Learning Algorithms Used in Geochemical

Prospectivity Mapping.
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Random Robust, handles high  Memory intensive = Moderate
Forest dimensions,
interpretable
SVM Strong theoretical Parameter sensitive, Moderate-High
foundation, effective in  scales poorly
high dimensions
Neural Universal Requires large  High
Networks approximation, flexible data, black box
XGBoost Excellent performance, Overfitting risk, Moderate
regularization many
hyperparameters
K-means Simple, fast Assumes spherical ~ Low
clusters, requires k
SOM Topology preservation, Parameter selection, Moderate
visualization computational
CNN Captures spatial Requires gridded High
patterns data, many
parameters

(Synthesized from Hastie ef al., 2009; Rodriguez-Galan et al., 2015)

Table 5: Case studies showing algorithm performance metrics across different deposit

types and geological settings

Study Deposit Algorithm AUC- Precision Recall F1
Area Type ROC

Nova OrogenicAu  ANN 0.88 0.76 0.82 0.79
Scotia

Gejiu, Sn- SVM 0.91 0.83 0.79 0.81
China polymetallic

Churchill, VMS Random 0.93 0.87 0.84 0.85
Canada Forest

Iran Porphyry Cu ~ XGBoost 0.94 0.89 0.87 0.88
Western Ni-Cu Ensemble 0.92 0.85 0.86 0.85
Australia

(Compiled from Brown et al., 2000; Sun et al., 2010; Chen et al., 2016)

Fig. 4 gives visual illustrations of the most
important algorithmic architectures, and it is
easy to comprehend how they work. Fig. 5
illustrates the performance of the various
algorithms under the various metrics; as such,
no particular algorithm performs best in all
the performance dimensions. Decision-
support frameworks that can be used to select
the algorithm depending on the traits of the
problem and document acquired performance

in the real-world applications are provided in
Tables 4 and 5, respectively.

4.0 Applications and Case Studies in
Mineral Prospectivity Mapping

The practical value of machine learning—
driven geochemical analysis is demonstrated
by numerous successful applications across
diverse mineral systems and geological
environments. The most widespread use is
regional-scale prospectivity mapping, in
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which machine learning models combine
multi-element geochemical data with other
exploration layers to produce continuous
probability surfaces highlighting areas
prioritized for follow-up investigation
(Porwal & Carranza, 2015). Geochemical
surveys at this scale generally use low-
density sampling (a single sample per a few
square kilometers) over large areas, with
stream-sediment sampling being particularly
cost-effective ~ for  reconnaissance in
temperate regions with well-developed
drainage systems (Carranza, 2011).

Orogenic gold systems are among the most
studied targets in machine learning—based
prospectivity mapping due to their strong
structural controls and alteration signatures
that translate well into geochemical patterns.
Harris and Grunsky (2015) used Regional
geochemical data (Abitibi greenstone belt,
Ontario, Canada) in the form of multi-
element signatures and showed that it was
possible to effectively differentiate between
gold-bearing and barren areas. Their analysis
showed that arsenic, antimony, and tungsten,
which were considered traditional gold
pathfinders, had high variable importance,
while rare earth elements revealed previously
unrecognized associations with regional
alteration processes, links between elements
and regional alteration behaviors. The
resulting prospectivity map was effective in
not only identifying known deposits but also
highlighted underexplored areas with similar
geochemical characteristics, some of which
were subsequently staked and explored
Porphyry copper systems are particularly
well suited to geochemical prospectivity
mapping because of their large hydrothermal
alteration footprints and extensive dispersion
halos (Cooke et al., 2014). Xiong et al. (2020)
used XGBoost to combine stream sediment
geochemistry and geological/geophysical
data on porphyry copper prospectivity in the
Kerman belt of Iran, with an AUC-ROC of
0.94 and were able to predict several known
deposits in a hold-out test subset. Feature
importance analysis indicated that copper,
molybdenum, and gold were primary

discriminators, while bismuth, tellurium, and
rhenium also contributed significantly,
reflecting deep magmatic—hydrothermal
processes. The model defined a number of
high-prospectivity areas which lacked
previously documented mineralization and
therefore represented promising drill targets
later confirmed to host significant Cu—Au
anomalies.

The Volcanogenic Massive Sulfide (VMS)
deposits also pose specific challenges for
geochemical prospectivity mapping because
the deposits tend to be small, complex in
structure, and have a high susceptibility to
dismemberment by  syn-deformational
processes (Franklin et al., 2005). Chen et al.
(2016) addressed these challenges by
applying Random Forest to lake-sediment
geochemistry in the glaciated Churchill
Province of Canada, which is highly glaciated
and in which there is little direct bedrock
exposure. They wused glacial transport
modeling to introduce the effect of ice-flow
direction on the patterns of element
dispersion, which significantly enhanced the
performance of the models. Zinc, copper, and
lead were the strongest predictors, while
cadmium, silver, and selenium provided
additional discriminatory power and high
traces of cadmium, silver, and selenium
further features gave more discrimination.
The experiment was able to forecast sites of
the previously documented VMS deposits
and identify many untested targets with
comparable multi-elements.

Iron Oxide Copper—Gold (IOCG) systems
exemplify deposit types where machine
learning is especially valuable due to their
multi-stage formation and complex alteration
assemblages because of their multi-stage
formation ~ with  numerous  alteration
assemblages and element combinations that
cannot be analyzed by simple univariate
methods (Williams ef al., 2005). Abedi ef al.
(2012) employed fuzzy inference systems
and Support Vector Machines to combine
geochemical, geological, and geophysical
information to map the prospectivity of
IOCG in the Bafq district of Iran,
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demonstrating the effectiveness of integrated
data modeling over single-layer approaches.
Their models embraced the unusual
enrichments of the rare elements such as
phosphorus, uranium and the rare earth
elements and the presence of complicated
spatial ~ relationships  among  various
geological components of the IOCG systems
(Arohunmolase et al., 2024

African case studies are particularly
important given the continent’s
underexplored mineral potential and the role
of mineral development in economic growth.
(Goetz & Hitzman, 2013) used statistical and
machine learning techniques to the
geochemical and geophysical data of the
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Central African copper belt, which was able
to differentiate between copper cobalt
mineralized and barren trends.

Their research revealed that machine learning
solutions could operate successfully even
when data is sparse and heterogeneous, as is
the case with frontier terrains. Recent
applications in West African greenstone belts
have employed Random Forest and neural
networks to identify gold targets using
regional soil and stream  sediment
geochemistry, achieving notable success in
predicting known deposits while highlighting
previously unrecognized prospective ground
(Nykanen & Salmirinne, 2007).
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100

a0

@
3

Narthing (km)
Prospectivity (0-1)

B
S

20

a0 60
Easting (km}

100

{d) 10CG - Bafq District, Iran

Known I0CG Depasits

o
o
Prospectivity (0-1)

Northing (km)

40 60
Easting (km)

B0 100

Fig/ 6: Prospectivity maps estimated in terms of machine learning-based geochemical
analysis of various types of deposits. (a) Probability surface of known deposits in orogenic
gold prospectivity in Abitibi belt. (b) Iran Kerman belt porphyry copper-gold
prospectivity. (¢) VMS prospectivity Churchill Province illustrating the effects of glacial
dispersal. (d) IOCG prospectivity with multi-element complex signatures. The next stage
involves choosing the groundbreaking ideas that can be built upon to enhance the
situation (Adapted from Chen et al., 2011; Xiong et al., 2020)
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The combination of geochemical data with
other streams of exploration-related
information is the current best practice and is

always significantly better than
geochemistry-only methods (Porwal &
Carranza, 2015).  Lithological  hosts,

structural controls and alteration assemblages
that bind mineralization Geological data give
the necessary framework regarding these
parameters. The geophysical information
(especially magnetics and gravity)

demonstrates the underground structure and
physical property differences that involve ore

deposits and their rocks of origin (Samakinde
& Arohunmolase, 2025). The remote sensing

data capture surface manifestations of
alteration mineralogy by the use of
multispectral and hyperspectral imaging

(Pour & Hashim, 2012). Machine learning
algorithms are wuseful at finding deep,
nonlinear associations between these varied
data types that cannot be viewed by humans
or any simple overlay techniques.

Although difficult to quantify precisely,
improved targeting efficiency from machine
learning—based prospectivity mapping can
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have a substantial economic impact. Even
small increases in drill-hole success rates can
yield major cost savings, as drilling is
typically the largest single exploration
expense. Moreover, the more effective
targeting increases the speed of discovery and
lessens  the  duration between the
identification of prospects and the description
of resources. A few mining firms have stated
that machine learning methodologies allowed
discovering deposits neglected by traditional
technologies, which confirmed the value
proposition of the technology (Porwal et al.,
2015).

There are still implementation issues despite
the reported success. The quantity and
quality of training data fundamentally control
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model reliability. This reflects the well-
known principle of ‘garbage in, garbage out.
Because known deposits tend to cluster in
well-explored and accessible regions, training
datasets may not represent the full diversity
of geological environments (Yousefi &
Carranza, 2015). There is always the
temptation to overtrain models to training
data, and attain high retrospective
performance at the expense of low
generalization. Geological expertise is always
essential during the modeling process,
including feature engineering and model
validation, and the most successful ones have
been those where data scientists and

exploration geologists work closely (Zuo et
al., 2019).
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Fig. 8: Results of the validation between machine learning predictions and previously
known mineral occurrences. (a) Success-rate curves in which the cumulative percentage
of known deposits trapped by the top-ranked prospectivity areas are shown. (b)
Distribution of actual positives, false positives and false negatives spatially superimposes
on prospectivity map. (¢) Model efficiency prediction-area plots. (d) Temporal validation
of model performance on deposits uncovered during the model training. (Validation
methods of Yousefi and Carranza, 2015; Carranza and Laborte, 2015)

The three figures (Fig 6, Fig 7 and Fig 8)
represent the practical implementation of
machine learning to geochemical
prospectivity mapping, separately by deposit-
type specific models, and more broadly by a

multi-source strategy, and finally by a high-
fidelity validation process that develops trust
in predictions made by models. Table 6 and
Table 7 record both the geographic scope of
applications that have been successful and the
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quantitative performance benefits
advanced data integration techniques.

using

Table 6: Summary of international case studies by deposit type, machine learning

algorithm, and results

Location Deposit ML Method Sample Key Outcomes
Type Media
Nova Scotia, Orogenic gold Neural Till, soil Superior to
Canada networks conventional
methods
Abitibi, Orogenic gold Random Till Identified new
Canada Forest prospective areas
Churchill, VMS Random Lake Successful
Canada Forest sediment glacial transport
modeling
Kerman, Iran ~ Porphyry Cu-  XGBoost Stream AUC-ROC 0.94,
Au sediment new targets
Bafq, Iran 10CG SVM, Fuzzy Soil, rock Captured
complex REE
signatures
Central Sediment Multiple Soil Effective in
Africa hosted Cu methods sparse data
conditions
Western Ni-Cu sulfide  Ensemble Soil Improved
Australia ultramafic
discrimination

(Comprised from Brown et al, 2000; Abedi ef al, 2012; Harris and Grunsky, 2015)

5.0 Future Directions, Challenges, and
Conclusions

Future developments in machine learning for
geochemical signature analysis point toward
increasingly sophisticated and integrated
approaches. Explainable artificial
intelligence (XAI) is an important frontier
which tackles the interpretability issues that
have limited more extensive use of complex
models in an industry where an interpretation
of geological processes is the foundation of
exploration credibility. SHAP (Shapley
Additive exPlanations) values and LIME
(Local Interpretable Model-agnostic
Explanations) provide frameworks for
decomposing individual predictions into

feature contributions, enabling geological
validation of model reasoning (Lundberg and
Lee, 2017). Transfer learning, which refers to
the practice of applying models that have
been trained on a different dataset to novel yet
related problems, is particularly promising
for data-sparse regions, where knowledge
from well-studied terrains can guide targeting
in frontier areas (Pan & Yang, 2010). Genetic
algorithms or reinforcement learning can find

out the complicated  ratios and
transformations of elements that are not
intuitive, which could reveal new
geochemical  signatures  (Kanter &

Veeramachaneni, 2015).
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Table 7: Comparative study of the single-source and integrated multi-source strategies
with better performance due to data fusion (Based on Porwal and Carranza, 2015;

Yousefi and Carranza, 2015)

Approach Data Layers AUC- Precision  Recall Improvement
ROC

Geochemistry Multi-element 0.82 0.68 0.71 Baseline

only

Geophysics only Magnetics, 0.79 0.64 0.69 N/A
gravity

Geology only Lithology, 0.76 0.61 0.65 N/A
structure

Geochem + Combined 0.88 0.79 0.82 +7% AUC

Geophysics

All sources Geochem, 0.93 0.86 0.87 +13%

integrated geophys, geol, AUC
RS

Machine learning integrated with the  suffer from data sparsity, especially in the

platform of big data and cloud computing
infrastructure leads to the analysis of
continental- to global-scale compilations of
geochemicals and supports comparative
studies of metallogenesis and the
identification of new potential terrains with
the help of analog recognition (Grunsky and
de Caritat, 2020). Deep learning models are
constantly being developed, and graph neural
networks are promising as models of spatially
organized geological data and attention maps
that allow models to concentrate on the most
valuable aspects or spatial areas (Zhou et al.,
2020). Physics-informed neural networks,
where  geological and  geochemical
knowledge of processes is embedded in the
model structures, provide avenues of
integrating  data-driven  learning  and
mechanistic knowledge, which may enhance
performance and interpretability. But still,
there are great obstacles. The model
interpretability issue is open even with the
XAI development and even with the current
complex ensemble and deep learning models
are essentially opaque with respect to their
features that are alarming to exploration
geologists who are trained to think in a
mechanistic manner about the ore-forming
processes. Many exploration applications

case of rare deposit types or poorly studied
areas, which restricts the amount of training
data to use in supervised learning and
introduces sampling biases that affect
generalization. The problem of class
imbalance, which is infinitely more barren
than mineralized samples, can only be
addressed with advanced methods, such as
SMOTE (Synthetic Minority Over-sampling
Technique) or cost-sensitive learning, but no

solutions have been found so far
Geochemical data exhibit spatial
autocorrelation, which breaks the

assumptions of independence on the basis of
most statistical tests and cross-validation
schemata, and this requires spatially-aware
validation methods that are more realistic in
their depiction of model performance on truly
unseen regions. The geochemical information
1s compositional in nature and needs
preprocessing  strategies ~ that = most
practitioners are still not conversant with,
which presents an obstacle to effective
implementation. The technical issues of data
harmonization and fusion strategies are
associated with the integration of different
spatial resolutions of disparate data, their
coverage areas, and quality. Inquiries as to the
quantification of model uncertainty that is,
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what the model predicts and how sure it is of
that prediction, have been poorly tackled in
the wvast majority of applications. The
calculation power of advanced algorithms
can also surpass the resources of junior
exploration firms or geological surveys in
emergent countries, and has the potential to
increase the technology gap in the global
exploration capacities. In the future, some
research priorities can be identified. Building
domain-specific machine learning libraries
that are specific to geochemical data would
reduce entry barriers and to model-best
practices in preprocessing and modeling. By
developing  benchmark  data  using
standardized formats and quality
measurements, it would be possible to
compare algorithms in a systematic manner
and do reproducible research. The study of
hybrid solutions that integrate process-based
geochemistry models with data-driven
learning might take advantage of the
advantages of the two paradigms. It would be
more valuable to explore the idea of continual
learning models which will update models as
new data gets added, since exploration
programs are iterative. The creation of
responsible machine learning guidelines in
exploration settings, which would handle the
problem  of  validation,  uncertainty
quantification and suitable use cases would
establish trust among the practitioners and
regulators. Educating the forthcoming
generation of exploration geoscientists in not
only the classic understanding of geology, but
also the recent computer technology will also
be indispensable in order to take the fullest
advantage of the technology.

Geochemical signature analysis using
machine learning has developed into a reality
of operation in mineral exploration over the
last 20 years, and its use has been shown to
provide benefits in targeting efficiency in a
wide range of deposit types and geologic
environments. The technology is good at
identifying multivariate, complex patterns on
high-dimensional geochemical samples that
are beyond human cognition to identify, and
quantification of uncertainty as well as

systematic scoring of uncertainty in a region-
wide basis. Combination with
complementary exploration data streams is
multiplicative, and multi-source models are
always better than single-layer methods.
However, technology cannot substitute the
geological sense, and the most effective ones
are those with close co-operation of domain
experts and data scientists in the modeling
process. With the development of more
advanced algorithms and larger and more
complex datasets, machine learning will be
an essential part of mineral exploration in the
future, which may alter the way people in the
industry operate as much as earlier
technological revolutions such as geophysics,
remote sensing, and portable XRF. Future
progress depends on addressing
interpretability, generalization, and data
integration challenges while maintaining the
ultimate goal of discovering mineral
resources in an environmentally and socially
responsible manner.
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