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Abstract: Automated parking space detection 

is a crucial application of computer vision in 

intelligent transportation systems. In this study, 

we developed a Fast R-CNN-based model for 

classifying and localizing parking spaces into 

empty and occupied categories. The model 

architecture consists of a pre-trained CNN 

backbone (ResNet50) for feature extraction, a 

Region Proposal Network (RPN) for 

generating potential bounding boxes, and 

Region-of-Interest (RoI) pooling for feature 

refinement. The classification head utilizes a 

softmax activation function with cross-entropy 

loss, while the bounding box coordinates are 

refined using smooth L1 loss. To facilitate 

training, we employed Roboflow for dataset 

annotation, creating ground truth bounding 

boxes for parking spaces. The model was fine-

tuned using transfer learning, leveraging 

knowledge from the COCO dataset. Training 

involved hyperparameter optimization, 

including learning rate scheduling and weight 

decay, to enhance convergence. Model 

selection was based on validation loss and 

accuracy to ensure generalization to unseen 

data. The model was deployed using Gradio, 

allowing real-time parking space detection 

from uploaded images. Despite achieving a 

final loss of 0.8280, the model exhibited some 

background noise distortions, impacting 

detection accuracy. To address this limitation, 

we explored a lightweight alternative, 

MiniFasterRCNN, optimized for efficiency with 

a simpler architecture. The MiniFasterRCNN 

was trained on a three-class dataset (empty, 

occupied, background), achieving a validation 

accuracy of 77.78%. However, attempts to 

achieve 100% accuracy proved inefficient, 

highlighting the need for further improvements, 

such as segmentation techniques (Masked R-

CNN). This research demonstrates the 

feasibility of Fast R-CNN-based models for 

parking space detection while emphasizing the 

importance of architectural optimizations and 

hyperparameter tuning for improved accuracy 

and robustness in real-world applications. 
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1.0 Introduction 

The rapid urbanization and continuous rise in 

vehicle ownership have contributed to 

increasing traffic congestion and parking 

challenges in metropolitan areas (Shoup, 

2017). Efficient parking management has 

become a crucial component of urban planning, 

particularly in institutions such as universities, 

where a high density of vehicles requires 

strategic space allocation (Chou & Lin, 2019). 

As universities serve as hubs for students, 

faculty, and visitors, managing available 

parking spaces efficiently can significantly 

impact accessibility and convenience. 

Traditional parking management approaches, 

such as manual monitoring and ticketing 

systems, are often inefficient, labor-intensive, 

and prone to human error (Caicedo et al., 

2012). Moreover, these systems contribute to 

unnecessary vehicular movement as drivers 
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search for available parking spots, leading to 

increased fuel consumption, air pollution, and 

driver frustration (Geng & Cassandras, 2013). 

To mitigate these issues, automated parking 

space detection systems leveraging artificial 

intelligence (AI) and computer vision have 

emerged as a promising solution (Amato et al., 

2017). 

Recent advancements in deep learning, 

particularly convolutional neural networks 

(CNNs), have significantly improved the 

accuracy and efficiency of object detection 

tasks, including parking occupancy detection 

(Zhou et al., 2019). CNN-based models, such 

as Fast Region-based Convolutional Neural 

Networks (Fast R-CNN), provide robust 

solutions for real-time image-based parking 

space classification (Ren et al., 2015). By 

integrating AI-driven image analysis, parking 

detection systems can provide real-time 

updates on occupancy status, reducing the time 

spent searching for available spots and 

improving overall urban mobility (Ye et al., 

2020). 

This study aims to develop a vehicle parking 

space detection system using Fast R-CNN 

trained on the Common Objects in Context 

(COCO) dataset. By analyzing image data 

collected from parking lots at the University of 

New Haven, the proposed system seeks to 

enhance real-time parking monitoring, reduce 

traffic congestion, and contribute to more 

efficient parking space utilization. The findings 

from this research can be instrumental in 

guiding the development of smart parking 

systems and urban mobility strategies. 

Several studies have delved into the realm of 

parking space detection, each offering unique 

insights and methodologies. Notably, the work 

of Lin et al. (2014) introduced the Common 

Objects in Context (COCO) dataset, a 

comprehensive benchmark for object detection 

tasks that has significantly contributed to the 

development and evaluation of models like 

Fast R-CNN (Ren et al., 2015). The COCO 

dataset encompasses a diverse range of object 

categories, including those relevant to our 

project, such as cars and parking spaces, 

making it an essential resource for training 

deep learning models in automated parking 

detection. 

Deep learning techniques have been widely 

adopted for parking space detection due to their 

robustness in handling complex visual patterns. 

Zhang et al. (2018) demonstrated the efficacy 

of Faster R-CNN in detecting vacant and 

occupied parking spaces with high precision, 

showcasing its applicability in real-world 

scenarios. Similarly, Amato et al. (2017) 

explored a decentralized approach to parking 

lot occupancy detection using convolutional 

neural networks (CNNs), highlighting the 

scalability of AI-driven methods. The 

integration of real-time object detection 

models, such as You Only Look Once (YOLO) 

(Redmon et al., 2016) and Single Shot 

MultiBox Detector (SSD) (Liu et al., 2016), has 

further advanced the field by enabling faster 

and more efficient parking monitoring systems. 

Furthermore, hybrid approaches combining 

deep learning with IoT-based solutions have 

shown promise in enhancing detection 

accuracy. Chou and Lin (2019) developed a 

smart parking system integrating deep learning 

and IoT sensors, allowing for real-time updates 

and predictive analytics. Similarly, Ye et al. 

(2020) applied surveillance camera-based deep 

learning techniques to improve parking 

occupancy detection under varying lighting 

and environmental conditions. 

By drawing inspiration from these studies, our 

research aims to optimize parking space 

detection in a university setting, leveraging the 

strengths of deep learning methodologies while 

addressing challenges such as occlusions, 

environmental variability, and real-time 

processing constraints. The implementation of 

Fast R-CNN on COCO-trained models will 

enable a scalable and adaptable solution for 

improving parking efficiency on campus. 
 

2.0 Data Processing 

2.1 Data Collection 
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To develop a robust and accurate parking space 

detection model, we curated a dataset 

consisting of 200 high-resolution images of 

parking lots within the University of New 

Haven environs. These images were captured 

at various times of the day and under diverse 

weather conditions to ensure variability in 

lighting, shadows, and environmental factors. 

To mitigate potential biases and enhance the 

generalizability of our model, we maintained a 

balanced dataset composition, with 100 images 

depicting empty parking lots and the remaining 

100 showcasing occupied parking spaces. 

To improve the quality and representativeness 

of the dataset, images were sourced from 

multiple angles and perspectives, including 

aerial views, ground-level shots, and different 

vantage points commonly used in surveillance 

and monitoring systems. This approach aimed 

to simulate real-world parking scenarios, 

capturing challenges such as occlusions, 

varying vehicle sizes, and environmental noise. 

Additionally, images were collected across 

different days to account for temporal 

variations in parking patterns. 

For image acquisition, we utilized high-

resolution cameras with fixed focal lengths to 

ensure consistency in image clarity and 

resolution. Furthermore, we incorporated 

images from publicly available datasets, such 

as the PKLot dataset (De Almeida et al., 2015), 

to enhance the dataset's diversity and allow for 

cross-validation against existing benchmarks in 

the field. 

The dataset underwent a thorough pre-

processing stage to remove low-quality images, 

such as those affected by excessive glare, 

blurriness, or obstructions. Image 

augmentation techniques, including contrast 

adjustments, rotation, scaling, and Gaussian 

noise addition, were employed to enhance the 

dataset’s robustness and improve model 

generalization to new parking scenarios. 

By meticulously curating a diverse and high-

quality dataset, we aimed to establish a strong 

foundation for training and evaluating our 

machine learning model, ensuring its 

effectiveness in real-world parking space 

detection applications. 

 
Fig. 1: The images below reveals two samples of our data sets 

 

To facilitate the training of our Fast R-CNN 

model, we utilized Roboflow for dataset 

annotation. This involved the creation of 

ground truth bounding boxes for both 

empty and occupied parking spaces. The 

annotated dataset served as a crucial 

component for training the model to 

accurately identify and classify parking 

spaces in new, unseen images. 

2.2 Model Implementation 
 

The implementation of the Fast R-CNN model 

for parking space detection leveraged the 

COCO dataset, which includes parking space 

annotations among its diverse object categories 

(Lin et al., 2014). Utilizing this dataset 

provided a solid foundation for our specific 

task while benefiting from its extensive and 

varied real-world scenarios. Fast R-CNN, 

introduced by Girshick (2015), is an efficient 

deep learning model for object detection that 

improves upon earlier approaches by 

integrating region proposal generation and 

classification within a single network, reducing 

computational complexity. 
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Fig. 2: Image of annotated vehicle parking spaces 

 
 

2.3 Data Transformation and 

Augmentation 
 

To enhance model performance, we applied a 

series of data transformation and augmentation 

techniques. Before augmentation, images were 

resized to 640×640 pixels using the Roboflow  

annotation tool to ensure uniformity and prevent 

scaling distortions that could lead to inaccurate 

bounding box placements. The dataset was then 

converted to a Tensor format, facilitating 

seamless integration with deep learning 

frameworks like TensorFlow and PyTorch. 

Data normalization was performed to standardize 

pixel values, ensuring consistent input ranges for 

the neural network and improving convergence 

during training. Various augmentation 

techniques were employed to enhance model 

robustness and generalization, including: 

(i) Horizontal flipping – Simulating 

different viewpoints of parking 

spaces. 

(ii) Random cropping – Introducing 

variability in object positioning. 

(iii) Brightness and contrast adjustments – 

Accounting for variations in lighting 

conditions. 

(iv) Gaussian noise addition – Making the 

model more resistant to environmental 

noise. 

The dataset was partitioned into 160 images for 

training, 20 for validation, and 20 for testing, 

ensuring an appropriate balance for evaluating 

model performance. Data augmentation 

significantly increased the effective dataset size, 

reducing the risk of overfitting and improving the 

model’s ability to generalize across different 

parking environments (Shorten & Khoshgoftaar, 

2019). 

2.4 Transfer Learning and Model 

Architecture 
 

Transfer learning played a pivotal role in our 

approach, enabling the Fast R-CNN model to 

leverage pre-trained weights and improve 

detection accuracy with fewer training samples. 

Transfer learning involves utilizing knowledge 

gained from a source task to enhance learning in 

a related target task. In our implementation, we 

initialized the Fast R-CNN model with weights 

pre-trained on the COCO dataset, benefiting 

from the extensive object annotations, including 

vehicles and parking spaces (Lin et al., 2014). 

The Fast R-CNN architecture consists of the 

following key components: 

(i) Feature Extraction Layer – Uses a 

pre-trained backbone, such as 

ResNet-50 (He et al., 2016), to 

extract spatial features from input 

images. 

(ii) Region Proposal Network (RPN) – 

Identifies potential parking space regions 

for classification. 

(iii)ROI Pooling Layer – Converts varying-

sized regions into fixed-size feature 

maps. 

(iv) Fully Connected Layers – Perform 

classification and bounding box 



 

 

 

Communication in Physical Sciences, 2025, 12(2) 562-570 566 

 

 

regression to accurately detect parking 

spaces. 

Fine-tuning was conducted by unfreezing the last 

few layers of the feature extractor, allowing the 

model to adapt specifically to university parking 

environments. This adaptation process enhances 

the model’s ability to distinguish between 

occupied and empty parking spaces under 

varying conditions, including occlusions and 

changes in lighting. 
 

2.5 Model Architecture 
[[[[ 

Our Fast R-CNN architecture is composed of 

several critical components that work together to 

efficiently detect parking spaces within images. 

These components include a convolutional 

neural network (CNN) for feature extraction, a 

region proposal network (RPN) for identifying 

potential object regions, and region-of-interest 

(RoI) pooling layers for extracting relevant 

features. The final classification and localization 

are handled by fully connected layers that predict 

both the object category and bounding box 

coordinates. 
 

2.6 Feature Extraction (Backbone 

Network) 
 

The foundation of our Fast R-CNN model is a 

pre-trained convolutional neural network (CNN), 

which serves as the feature extractor. This 

backbone network, typically based on 

architectures such as ResNet-50 (He et al., 2016) 

or VGG-16 (Simonyan & Zisserman, 2015), 

captures rich hierarchical representations from 

input images, enabling the model to distinguish 

between occupied and empty parking spaces 

effectively. 
 

2.7 Region Proposal Network (RPN) 
 

The Region Proposal Network (RPN) plays a 

crucial role in object detection by scanning the 

feature maps generated by the backbone and 

identifying potential regions of interest. The 

RPN: 

• Uses anchor boxes to propose 

candidate bounding boxes. 

• Predicts adjustments to these boxes 

to refine localization. 

• Generates proposals with objectness 

scores, indicating the likelihood of 

containing a relevant object (i.e., an 

occupied or empty parking space). 

This process significantly reduces the number of 

candidate regions, improving computational 

efficiency. 
 

2.8 Region-of-Interest (RoI) Pooling 
 

After obtaining region proposals, RoI pooling is 

applied to extract fixed-size feature maps from 

each proposed region. Since the bounding boxes 

generated by the RPN vary in size, RoI pooling 

ensures that all extracted regions are resized to a 

consistent spatial dimension, allowing for 

uniform processing in subsequent layers. This 

step maintains spatial consistency while 

preserving important feature information. 
 

2.9 Fully Connected Layers (Classification 

and Regression) 
 

The extracted RoI features are then passed 

through a series of fully connected layers, which 

are responsible for: 

(i) Classification – Determining 

whether the detected region 

contains an occupied or empty 

parking space. 

(ii) Bounding Box Regression – Refining 

the predicted bounding box coordinates 

to improve localization accuracy. 

This final stage ensures that the model accurately 

classifies parking spaces and precisely locates 

them within the image (Fig. 3) 

 
Fig.3:  Architecture of faster R-CNN 

 

2.10 Objective Function 
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The objective function of our Fast R-CNN model 

comprises two main components: classification 

and bounding box regression. 

Classification Loss: This component utilizes a 

softmax activation function to assign 

probabilities to each region proposal being 

either an empty or occupied parking space. The 

cross-entropy loss measures the dissimilarity 

between predicted and ground truth class 

probabilities. 

Bounding Box Regression Loss: To refine 

the predicted bounding box coordinates, a 

smooth L1 loss is employed. This loss 

function minimizes the difference between 

predicted and ground truth bounding box 

parameters. 

2.11 Parameters and Configuration 
 

The model's parameters include the weights 

learned during transfer learning, which are 

fine-tuned during training on our specific parking 

space dataset. The backbone architecture's 

parameters, such as the number of filters in each 

convolutional layer, influence feature extraction. 

Configuration parameters include anchor box 

scales and aspect ratios for the RPN, affecting 

region proposal generation. 
 

2.11 Input and Output Sizes 
 

The input size of our model corresponds to the 

dimensions of the images in our dataset, typically 

represented as height × width × channels. The 

output consists of class probabilities (empty or 

occupied) for each region proposal and refined 

bounding box coordinates. 

In summary, our transfer learning approach 

enhances the Fast R-CNN model's capability 

to detect parking spaces by leveraging 

knowledge gained from the COCO dataset. 

The architecture, objective function, and 

parameter configurations collectively 

contribute to the model's ability to accurately 

classify and locate parking spaces in the 

University of New Haven parking lots. 

3.0 Transfer of Experimental Results 
 

The model was optimized for the COCO-

format dataset. In order to produce the 

required number of classes, the last layers of 

the network had to be adjusted. The model 

was then trained using the target dataset. 

Choosing Hyperparameters 

The learning rate, momentum, and weight 

decay were chosen at random and eventually 

updated via a step scheduler which basically 

adjusts the learning rate decreasingly by a 

specific value every 3 epochs of the entire 20 

epochs of the training loop. So based on the 

policy, we adopted bigger steps when the 

model was far from the minimum and fewer 

ones when it was getting close, this improved 

the model's ability to converge. 

Model Selection and Evaluation 

In order to make sure the selected model 

generalized well to unobserved data, it was 

chosen based on validation loss and 

accuracy. To provide an unbiased evaluation 

of the best model's performance, it was tested 

on a different test set. 

The model was deployed using Gradio. A 

random parking lot image was uploaded and an 

output image showed the bounding box 

detections which depicts the detected parking 

spaces. 
 
 

 
 

3.1 Final Result 
 

The faster r-cnn resnet50 pretrained model was 

fine tuned for our task. We trained the model 

through 20 epochs with variable learning rate and 

obtained a final loss of 0.8280. The model was 

only able to detect some bounding box on the test 

images but was picking up background noises 

which caused some distortion. This leaves the 
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model somewhat efficient but lacks segmentation 

techniques which the Masked RCNN solves. 
 

3.2 Mini Network - Mode Architecture 
 

The MiniFasterRCNN is a lightweight version of 

the Faster R-CNN model designed for 

classification and object detection tasks. It is a 

smaller and less complex alternative to the 

original Faster R-CNN while still retaining its 

core functionalities. 

The model incorporates two convolutional 

stages. Each utilizes a 3x3 filter, with a stride of 

1 and padding of 1, scaling the channel depth 

from 3 (corresponding to RGB input) to 16, and 

subsequently to 32 channels. 

Weights are initialized following the Kaiming 

method, while biases are set to zero at the start. 

Pooling Stages 

Sequentially following each convolutional stage 

are two max pooling stages. These employ a 2x2 

filter and a stride of 2, effectively halving the 

spatial dimensions of the input. 

Flattening Stage 

Post the second pooling stage, a flattening 

operation is executed to transform the 2D feature 

map into a linear array. 

Fully-Connected Stages 

The network includes a pair of dense layers. The 

initial dense layer transitions from an input size 

determined by the product of 32, 

final_conv_height, and final_conv_width (a 

computation derived from the post-pooling 

feature map dimensions) to an output size of 8 

neurons. The final layer accepts the 8-neuron 

input and projects it onto a space corresponding 

to the number of classification categories 

(num_classes). Weights are assigned through a 

normal distribution, and biases are initialized to 

zero. 

The model was developed to be trained on 

datasets with a predefined number of classes 

(3 classes - empty, occupied, and 

background). For fine-tuning, the network 

was adapted by setting the num_classes 

parameter to match the specific dataset's 

classes. 

Hyperparameter Selection 

Hyperparameters such as learning rate, 

momentum, and weight decay are crucial for 

the training process. These were selected 

through a systematic process using Ray 

Tune, allowing for an efficient search 

through the hyperparameter space. 

Learning Rate Decay Policy 

The learning rate decay policy applied was 

a step decay, which reduces the learning rate 

by a certain factor after a specified number 

of epochs. This policy aids in stabilizing the 

training as the model approaches the 

minimum of the loss function. 

 
Model Selection and Evaluation 

Model selection was based on the 

performance metrics obtained from the 

validation dataset. The best-performing 

model was then evaluated on a separate test 

set. Evaluation metrics such as accuracy, 

precision, and F1-score provided a 

comprehensive assessment of the model's 

predictive capabilities. 
 

 

3.3.1 Final Result 
 

An attempt to overfit the model to obtain a 
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100% accuracy proved inefficient. An 

accuracy of 73% was achieved. However, 

after training the model on the 

hyperparameters we obtained a validation 

accuracy of 77.78%. 
 

4.0 Conclusion 
 

In summary, the development and evaluation 

of the MiniFasterRCNN model provided 

valuable insights into model optimization and 

performance assessment. The model 

selection, based on validation loss and 

accuracy, led to a well-generalizing model, 

achieving a validation accuracy of 77.78%. 

Initial attempts to achieve perfect accuracy 

resulted in a 73% accuracy rate, highlighting 

the challenges and limitations in model 

training. 

The deployment using Gradio demonstrated 

the model's practical application in detecting 

parking spaces, although it encountered 

issues with background noise. This limitation 

was also observed in the fine-tuned Faster R-

CNN ResNet50 model, which, despite a 

promising final loss of 0.8280, showed a need 

for enhanced segmentation capabilities. 
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