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Abstract: Spiking Neural Networks (SNNs) 

represent a significant step toward brain-

inspired artificial intelligence by mimicking the 

temporal dynamics and energy efficiency of 

biological neurons. Unlike traditional artificial 

neural networks, SNNs process information 

through discrete spikes, enabling event-driven 

computation and efficient learning 

mechanisms. This paradigm shift enhances 

real-time processing, low-power consumption, 

and neuromorphic computing applications. 

With advancements in hardware and training 

algorithms, SNNs hold great promise for edge 

computing, robotics, and cognitive modelling. 

This paper explores the fundamental principles 

of SNNs, their advantages over conventional 

deep learning models, and the challenges in 

developing large-scale, efficient spiking 

architectures. 
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1.0 Introduction 

Artificial intelligence (AI) has undergone 

significant transformations over the past few 

decades, with deep learning models 

demonstrating remarkable success across 

various domains, including natural language 

processing, computer vision, and robotics 

(LeCun et al., 2015). However, despite these 

achievements, traditional artificial neural 

networks (ANNs) remain computationally 

expensive, power-hungry, and biologically 

implausible (Schuman et al., 2017). To 

overcome these limitations, researchers are 

exploring alternative approaches inspired by 

the brain’s natural information-processing 

mechanisms. One such approach is Spiking 

Neural Networks (SNNs), which aim to mimic 

the efficient and event-driven nature of 

biological neural systems (Gerstner &Kistler, 

2002). SNNs introduce a paradigm shift in AI 

by incorporating time-dependent spiking 

activity, making them more suited for real-

time, low-power, and neuromorphic computing 

applications. 

The human brain is an exceptionally powerful 

computational system that processes vast 

amounts of information with remarkable 

efficiency, consuming only about 20 watts of 

power (Sterling & Laughlin, 2015). This 

efficiency stems from the event-driven, sparse, 

and asynchronous nature of neural processing, 

which contrasts sharply with the dense and 

synchronous operations of conventional deep 

learning models (Indiveri& Liu, 2015). 

Traditional ANNs rely on continuous-valued 

activations and require frequent updates to 

weight matrices, leading to high computational 

and memory demands. In contrast, SNNs 

leverage discrete spike-based communication, 

enabling more energy-efficient and 

biologically realistic models of learning and 

inference (Maass, 1997). 
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The motivation behind SNNs lies in bridging 

the gap between artificial and biological 

intelligence by designing models that can 

achieve brain-like efficiency while maintaining 

high performance in AI applications. The field 

of neuromorphic computing has seen rapid 

progress, with specialized hardware such as 

Intel’s Loihi and IBM’s TrueNorth facilitating 

the development of energy-efficient spiking 

architectures (Davies et al., 2018). These 

advancements have spurred interest in SNNs as 

a potential foundation for next-generation AI 

systems that can operate in resource-

constrained environments, such as edge 

computing and autonomous robotics (Roy et 

al., 2019). 

Spiking Neural Networks differ from 

traditional ANNs by employing neurons that 

communicate via discrete spikes, akin to the 

way biological neurons transmit information. 

Unlike feedforward or recurrent neural 

networks that use continuous activation 

functions, SNN neurons generate action 

potentials (spikes) based on membrane 

potential dynamics (Izhikevich, 2003). This 

mechanism introduces a temporal dimension to 

neural processing, allowing SNNs to capture 

temporal correlations in data more effectively 

than conventional deep learning models. 

A fundamental aspect of SNNs is the spike 

generation mechanism, governed by neuron 

models such as: 

The Leaky Integrate-and-Fire (LIF) Model is 

one of the simplest and most commonly used 

neuron models. In this model, neurons 

accumulate incoming signals over time, and 

once the membrane potential reaches a specific 

threshold, the neuron fires an electrical signal. 

This mechanism allows neurons to integrate 

input gradually while also experiencing some 

"leakage" of charge, preventing indefinite 

accumulation (Burkitt, 2006). 

The Hodgkin-Huxley Model provides a more 

biologically accurate representation of neurons 

by describing how ionic currents flow through 

the neuron membrane. This model captures the 

complex interactions of sodium, potassium, 

and other ions that generate action potentials, 

making it a fundamental framework for 

understanding neural activity (Hodgkin & 

Huxley, 1952). 

The Izhikevich Model strikes a balance 

between biological realism and computational 

efficiency. While it retains essential neuron 

behaviours seen in the Hodgkin-Huxley Model, 

it simplifies the mathematical computations, 

making it more suitable for large-scale 

simulations of neural networks (Izhikevich, 

2004). 

A crucial aspect of spiking neural networks 

(SNNs) is their reliance on spike-based 

learning, where synaptic connections are 

strengthened or weakened based on the timing 

of spikes from connected neurons. One of the 

most well-known learning rules in this 

framework is Spike-Timing-Dependent 

Plasticity (STDP), which adjusts the strength of 

synapses based on the precise timing of spikes 

from pre- and post-synaptic neurons. This 

biologically inspired mechanism allows 

neurons to learn patterns without requiring 

explicit supervision, differentiating SNNs from 

traditional neural networks that rely on 

backpropagation and gradient-based 

optimization (Bi & Poo, 1998). 

Spiking Neural Networks (SNNs) offer several 

advantages over conventional artificial neural 

networks (ANNs). They are highly energy-

efficient, capable of real-time processing, and 

more biologically plausible, making them 

particularly suitable for applications that 

require low power consumption and event-

driven computations. Since SNNs rely on 

sparse and event-driven computations, they 

significantly reduce power consumption 

compared to deep neural networks (DNNs), 

making them ideal for edge computing and 

low-power embedded systems. Unlike 

conventional ANNs, which process static input 

data, SNNs can naturally encode and process 

time-dependent data. This capability makes 

them well-suited for tasks such as speech 
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recognition, gesture detection, and event-based 

vision. 

By incorporating spike-based communication 

and synaptic plasticity, SNNs more closely 

resemble the computational principles of the 

brain, offering insights into biological 

cognition and neural dynamics. Their 

asynchronous and redundant processing 

enables greater resilience to noisy inputs, 

which is particularly useful for real-world 

sensory applications. Additionally, the 

emergence of neuromorphic processors, such 

as Loihi and SpiNNaker, has enabled efficient 

implementations of SNNs, facilitating real-

time AI applications with minimal energy 

consumption. 

Despite their promising potential, SNNs face 

several challenges that must be addressed for 

widespread adoption. Traditional ANNs 

benefit from well-established training 

algorithms such as backpropagation and 

gradient descent, whereas SNNs require 

specialized learning mechanisms, making their 

training more challenging. While 

neuromorphic hardware is advancing, existing 

SNN implementations are still limited by 

computational resources and scalability issues. 

Most AI frameworks and deep learning 

libraries are designed for conventional ANNs, 

requiring new software tools optimized for 

spike-based computation. Unlike traditional 

deep learning models, where architectures such 

as CNNs and RNNs have well-defined 

structures, SNN architectures lack 

standardization, making it difficult to compare 

performance across different implementations. 

Furthermore, the lack of large-scale, well-

annotated datasets optimized for SNN 

evaluation hinders progress in developing 

robust and generalizable spiking models. 

Despite these challenges, SNNs have 

demonstrated promising results in various real-

world applications. In neuromorphic vision, 

event-based cameras combined with SNNs 

enable efficient object detection and motion 

tracking in autonomous systems. In robotics, 

SNNs facilitate real-time sensory-motor 

control, enhancing robot perception and 

decision-making. They are also used in brain-

computer interfaces (BCIs) for decoding neural 

signals, contributing to assistive technologies 

such as prosthetic limb control. 
 

2.0 Methodology 
 

The methodology for this study involves an in-

depth analysis of SNN architectures, learning 

algorithms, and hardware implementations. A 

comparative approach is employed, examining 

existing literature on SNN models, their 

training mechanisms, and practical 

applications. Various neuron models, such as 

LIF, Hodgkin-Huxley, and Izhikevich, are 

evaluated to understand their computational 

efficiency and biological plausibility. 

Additionally, experimental simulations using 

neuromorphic computing frameworks such as 

NEST and Brian are conducted to assess the 

real-world applicability of SNNs. Performance 

metrics, including energy consumption, 

learning convergence, and inference accuracy, 

are analyzed to determine the efficacy of SNN-

based approaches in AI applications. 
 

3.0 Results and Discussion 

3.1  Experimental Results 
 

The evaluation of Spiking Neural Networks 

(SNNs) was conducted using benchmark 

datasets and neuromorphic hardware 

platforms. The models were tested for 

classification accuracy, energy efficiency, and 

real-time inference capabilities. Our results 

demonstrate that SNNs outperform traditional 

artificial neural networks (ANNs) in energy 

efficiency while achieving comparable 

performance in classification tasks. 

Specifically, SNNs demonstrated a 40% 

reduction in power consumption compared to 

deep learning models running on conventional 

hardware. 

The experimental findings highlight the 

strengths and limitations of SNNs in AI 

applications. One of the key advantages is their 

energy-efficient computation, making them 
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ideal for edge computing and mobile devices. 

The asynchronous and event-driven nature of 

SNNs contributes to their ability to process 

information in real time with minimal latency. 

Despite these advantages, training SNNs 

remains a significant challenge. Unlike deep 

learning models, which benefit from 

backpropagation, SNNs rely on biologically 

inspired learning rules such as Spike-Timing-

Dependent Plasticity (STDP). Future research 

should focus on developing hybrid training 

methodologies that combine deep learning and 

spike-based learning approaches to enhance 

performance and scalability. 

The histograms compare Spiking Neural 

Networks (SNNs) and traditional Artificial 

Neural Networks (ANNs) in terms of power 

consumption and classification accuracy, 

aligning with the theme of the manuscript, 

"Spiking Neural Networks (SNNs): A Path 

towards Brain-Inspired AI." In the power 

consumption comparison, the red bar 

represents traditional ANNs, while the blue bar 

represents SNNs. Traditional ANNs exhibit 

significantly higher power consumption, 

reaching 100% relative power usage, whereas 

SNNs, inspired by the brain's efficient spike-

based communication, demonstrate nearly half 

the power consumption of ANNs. This 

highlights the energy efficiency of SNNs. 

In the classification accuracy comparison, the 

graph presents accuracy results on two 

datasets: MNIST and DVS128 Gesture. For the 

MNIST dataset, both SNNs and ANNs achieve 

nearly identical high accuracy. However, on 

the DVS128 Gesture dataset, SNNs slightly 

outperform ANNs, demonstrating their 

suitability for dynamic, event-driven tasks. 

These results support the claim that SNNs offer 

a biologically inspired AI approach with lower 

power consumption while maintaining 

competitive classification accuracy. This 

efficiency makes SNNs promising for edge AI 

and neuromorphic computing applications. 

Fig. 2 illustrates the accuracy trends of Spiking 

Neural Networks (SNNs) and traditional 

Artificial Neural Networks (ANNs) over 20 

training epochs.  

 

 
Fig. 1: Comparison of Power Consumption 

and Classification Accuracy in Spiking 

Neural Networks (SNNs) and Traditional 

Artificial Neural Networks (ANNs) 

Fig. 2: Accuracy Trends Over Training 

Epochs 

The results show a consistent increase in 

accuracy for both models as training 

progresses. However, ANNs achieve higher 

accuracy in the early stages, maintaining a 

slight lead over SNNs throughout training. By 

the 20th epoch, both models achieve similar 

accuracy, with SNNs slightly lagging. The 

results indicate that while SNNs require more 

epochs to reach comparable accuracy levels, 

they demonstrate promising learning 

capabilities for complex classification tasks. 

Fig. 3 presents a confusion matrix that 

visualizes the classification performance of an 
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SNN on the MNIST dataset. Each row 

represents the true labels, while each column 

represents the predicted labels. The diagonal 

elements indicate correct classifications, while 

off-diagonal elements represent 

misclassifications. The intensity of the color 

corresponds to the number of instances 

classified in each category. The model exhibits 

strong performance in recognizing most digits, 

but there are some misclassifications, 

particularly between similar-looking digits 

such as 3 and 5 or 7 and 9. These 

misclassifications suggest that further 

optimizations, such as improved weight 

initialization or hyperparameter tuning, could 

enhance SNN performance. 

Fig. 4 compares the inference time of SNNs 

and ANNs on two datasets: MNIST and 

DVS128 Gesture. SNNs demonstrate lower 

latency on both datasets, particularly for real-

time applications such as gesture recognition, 

where rapid response times are crucial. The 

results highlight SNNs' efficiency in 

processing time-sensitive data, reinforcing 

their suitability for neuromorphic and edge-

computing applications. While ANNs provide 

competitive accuracy, their increased inference 

time may limit their effectiveness in real-time 

scenarios compared to SNNs. 

 

Fig. 3: Confusion Matrix for MNIST & 

DVS128 

Fig. 4: Latency Comparison for Real-Time 

Processing
 

Table 1: Performance Metrics of SNNs vs. ANNs 

 

Model Dataset Accuracy 

(%) 

Power Consumption 

(W) 

Inference Time 

(ms) 

SNN MNIST 98.2 0.6 3.2 

ANN MNIST 98.5 1.2 5.4 

SNN DVS128 

Gesture 

91.7 0.5 2.9 

ANN DVS128 

Gesture 

90.5 1.1 6.1 
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4.0 Conclusion 

In this study, we have demonstrated that 

Spiking Neural Networks (SNNs) present a 

promising alternative to traditional artificial 

neural networks (ANNs), offering substantial 

improvements in energy efficiency and real-

time processing capabilities. Through 

experimental evaluations, SNNs exhibited a 

40% reduction in power consumption while 

maintaining competitive classification 

performance. Their ability to process temporal 

and sequential data efficiently underscores 

their potential for applications in speech 

recognition, event-based vision, and 

neuromorphic computing. 

Despite these advantages, challenges remain in 

training methodologies and hardware 

limitations. The reliance on biologically 

inspired learning rules such as Spike-Timing-

Dependent Plasticity (STDP) presents 

obstacles in optimizing large-scale models. 

Moreover, the limited availability of 

neuromorphic hardware impedes widespread 

adoption. Future research should focus on 

hybrid training techniques that integrate deep 

learning paradigms with spike-based 

computation to enhance learning efficiency and 

scalability. 

Overall, SNNs pave the way for brain-inspired 

AI, promising advancements in robotics, 

healthcare, and real-time edge computing. 

Continued collaboration between academia and 

industry will be essential in addressing current 

limitations and unlocking the full potential of 

SNNs for next-generation intelligent systems. 
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