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Abstract: This study presents a comprehensive 

review and critical analysis of mathematical 

models used in glucose-insulin regulatory 

systems, with a focus on their application in 

diabetes research and clinical practice. The 

review highlights the strengths and limitations 

of existing models, emphasizing the need for 

further refinement and validation to enhance 

their predictive accuracy and clinical utility. 

Additionally, recommendations for future 

research directions are provided, emphasizing 

the importance of interdisciplinary 

collaborations and the translation of 

mathematical models into practical tools for 

personalized diabetes management. Overall, 

this work contributes to the advancement of 

mathematical modelling in diabetes research 

and underscores its potential to improve 

patient care and outcomes. 
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1.0  Introduction  
 

Mathematical modelling and numerical 

simulation on glucose-insulin regulatory 

studies is not a new concept in diabetes 

epidemiology [Bergman (1980 and 2002), 

Bolie (1961), Derouch and Boutayeb (2002), 

Godsland (2003) and De Gaetano and Arino 

(2000), Amadi & Ekaka-a (2017)]. Analysis 

of insulin release models (Keener and Snyder 

(1998), Sturris et al., (1991), Toffolo et al., 

(1980), Engelborghs et al., (2001), Bennett 

and Gourley (2004) and Bertram et al., 

(2004). Stabilizing a mathematical model is 

fast-growing research in applied mathematics 

[(Yan et al (2008) and Yan et al (2009)]. 

Ekaka-a, et al (2013), have found alternative 

stabilizing methods for two controlled dis-

similar biogas solids population systems with 

higher carrying capacities. Caumo et al (2000) 

explored the minimal model of glucose 

dynamics.  

Kuperstein and Sasson (2000) conducted a 

controlled study of intravenous glucose 

tolerance test (IGTT) and blood pressure in 

obese patients. The impact of physical 

exercise on insulin and glucose dynamics 

using mathematical model parameters was 

investigated by Derouch and Boutayeb (2002). 

Similarly, Breen et al. (2011) investigated the 

effects of resistant exercise on the insulin 

sensitivity of healthy and normoglycemic 

adults using the experimental method. 

Furthermore, The necessity for the 

measurement of insulin secretion against 

insulin sensitivity in the evaluation of beta cell 

functioning has been reviewed by Ahren and 

Pacini (2004). Overgaard et al. (2005) have 

constructed a model known as the mean-field 

beta cell model which is an extension of the 

original minimal model of second-phase 

insulin secretion during the IVGTT. Cobelli et 

al. (2009) conducted a thorough and elaborate 

review of the glucose-insulin regulatory 

models Gyorgy et al (2009) focused their 

research on reviewing some earlier results 

obtained on glucose-insulin kinetics. Li et al 

(2006) proposed a model to study the ultradian 

oscillations of the regulatory system of 
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glucose-insulin having utilized a two-time 

delay model system.  

Tolic et al (2007) constructed a model to 

study the effects of an oscillatory supply of 

insulin in man in comparison with a constant 

supply of insulin at the same average rate. 

Randomski et al. (2010) proposed 

mathematical modelling to study changes in a 

very nonlinear glucose concentration using 

neural and fuzzy methods of modelling. 

Bergman et al (1981) conducted investigative 

research having applied the minimal model 

approach to study the effect of insulin action 

and insulin secretion on glucose concentration 

tolerance. Rao et al. (1997) have reviewed a 

set of four nonlinear differential equation 

models that imbibe beta-cell kinetics and a 

gastrointestinal absorption term into a 

glucose-insulin feedback system. To extend 

how we might interpret glucose-insulin 

regulation unique consideration was made to 

concentrating on stability. 
 

2.0  Mathematical Formulation  
 

The following multi-parameter system of 

nonlinear first-order ordinary differential 

equations indexed by the appropriate initial 

conditions, as given by De Gaetano and Arino 

(2000) and Makroglou et al (2006) has been 

considered:  

)1(,0)0(,)()]([
)(

011 =++−= GGGbtGtXb
dt

tdG
b

)2(,0)0(],)([)(
)(

032 =−+−= XXItIbtXb
dt

tdX
b

where, )(tG    represents the blood glucose concentration at time t; )(tX is the insulin-excitable 

tissue glucose uptake activity, )(tI represents the blood insulin concentration;
 bG  is the 

subject’s baseline glycemia; 
bI is the subject’s baseline insulinemia; 1b  is the glucose rate 

constant, that is the insulin-independent rate constant of tissue glucose uptake or glucose 

effectiveness;
 2b  is the glucose rate constant expressing the spontaneous decrease of tissue 

glucose uptake activity;
 3b

  
is the insulin-dependent increase in tissue glucose uptake activity per 

unit of insulin concentration excess over baseline insulin; 4b  is the rate of pancreatic release of 

insulin. 5b
  

is the pancreatic ‘’target glycemia’’; 6b  is the first order decay rate constant for 

insulin in plasma. 
 

2. 1 Determination of Steady-state Solution     
 

At an arbitrary steady state, the following governing equations hold for the dynamical 

system:

)3(0)( 11 =++− bee GbGXb

)4(0)(32 =−+− bee IIbXb

)5(0)()( 654 =−−− bee IIbtbGb
 

By expansion and simplification:  

)6(11 beee GbGXGb =+

)7(323 bee IbXbIb =−

)8(65464 bee IbtbbIbGtb −=−

To simplify the resulting system, the following substitutions are made:  
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tbIbtbbIbGb bbb 4165433211 ;;; =−=== 
 

Also, dropping the subscripts and using the substitution above, the system becomes 

:
)9(11 =+ GXGb

)10(223 =− XbIb  
From equation (11),       

)12(
6

31

b

G
I

 −
=

Substituting into equation  

)13()( 2231

6

3  =−− XbG
b

b

 

Let  
)(;

6

33
23

6

3

2 b

b

b

b 
 +==

   in equation   (13) 

Hence, we have: 

)14(322  =− XbG
 

)15(
2

32

b

G
X

 −
=

 

)16()( 1

2

32
1 


=

−
+ G

b

G
Gb

 

)17(123

2

221  bGGGbb =−+
 

Rearranging and simplifying: 

)18(0)( 12321

2

2 =−−+  bGbbG
 

This is a quadratic equation hence, the roots: 

)19(
2

4)()(

2

22

2

321321













 +−−−
=



 bbbbb
G

 

From equation (6), 

)20(
2

4)()(

2

3

2

22

2

321321

2

2













−












 +−−−
=

b

bbbbb

b
X






 

From equation (7), 

)21(
2

4)()(

6

3

2

22

2

321321

6

1













−












 +−−−
=

b

bbbbb

b
I






 

Hence, the steady-state solutions at any given time t are the pairs of triples (G1, X1, I1)  

and (G2, X2, I2). 

where, 

,41 tb=
   

,
6

43
2

b

tbb
=  

  

 

 

 

 

,66543 Ibtbb −=
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( ).654

6

3
33 bb Ibtbb

b

b
Ib −+=

 

Substituting these values into equations (1), (2), and (3) yields: 

)22(
2

4)()(((

6

43

22

2

321654

6

3

321
























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b
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bbbIbtbb
b

b
Ibbb

G
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bb
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b

tbb

b

tbbb
Ibtbb

b

b
IbbbIbtbb

b

b
Ibbb

bb

tbb

X

bb

bbbb

 

 

Substituting the model parameter values and solving gives the pair of triple  

(G1, X1, I1) = (0.178064286289873,     0.178064286289873,   1.173970742841688)  

(G2, X2, I2) = (- 0.121088108233883,   -0.121088108233883, -1.692102198240748) 

Therefore,   

),,,( 111 IXGF
IGX   

is a non-negative equilibrium point,     

( ),2841688)1.17397074,898731780642862.0,898731780642862.0
 

is a possible steady-state solution. 

 

3.0  Characterization of the Steady-state Solution 
 

In this method, consideration is given to the method of solving a system of nonlinear first-order 

ordinary differential equations which takes the following mathematical structure:       

Let the continuous and partially differentiable interaction functions F1, F2 and F3 at an arbitrary  

steady-state solution (Ge, Xe, Ie) be 

)25(),,( 111 beeeeee GbGXGbIXGF +−−=
 

)26(),,( 3322 beeeee IbIbXbIXGF −+−=
 

)27(),,( 665443 beeeee IbIbtbbtGbIXGF +−−=
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Where, 321 ,, FandFF  are continuous functions of variables, .,, IandXG  

Following Leticia and Oleka (2016), at a steady-state solution, all rates of change are 

simultaneously equal to zero. That is, at a steady-state solution, equations (13) – (15) become:
  

By differentiating (25) – (27)   the following Jacobian elements are obtained: 

eXb
G

F
J −−=




= 1

1
11

           
eG

X

F
J −=




= 1

12

       
01
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


=

I

F
J

 

02
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


=

G

F
J

                    
2

2
22 b

X

F
J −=




=

        
3

1
23 b

I

F
J =




=

                            (29)
 

tb
G

F
J 4

3
31 =




=

                   
01

32 =



=

X

F
J

        
6

1
33 b

I

F
J −=




=

 

The Jacobian matrix 

)30(

0

0

0
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1

1
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

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


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The characteristic equation 

)31(0)( =− IJ 
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0
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
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( ) ( )      )33(0)(0000)()( 2443621 =+++−++++++−=  bbtbbGbbXb ee  

( ) ( )  )34(0)( 43621 =−++++−= tbGbbbXb e   

  )35()( 43

2

62621 tbbGbbbbXb ee −=+++++=   

)36(

0)()( 436216262626121

2

621

3 =++++++++++++ tbbGbbbXbbbbXbXbbbbbbbbX eeeee 
        

The parameter values used are: b0 = 1, b1 = 0.233, b2 = 0.044, b3 = 0.213, b4 = 0.594, b5 = 0.062,    

b6 = 0.062, Gb= 0.072, Ib = 0.074
   

 

This is a cubic function (third-degree polynomial) whose solution takes a longer calculation time. 

However, substituting the values of the model parameters and the initial conditions of the state 

variables at time t=1 gives: 

0)1)(594.0)(213.0)(4.0()062.0)(044.0)(233.0()2.0)(062.0)(044.0()062.0)(044.0(

)2.0)(062.0()2.0)(044.0()062.0)(233.0()044.0)(233.0[()062.0044.0233.02.0( 23

=++++

++++++++





Solving gives the roots of the polynomial as:
  

ii 2918.00312.0,2918.00312.0,6014.0 321 −=+=−= 
 This implies that the coexistence steady- state solutions,      

0,0,0,0,0,0),,,( === IXG
dt

dI

dt

dX

dt

dG
IXGF eeeGXI

 
will be unstable.  
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Based on the theory of stability of a steady-

state-solution, through the process of 

linearization at each steady-state-solution and 

setting up a Jacobian matrix as explained 

above (Nafo and Ekaka-a, 2012), three 

eigenvalues of which one is a real and 

negative 1= -0.6014 whereas the other two 

are complex numbers with positive real parts: 

0.2918 and 0.2918 respectively has been 

calculated. Therefore, instability is concluded 

for the steady-state solution S1(Ge, Xe, Ie). 

Next, we consider 

)0,0,( eG GF
 at the equilibrium point 








0,0,

1

1

b

Gb b

,  

Therefore, 

)0,0,072.0()0,0,( GeG FGF =
 is a non-negative equilibrium point and hence, a possible steady 

state solution. 

Next, we evaluate the steady-state solution: 

  
),0,,0( eX XF
 at the  equilibrium point 








− ,0,,0

2

1

b

Ib b

 

Hence, 

 )0,391864.0,0()0,,0( −= GeG FXF
 

is a negative equilibrium point and hence not a possible steady-state solution. 

Next, we evaluate the steady-state solution: 

),,0,0( eX IF
 at the equilibrium point 









 −

6

546,0,0
b

tbbIb b , 

Therefore, 

)589412.0,0,0(),,0,0( −=IFX  
is a negative equilibrium point and hence not a possible steady-state solution. 

Next, we evaluate the steady-state solution: 

),0,,( eeGX XGF
 at the equilibrium point ,0,,

,2

3

321

21













 −

− b

Ib

Ibbb

Gbb b

b

b

 
 

Therefore, 

)0,35823.0,133396.0(),0,,( −−=eeGX XGF
 

has negative coordinates in its equilibrium point and hence not a possible steady-state solution. 

Next, we evaluate the steady-state solution: 

),,0,( eeGI IGF
 at the equilibrium point 









 +−

6

6544,0,
b

IbtbbtGb
G bb

b ,  

Therefore,  

)16981.0,0,072.0(),,0,( =eeGI IGF
 

is a non-negative equilibrium point and hence a possible steady-state solution.  

Lastly, we evaluate 

),,0( eeIX IXF
 

 at the equilibrium point 









 +−+−

6

654

6

354363 (
,,0

b

Ibtbb

b

IbtbbbIbb bbb

. 
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Therefore, 

)133.0,247359.0,0(),,,0( =eeXI IXF
 

is a non-negative equilibrium point and hence a possible steady-state solution.  

 

4.0  Results and Discussion 
 

This article showed an analytical solution to the formulated problem and numerical simulation 

done using MATLAB ODE45 numerical scheme. The parameter values used are: b0 = 1, b1 = 

0.233, b2 = 0.044, b3 = 0.213, b4 = 0.594, b5 = 0.062,    b6 = 0.062, Gb= 0.072, Ib = 0.074.  
   
Table 1: Predicting the type of stability on the variation of time for every week for the 

initial condition: [1.2, 0.6, 0.72] using MATLAB ODE45 numerical method  

 

Example Time 

(weeks) 

Ge Xe Ie 1  2  3  TOS 

1 1 1.2000 0.6000 0.7200 -1.0017 0.0314 0.0314 Unstable 

2 2 1.1051 0.6117 0.7805 -1.0005 0.0249 0.0249 Unstable 

3 3 1.0165 0.6247 0.8353 -1.0008 0.0186 0.0186 Unstable 

4 4 0.9339 0.6386 0.8846 -1.0027 0.0125 0.0125 Unstable 

5 5 0.8569 0.6535 0.9289 -1.0060 0.0067 0.0067 Unstable 

6 6 0.7852 0.6693 0.9686 -1.0106 0.0012 0.0012 Unstable 

7 7 0.7185 0.6857 1.0039 -1.0039 -0.0040 -0.0040 Stable 

8 8 0.6565 0.7028 1.0352 -1.0239 -0.0089 -0.0089 Stable 

9 9 0.5988 0.7205 1.0627 -1.0324 -0.0135 -0.0135 Stable 

10 10 0.5452 0.7385 1.0869 -1.0421 -0.0177 -0.0177 Stable 

11 11 0.4958 0.7571 1.1078 -1.0528 -0.0216 -0.0216 Stable 

12 12 0.4503 0.7759 1.1258 -1.0646 -0.0252 -0.0252 Stable 

13 13 0.4084 0.7950 1.1409 -1.0773 -0.0284 -0.0284 Stable 

14 14 0.3700 0.8144 1.1536 -1.0908 -0.0313 -0.0313 Stable 

15 15 0.3346 0.8339 1.1641 -1.1051 -0.0339 -0.0339 Stable 

16 16 0.3021 0.8535 1.1725 -1.1200 -0.0362 -0.0362 Stable 

17 17 0.2723 0.8731 1.1790 1.1790 -0.0383 -0.0383 Stable 

18 18 0.2450 0.8928 1.1839 1.1839 -0.0402 -0.0402 Stable 

19 19 0.2203 0.9125 1.1871 1.1871 -0.0418 -0.0418 Stable 

20 20 0.1978 0.9322 1.1890 1.1890 -0.0432 -0.0432 Stable 

21 21 0.1775 0.9518 1.1895 1.1895 -0.0445 -0.0445 Stable 

22 22 0.1592 0.9713 1.1888 1.1888 -0.0456 -0.0456 Stable 

23 23 0.1426 0.9908 1.1872 1.1872 -0.0466 -0.0466 Stable 

24 24 0.1277 1.0101 1.1846 1.1846 -0.0474 -0.0474 Stable 

25 25 0.1142 1.0292 1.1812 -1.2719  -0.0481 -0.0481 Stable 

26 26 0.1021 1.0482 1.1771 -1.2896 -1.2896 -1.2896 Stable 

27 27 0.0913 1.0669 1.1724 -1.3073 -0.0493 -0.0493 Stable 

28 28 0.0817 1.0855 1.1670 -1.3249 -0.0498 -0.0498 Stable 

29 29 0.0731 1.1040 1.1611 -1.3425 -0.0502 -0.0502 Stable 

30 30 0.0655 1.1221 1.1548 -1.3600 -0.0506 -0.0506 Stable 

31 31 0.0587 1.1401 1.1482 -1.3774 -0.0509 -0.0509 Stable 
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32 32 0.0527 1.1579 1.1579 -1.3946 -0.0511 -0.0511 Stable 

33 33 0.0474 1.1754 1.1338 -1.4116 -0.0514 -0.0514 Stable 

34 34 0.0427 1.1927 1.1263 -1.4285 -0.0516 -0.0516 Stable 

35 35 0.0386 1.2097 1.1185 -1.4452 -0.0517 -0.0517 Stable 

36 36 0.0349 1.2265 1.1106 -1.4618 -0.0519 -0.0519 Stable 

37 37 0.0317 1.2431 1.1024 -1.4781 -0.0520 -0.0520 Stable 

28 38 0.0289 1.2594 1.0942 -1.4942 -0.0521 -0.0521 Stable 

39 39 0.0264 1.2755 1.0859 -1.5100 -0.0522 -0.0522 Stable 

40 40 0.0243 1.2913 1.0774 -1.5257 -0.0523 -0.0523 Stable 

41 41 0.0224 1.3068 1.0690 -1.5411 -0.0524 -0.0524 Stable 

42 42 0.0207 1.3222 1.0604 -1.5563 -0.0524 -0.0524 Stable 

43 43 0.0193 1.3372 1.0518 -1.5713 -0.0525 -0.0525 Stable 

44 44 0.0180 1.3521 1.0432 -1.5860 -0.0525 -0.0525 Stable 

45 45 0.0169 1.3666 1.0346 -1.6005 -0.0526 -0.0526 Stable 

46 46 0.0160 1.3809 1.0259 -1.6148 -0.0526 -0.0526 Stable 

47 47 0.0151 1.3950 1.0173 -1.6288 -0.0526 -0.0526 Stable 

48 156 0.0081                         1.8220      0.3027               -2.0552 -0.0529      -0.0529      Stable 

1 , 2 , ,3 valueseigen=
  TOS =Type of stability 

 

  Table 2: Predicting the type of stability on the variation of time for every week for the 

initial condition: [3.6, 1.8, 2.16] using MATLAB ODE45 numerical method  

 

Example Time 

(weeks) 

Ge Xe Ie 
1  2  3  TOS 

1 1 3.6000 1.8000 2.1600 -2.1378 -0.0006 -0.0006 Stable 

2 2 2.9337 1.8384 2.3363 -2.1554 -0.0110 -0.0110 Stable 

3 3 2.3814 1.8799 2.4754 -2.1796 -0.0197 -0.0197 Stable 

4 4 1.9250 1.9239 2.5840 -2.2093 -0.0268 -0.0268 Stable 

5 5 1.5495 1.9697 2.6674 -2.2436 -0.0326 -0.0326 Stable 

6 6 1.2427 2.0169 2.7298 -2.2816 -0.0372 -0.0372 Stable 

7 7 0.9910 2.0650 2.7757 -2.3224 -0.0408 -0.0408 Stable 

8 8 0.7870 2.1137 2.8078 -2.3654 -0.0437 -0.0437 Stable 

9 9 0.6228 2.1628 2.8287 -2.4100 -0.0459 -0.0459 Stable 

10 10 0.4905 2.2120 2.8408 -2.4557 -0.0476 -0.0476 Stable 

11 11 0.3845 2.2611 2.8458 -2.5023 -0.0489 -0.0489 Stable 

12 12 0.3004 2.3101 2.8452 -2.5492 -0.0499 -0.0499 Stable 

13 13 0.2340 2.3588 2.8401 -2.5964 -0.0507 -0.0507 Stable 

14 14 0.1816 2.4072 2.8316 -2.6436 -0.0513 -0.0513 Stable 

15 15 0.1406 2.4551 2.8204 -2.6907 -0.0517 -0.0517 Stable 

16 16 0.1087 2.5026 0.8070 -2.7375 -0.0520 -0.0520 Sable 

17 17 0.0840 2.5495 2.7922 -2.7839 -0.0523 -0.0523 Stable 

18 18 0.0649 2.5959 2.7761 -2.8300 -0.0525 -0.0525 Stable 

19 19 0.0503 2.6418 2.7591 -2.8756 -0.0526 -0.0526 Stable 

20 20 0.0391 2.6871 2.7414 -2.9207 -0.0527 -0.0527 Stable 
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21 21 0.0306 2.7318 2.7233 -2.9652 -0.0528 -0.0528 Stable 

22 22 0.0241 2.7759 2.7049 -3.0092 -0.0528 -0.0528 Stable 

23 23 0.0193 2.8194 2.6862 -3.0527 -0.0529 -0.0529 Stable 

24 24 0.0156 2.8623 2.6675 -3.0956 -0.0529 -0.0529 Stable 

25 25 0.0129 0.0129 2.6486 -3.1379 -0.0529 -0.0529 Stable 

26 26 0.0108 0.0108 2.6297 -3.1796 -0.0529 -0.0529 Stable 

27 27 0.0082 0.0082 2.5920 -3.2613 -0.0529 -0.0529 Stable 

28 28 0.0073 0.0073 2.5732 -3.3013 -0.0530 -0.0530 Stable 

29 29 0.0073 0.0073 2.5732 -3.3013 -0.0530 -0.0530 Stable 

30 30 0.0067 0.0067 2.5545 -3.3408 -0.0530 -0.0530 Stable 

31 31 0.0062 0.0062 2.5359 -3.3797 -0.0530 -0.0530 Stable 

32 32 0.0058 0.0058 2.5174 -3.4180 -0.0530 -0.0530 Stable 

33 33 0.0056 3.2226 2.4989 -3.4557 -0.0530 -0.0530 Stable 

34 34 0.0053 3.2598 2.4806 -3.4929 -0.0530 -0.0530 Stable 

35 35 0.0052 3.2965 2.4623 -3.5295 -0.0530 -0.0530 Stable 

36 36 0.0050 3.3326 2.4442 -3.5656 -0.0530 -0.0530 Stable 

37 37 0.0049 3.3681 2.4262 -3.6012 -0.0530 -0.0530 Stable 

28 38 0.0048 3.4031 2.4083 -3.6362 -0.0530 -0.0530 Stable 

39 39 0.0048 3.4376 2.3905 -3.6707 -0.0530 -0.0530 Stable 

40 40 0.0047 3.4716 2.3727 -3.7046 -0.0530 -0.0530 Stable 

41 41 0.0046 3.5050 2.3551 -3.7380 -0.0530 -0.0530 Stable 

42 42 0.0046 3.5379 2.3376 -3.7709 -0.0530 -0.0530 Stable 

43 43 0.0045 3.5703 2.3203 -3.8033 -0.0530 -0.0530 Stable 

44 44 0.0045 3.6022 2.3030 -3.8352 -0.0530 -0.0530 Stable 

45 45 0.0044 3.6336 2.2858 -3.8666 -0.0530 -0.0530 Stable 

46 46 0.0044 3.6644 2.2687 -3.8975 -0.0530 -0.0530 Stable 

47 47 0.0044 3.6948 2.2517 -3.9278 -0.0530 -0.0530 Stable 

48       155         0.0033              4.8277          0.9065            -5.061   -0.0530          -0.0530          Stable 

1 , 2 , ,3 valueseigen=
          TOS =Type of stability 

 

From Table 1, we have made the following 

observations: As the independent variable 

time (t) in the unit of weeks ranges from week 

one (1) to week six (6), we have found six (6) 

valid steady states solutions which are 

dominantly unstable because of the existence 

of two positive eigenvalues and one negative 

eigenvalue. Therefore, based on the sign 

method of stability the six (6) steady-state 

solutions are considered unstable. The two (2) 

positive eigenvalues contribute to the 

unbounded growth of the solution trajectories 

whereas the negative eigenvalues contribute to 

the decaying behaviour of the solution 

trajectories over time. We have also observed 

that the earlier observed instability changes to 

dominant stability ranging from the seventh 

(7th) week to one hundred and fifty-sixth 

(156th) week. In this context, the bifurcation 

intervals have occurred between the sixth (6th) 

and seventh (7th) week. These observations are 

specific to the initial condition: [1.2, 0.6, 

0.72]. 

From Table 2, as the independent variable 

time (t) in the unit of weeks ranges from week 

one (1) to one hundred and fifty-sixth (156th) 

week, we have found one hundred and fifty-

six (156) valid steady states solutions which 

are dominantly stable because of the existence 

of three negative eigenvalues. 
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Fig. 1: Predicted stability due to variation in time for every week for the condition:[0.7, 0.4, 

0.48] with steady-state solution  
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Fig.  2: Predicted stability due to variation in time for every week for the initial 

condition:  [1.1, 0.6, 0.82] with steady-state solution 
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Fig. 3: The variation of initial condition: [1.4, 0.8, 1.0] with steady-state solution                                  

for time t = 156 weeks and for fixed values of other model parameters. 
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Fig. 4: Predicted stability due to variation in time for every week for the 

initial condition:[1.7, 1.0, 1.40]. 
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Fig. 5: Predicted stability due to variation in time for every week for the initial condition: 

[2.0, 1.2, 1.60] 
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Fig 6: Predicted stability due to variation in time for every week for the initial condition: 

[2.9, 1.8, 2.80] 

 

Therefore, based on the sign method of 

stability, the forty-seven (47) steady-state 

solutions are considered stable. The three (3) 

negative eigenvalues contribute to the 

decaying behaviour of the solution trajectories 

over time.  These observations are specific to 

the initial condition: [3.6, 1.8, 2.16]. 

Fig 1 shows the predicted stability due to time 

variation for the initial condition [0.7. 0.4, 

0.48] with a steady-state solution. At this 

initial condition, Ge shows a falling pattern 

from 0.7 to 0.02 and then stabilizes. Also, it is 

seen that Xe rises from the value of 0.4 to the 

value of 1.25 and falls from the value of 1.25 

to the value of 1.06 extendedly. Similarly, Ie 

rises from the value of 0.5 to the value of 0.82 

and then falls to the value of 0.08. Fig 2 

demonstrates the predicted stability due to 

time variation for the initial condition [1.1, 

0.6, 0.82] with a steady-state solution. At this 

initial condition, Ge shows a falling and 

stabilizing pattern whereas Xe and Ie show a 

rising and then falling trend. Fig 3 

demonstrates the predicted stability due to 
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time variation for the initial condition [1.4, 

0.8, 1.0] with a steady-state solution. At this 

initial condition, Ge shows a falling and 

stabilizing pattern whereas Xe and Ie shows a 

rising and then falls.  Fig 4 illustrates the 

predicted stability due to time variation for the 

initial condition  [1.7, 1.0, 1.40] with a steady-

state solution. At this initial condition, Ge 

shows a falling and stabilizing pattern whereas 

Xe and Ie a shows a rising and then falls. Fig 5 

illustrates the predicted stability due to time 

variation for the initial condition [2.0, 1.2, 

1.60] with a steady-state solution. At this 

initial condition, Ge shows a falling and 

stabilizing pattern whereas Xe and Ie a show a 

rising and then falling trend. Fig 6 illustrates 

the predicted stability due to time variation for 

the initial condition [2.9, 1.8, 2.80] with a 

steady-state solution. At this initial condition, 

Ge shows a falling and stabilizing pattern 

whereas Xe and Ie shows a rising and falling 

trend.  
 

5.0  Conclusion 
 

The work presented offers a comprehensive 

analysis of mathematical modelling and 

numerical simulation concerning glucose-

insulin regulatory studies in the context of 

diabetes epidemiology. By reviewing previous 

literature and utilizing advanced mathematical 

formulations, the study delves into 

understanding the dynamics of glucose-insulin 

regulation, offering insights into stability and 

behaviour and under various conditions. The 

investigation begins by establishing the 

foundation laid by previous researchers, 

acknowledging the significance of 

mathematical models in studying glucose-

insulin kinetics. Notably, the work integrates 

findings from a plethora of studies, 

highlighting the continuous evolution of this 

field over decades. The mathematical 

formulation section presents a detailed model 

of glucose-insulin regulation, comprising 

nonlinear ordinary differential equations. 

Through rigorous mathematical analysis, 

including the determination of steady-state 

solutions and characterization of stability, the 

study provides a solid framework for 

understanding system behaviour. The results 

and discussion section further enriches the 

study by offering insights gained from 

numerical simulations. The analysis of 

stability over time, as depicted in Tables 1 and 

2 and the corresponding figures, provides a 

nuanced understanding of system behaviour 

under different initial conditions. The 

observation of transitions from unstable to 

stable states underscores the dynamic nature 

of glucose-insulin regulation. 

 Based on the results, findings and scope and 

limitations of the study, the following 

suggestions are recommended 

(i) Condition of further research for refining 

the mathematical model and numerical 

simulation techniques to enhance the accuracy 

of predictions and stability assessments in 

glucose-insulin regulatory studies. 

(ii) Future studies could explore the impact of 

various interventions, such as dietary changes 

or medication, on glucose-insulin dynamics 

using advanced mathematical modelling and 

simulation methods. 

(iii) Researchers are encouraged to investigate 

the applicability of the developed models in 

clinical settings to assist in personalized 

diabetes management and treatment strategies. 

(iv) Collaboration between mathematicians, 

clinicians, and biomedical engineers should be 

promoted to ensure the translation of 

mathematical models into practical tools for 

improving diabetes care and patient outcomes. 

(v) Efforts should be directed towards 

validating the mathematical models against 

clinical data to establish their reliability and 

efficacy in real-world scenarios. 

(vi) Continuous refinement and validation of 

mathematical models are necessary to account 

for the complexity and variability of glucose-

insulin dynamics in diverse populations and 

clinical conditions. 
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