Physical, Static and Dynamic Mechanical Properties of Waste Paper Reinforced Waste High Density Polyethylene Biocomposite
Keywords:
Waste reuse, paper, high density polyethylene, composite, dynamic mechanical properties, glass transitionAbstract
Tajudeen Kolawole Bello, Muhammed Tijani Isa, Solomon Olayinka Falope
This paper presents the physical, static, and dynamic mechanical properties of a biocomposite fabricated from wastepaper reinforced in waste high-density polyethylene. The produced composites had varying amounts of shredded waste paper from 0 to 50 wt% at an interval of 10wt%. The size-reduced paper was mixed with the waste high-density polyethylene in a two-roll mill set at 160 oC and 79 rev/min. The mixture was then compressed to 4 MPa at 150 oC and allowed to cure at 60 oC for 24 hrs. The results obtained indicated that water absorption increased with filler content due the hydrophilic nature of natural fibers, tensile stress and strain however reduced. Modulus of elasticity recorded the highest value at 40 wt% wastepaper in the composite. Dynamic mechanical analysis revealed that at 40 oC, the 40 wt% recorded the highest storage modulus, greater than unreinforced material by 40%. Higher filler content recorded increase in damping parameter of the materials. Increasing filler content also introduced a new glass transition behavior. The new glass transition (α) Tg was detected between 120 oC and 145 oC. Although elongation increased with temperature, it decreased with filler content. These properties contribute to establishing concept of waste reuse and recycling as a viable technique in sustainable engineering.
Downloads
Published
Issue
Section
Similar Articles
- Olalekan Lawrence Ojo, Famoriyo Olakunle Idris, On The Assessment of fade Depth and Geoclimatic Factor for Microwave Link Applications in Lagos, Nigeria , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Uzoma Ifeanyi Oduah, Paul Chinagorom Nwosu, Emmanuel Ayomide Agbojule , Chisom Gabriel Chukwuka , Daniel Oluwole, Ifedayo Okungbowa, Automation of electric power source changeover switches deploying artificial intelligence. , Communication In Physical Sciences: Vol. 12 No. 7 (2025): Volume 12 issue 7
- Nathaniel Atamas Bahago, Gideon Wyasu, Quality Assessment of Borehole and Sachet Water Samples in Kaduna South Metropolis , Communication In Physical Sciences: Vol. 4 No. 2 (2019): VOLUME 4 ISSUE 2
- Olawale Babatunde Olatinsu, Segun Opeyemi Olawusi, Mathew Osaretin Ogieva, Electrical Resistivity Characterization of Peat and Clay Profiles at a Suburb of Ota, Southwest Nigeria , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Spiking Neural Networks (SNNs): A Path towards Brain-Inspired AI , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Gideon Wyasu, Determination of Bacteriological and some physicochemical properties of Hospital wastewater , Communication In Physical Sciences: Vol. 4 No. 2 (2019): VOLUME 4 ISSUE 2
- Eneni Roberts Inala, BIOACCUMULATION OF ENVIRONMENTAL CONTAMINANTS IN OYSTER (Crassostea sp.) TISSUES IN BAYELSA STATE, NIGERIA , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
- Florence Omada Ocheme, Hakeem Adewale Sulaimon, Adamu Abubakar Isah, A Deep Neural Network Approach for Cancer Types Classification Using Gene Selection , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Samira Sanni, A Review on machine learning and Artificial Intelligence in procurement: building resilient supply chains for climate and economic priorities , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Osondu Onwuegbuchi, Abdulaziz Olaleye Ibiyeye, Joy Nnenna Okolo, Samuel Adetayo Adeniji, Cybersecurity Risks in the Fintech Ecosystem: Regulatory and Technological Perspectives , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
You may also start an advanced similarity search for this article.



