Latitudinal ionospheric Responses to Full Halo CMEs Induced Geomagnetic Storm

Authors

  • Dominic Chukwuebuka Obiegbuna University of Nigeria, Nsukka, Nigeria
  • Francisca Nneka Okeke University of Nigeria, Nsukka, Enugu State, Nigeria
  • Kingsley Chukwudi Okpala University of Nigeria, Nsukka, Enugu State, Nigeria
  • Sivla William Tafon University of Nigeria, Nsukka, Enugu State, Nigeria
  • Orji Prince Orji University of Nigeria, Nsukka, Enugu State, Nigeria

Keywords:

Geomagnetic storm, Full Halo CMEs, High Latitude, Low latitude, Ionosphere, TEC

Abstract

Communication in Physical Sciences, 2021, 7(4): 312-320

Authors: Dominic Chukwuebuka  Obiegbuna*, Francisca Nneka Okeke, Kingsley Chukwudi Okpala, Sivla William Tafon and Orji Prince Orji

Received: 11  November 2021/Accepted 04 December 2021

We have studied and compared the effects of full halo CMEs induced geomagnetic storms across the high, mid/equatorial and low latitude ionosphere around Ny Alesund, Norway, Irkutsk, Russia and Adis Ababa, Ethiopia. The total electron content (TEC) data obtained from the global positioning system (GPS) were used to examine the level of responses of ionospheric latitudes to full halo CMEs induced geomagnetic storms of June 23rd 2015. This study was carried out using dual frequency ground based GNSS observations at high latitude (NYAL: 78.56oN, 11.52oE), mid-latitude (IRKM: 52.13oN, 106.24oE) and low (Adis: 9.02oN, 38.44oE), ionospheric stations. The vertical TEC (VTEC) was extracted from Receiver Independent Exchange (RINEX) formatted GPS-TEC data using the GOPI Software developed by Seemala Gopi. The GOPI software is a GNSS-TEC analysis program that uses ephemeris data and differential code biases (DCBs) in estimating slant TEC (STEC) before its conversion to VTEC. The result showed positive ionospheric responses of the ionospheric latitudes on the storm day. The overall responses across the latitudes to the geomagnetic storm were generally positive for the high latitude and negative for mid/equatorial and low latitudes.

Downloads

Download data is not yet available.

Author Biographies

Dominic Chukwuebuka Obiegbuna, University of Nigeria, Nsukka, Nigeria

Department of Physics and Astronomy

Francisca Nneka Okeke , University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Physics and Astronomy

Kingsley Chukwudi Okpala, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Physics and Astronomy

Sivla William Tafon, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Physics and Astronomy

Orji Prince Orji, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Physics and Astronomy

References

Abdu, M. A., Batista, I. S., Bertoni, F., Reinisch, B.W., Kherani, E. A. & Sobral, J. H. A. (2012), Equatorial ionosphere responses to two magnetic storms of moderate intensity from conjugate point observations in Brazil. Journal of Geophysical Research, 117, A05321. Doi: 10.1029/2011JA017174

Astafyeva, E., Zakharenkova, I., Hozumi, K., Alken, P., Coïsson, P., Hairston, M. R., & Coley, W. R., (2018), Study of the equatorial and low-latitude electrodynamic and ionospheric disturbances during the 22–23 June 2015 geomagnetic storm using ground-based and space borne techniques. Journal of Geophysical Research: Space Physics, 123. doi.org/10.1002/2017J A024981

Devi, M., S. Patgiri, A. K. Barbara, G. Gordiyenko, A., Depueva, V. & Ruzhin, Y. Y. (2018), Storm Time Ionospheric-Tropospheric Dynamics: a Study Through Ionospheric and Lower Atmospheric Variability Features of High/Mid and Low Latitudes. Geomagnetism and Aeronomy. 58, 7, pp. 857–870. Doi.: 10.1134/ S001679321807 006X

Dungey, J. W. (1961). Interplanetary Magnetic Field and the Auroral Zones. Physical Review Letters, 6, 2, 47–48. doi:10.1103/physrevlett.6.47

Echer, E., Gonzalez, W.D., Tsurutani, B. T. & Gonzalez, A. L. C. (2008), Interplanetary conditions leading to superintense geomagnetic storms (Dst < _250) during solar cycle 23. Geophysical Research Letter, 35, L06S03, doi:10.1029/2007GL031755.

Fuller-Rowell, T. J. (2011), Storm-Time Response of the Thermosphere–Ionosphere System. Aeronomy of the Earth’s Atmosphere and Ionosphere, 2, pp 419–435. doi:10.1007/978-94-007-0326-1_32

Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B. T. & Vasyliunas, V. (1994). What is a geomagnetic storm. Journal of Geophysical Research. 99, pp. 5771–5792.

Gopalswamy, N. (2009). Halo coronal mass ejections and geomagnetic storms. Earth, Planets and Space, 61, 5, pp 595–597. doi:10.1186/bf03352930

Gopalswamy, N., Yashiro, S., Akiyama, S., Mäkelä, P., Xie, H., Kaiser, M. L. & Bougeret, J. L. (2008). Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era. Annales Geophysicae, 26, 10, pp. 3033-3047

Heelis, R. A. (2004). Electrodynamics in the low and middle latitude ionosphere: a tutorial. Journal of Atmospheric and Solar-Terrestrial Physics, 66, 10, pp 825–838. doi:10.1016/j.jastp.2004.01.034

Hughes, W. J. (1995), The magnetopause, magnetotail and magnetic reconnection, in Introduction to Space Physics, edited by M. G. Kivelson and C. T. Russell, Cambridge Univ. Press, Cambridge, UK.

Hunsucker, R. D.& Hargreaves, J. K., (2003), The high-Latitude Ionosphere and Its Effects on Radio Propagation. Cambridge University Press, New York.

Maruyama, N., Richmond, A. D., Fuller-Rowell, T. J., Codrescu, M. V., Sazykin, S., Toffoletto, F. R., et al. (2005)., Interactions between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophysical Research Letters, 32, L17105. doi:10.1029/2005GL023763, 2005.

Chakraborty, M., Kumar, S., Kumar D, B & Guha, A. (2015), Effects of geomagnetic storm on low latitude ionospheric total electron content: A case study from Indian sector. Journal of Earth System Science, DOI: 10.1007/s12040-015-0588-3

Nava, B., Rodríguez‐Zuluaga, J., Alazo‐Cuartas, K., Kashcheyev, A., Migoya‐Orué, Y., Radicella, S. M., ... & Fleury, R. (2016). Middle‐and low‐latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm. Journal of Geophysical Research: Space Physics, 121, 4, 3421-3438.

Okpala, K. C., Ugwu, E. B., Attah, O. J., Obiegbuna, D., Anamezie, R. C. & Egbunu, F. (2020), Variation of vertical total electron content over West Africa during Geomagnetic storms. Physical Science International Journal, 24, 5, pp 52-63. Doi:10.9734/PSIJ/2020/v24i530193

Perreault, P., & Akasofu, S.-I. (1978), A study of geomagnetic storms. Geophysical Journal International, 54, 3, pp 547–573. doi:10.1111/j.1365-246x.1978.tb05494.x

Rishbeth, H. (1998). How the thermospheric circulation affects the ionospheric F2-layer. Journal of Atmospheric and Solar-Terrestrial Physics, 60, 14, pp 1385–1402. doi:10.1016/s1364-6826(98)00062-5

Sastri, J. H., Abdu, M. A. and Sobral, J. H. A., (1997), Response of equatorial ionosphere to episodes of asymmetric ring current activity, Annales Geophysicae, 15, pp 1316–1323, doi:10.1007/s00585-997-1316-3.

Seemala, G. K., & Valladares, C. E. (2011), Statistics of total electron content depletions observed over the South American continent for the year 2008. Radio Science, 46, 5, n/a–n/a. doi:10.1029/2011rs004722

Sharma, S. K., Singh, A. K., Panda, S. K., & Ahmed, S. S. (2020). The effect of geomagnetic storms on the total electron content over the low latitude Saudi Arab region: a focus on St. Patrick’s Day storm. Astrophysics and Space Science, 365, pp. 2, pp 1-10.

Watari Shinichi (2017), Geomagnetic storms of solar cycle 24 and their solar sources, journal of Earth, Planets and Space, 69, 70. DOI:10.186/s40623-017-0653-z

Tsurutani, B. T., & Gonzalez, W. D. (1997), The Interplanetary causes of magnetic storms: A review. Geophysical Monograph Series, pp 77–89. doi:10.1029/gm098p0077

Watson, C., Jayachandran, P. T., & MacDougall, J. W. (2016), GPS TEC variations in the polar cap ionosphere: Solar wind and IMF dependence. Journal of Geophysical Research: Space Physics, 121, pp 9030– 9050, doi:10.1002/2016JA022937.

Yeh, H.-C., Foster, J. C., Rich, F.J., & Swider, W. (1991). Storm time electric field penetration observed at mid-latitude. Journal of Geophysical Research, 96, 4, pp 5707–5721. Doi:10.1029/90JA02751

Zhao, B., Wan, W., Tschu, K., Igarashi, K., Kikuchi, T., Nozaki, K., Watari, S., Li, G., Paxton, L. J., Liu, L., Ning, B., Liu, J.-Y., Su, S.-Y & Bulanon P.H., ( 2008), Ionospheric disturbances observed throughout southeast Asia of superstorm of 20–22 November 2003, Journal of Geophysical Research, 113 A00A04, doi: 10.1029/2008JA013054.

Sandhu, J.K., Rae, I.J., Freeman, M.P., Forsyth, C., Gkioulidou, M., Reeves, G.D., Spence, H.E., Jackman, C.M. & Lam, M.M. (2018), Energization of the ring current by Substorms. Journal of Geophysical Research, vol. 123, no. 10, pp. 8131 – 8146, 2018.

Cane, H.V., Richardson, I.G. & St. Cyr, O.C. (2000), Corona mas ejections, interplanetary ejecta and geomagnetic storms, Geophysical research letters, 27, 21, pp 3591-3594

Webb, D. F., Cliver, E.W., Crooker, N.U., St. Cyr, O.C. & Thompson, B.J. (2000), Journal of Geophysical Research: Space Physics, 105, A4, pp. 7491-7508.

Bounsanto, M.J. (1999), Ionospheric storms - a review, Space Science Review, 88, pp 563 – 601.

Forbes, M. (1989), Evidence for the equatorward penetration of electric fields, winds and compositional effects in the Asian/Pacific sector during the September 17-24, 1984 ETS interval, Journal of Geophysical Research, 9, 16, pp 999- 1007,

Downloads

Published

2021-12-15