Assessment of Surface Water Quality in Zaria Metropolis: Implications for Environmental Health and Sustainable Management
DOI:
https://doi.org/10.4314/tmt5xc93Keywords:
Water quality index, physicochemical parameters, Analysis of variance, CorrelationAbstract
Surface water bodies, including rivers, dams, and lakes, are integral to urban development and human life, supporting both urban residents and rural agricultural sectors. However, rapid population growth, urbanization, and industrialization have posed significant threats to water quality worldwide. Industrial discharges, in particular, contribute to water pollution, notably with toxic heavy metals. Assessing water quality involves monitoring various physicochemical parameters, which can be laborious and challenging. Therefore, this study employs statistical correlation analysis to understand the interrelationships among water quality parameters, aiming to simplify water quality assessment. Water samples were collected from Shika, Galma, and Ahmadu Bello University (ABU) dams in Zaria, Nigeria, and analysed for various parameters. Results showed that dissolved oxygen (DO) levels ranged from 1.37 to 3.67 mg/L, biochemical oxygen demand (BOD) ranged from 0.47 to 1.83 mg/L, and pH varied from 4.33 to 6.93 across different sampling points. Turbidity ranged from 65.27 to 152.20 NTU, total dissolved solids (TDS) ranged from 30.67 to 956.33 mg/L, and total suspended solids (TSS) ranged from 16.67 to 170.00 mg/L. Electrical conductivity (EC) varied from 62.97 to 1888.33 µs/cm, alkalinity (ALK) ranged from 14.00 to 28.00 mg/L, and chemical oxygen demand (COD) ranged from 93.30 to 123.30 mg/L. Sulphate (SO4) concentrations ranged from 381.70 to 568.30 mg/L, nitrate (NO3-) ranged from 9.00 to 26.00 mg/L, and phosphate (PO4) ranged from 0.12 to 0.61 mg/L. Statistical analysis revealed significant correlations among these parameters, indicating complex relationships within the aquatic ecosystem. Additionally, the analysis of variance (ANOVA) showed significant differences in water quality among sampling points, suggesting the influence of diverse pollution sources. Furthermore, the Water Quality Index (WQI) was calculated to assess the overall water quality status, indicating poor to unfit conditions for consumption across the studied locations. These findings underscore the urgent need for effective water management strategies to safeguard surface water quality for current and future generations.
Downloads
Published
Issue
Section
Similar Articles
- Henry Ekene Ohaegbuchu, Obinna Christian Dinneya, Chukwunenyoke Amos-Uhegbu, Paul Igienekpeme Aigba, Groundwater quality index (GQI) assessment of 12 wells in a rural area , Communication In Physical Sciences: Vol. 10 No. 2 (2023): VOLUME 10 ISSUE 2
- Richard A. Ukpe, Idongesit Ignatius Udo, Application of an Organic Coagulant (Polydialdimethylammonium Chloride) for the Treatment of Water from Otuoke, OX-Bow and Swalli Rivers in Bayelsa State , Communication In Physical Sciences: Vol. 9 No. 1 (2023): VOLUME 9 ISSUE 1
- Tope Oyebade, Spatio-Seasonal Evaluation of Heavy Metal Pollution, Water Quality, and Ecological Risk in Lake Chad Ecosystem , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- A.O Obioha, Spatial Variability of key climate and air quality parameters across some Nigerian cities , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 Issue 5
- Chukwunenyoke Amos-Uhegbu, Mmaduabuchi Uche Uzoegbu, Okwuchukwu Peter Odoh , Chukwudike Dandy Akoma , Hydrogeology And Ground Water Potentials Of The Pre-Cambrian Basement Rocks Of Tabe And Environs In Gwagwalada Area, Abuja North Central, Nigeria , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Felix Bamidele Fatoye, Michael Adewale Ibitomi, Quality Evaluation of Udane–Biomi Coal in the Northern Anambra Basin of Nigeria , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Kizito O. Musa, Assessment of Groundwater Potential and Aquifer Characteristics using Inverted Resistivity and Pumping Test Data within Lokoja Area, North-central Nigeria , Communication In Physical Sciences: Vol. 9 No. 3 (2023): VOLUME 9 ISSUE 3
- YUSUF MOHAMMED AUWAL, OSITA CHUKWUDI MELUDU, TIMTERE PASCAL, Computational Modeling and validation of Indoor Radon Gas Dynamics and Accumulation Using Ansys Fluent Simulation , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
- Chidozie Izuchukwu Princeton DIM, AN INTEGRATED APPROACH TO PETROLEUM EXPLORATION IN THE EASTERN COASTAL SWAMP DEPOBELT OF THE NIGER DELTA BASIN, NIGERIA. , Communication In Physical Sciences: Vol. 2 No. 1 (2017): VOLUME 2 ISSUE 1
- Juliet E. Emudianughe, P. M. Eze, Sunday Utah, Porosity And Permeability Trend In Agbami-Field Using Well Log, Offshore, Niger Delta , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
You may also start an advanced similarity search for this article.