Physical, Static and Dynamic Mechanical Properties of Waste Paper Reinforced Waste High Density Polyethylene Biocomposite
Keywords:
Waste reuse, paper, high density polyethylene, composite, dynamic mechanical properties, glass transitionAbstract
Communication in Physical Sciences, 2021, 7(2): 47-57
Physical, Static and Dynamic Mechanical Properties of Waste Paper Reinforced Waste High-Density Polyethylene Biocomposite
Tajudeen Kolawole Bello, Muhammed Tijani Isa, Solomon Olayinka Falope
This paper presents the physical, static, and dynamic mechanical properties of a biocomposite fabricated from wastepaper reinforced in waste high-density polyethylene. The produced composites had varying amounts of shredded waste paper from 0 to 50 wt% at an interval of 10wt%. The size-reduced paper was mixed with the waste high-density polyethylene in a two-roll mill set at 160 oC and 79 rev/min. The mixture was then compressed to 4 MPa at 150 oC and allowed to cure at 60 oC for 24 hrs. The results obtained indicated that water absorption increased with filler content due the hydrophilic nature of natural fibers, tensile stress and strain however reduced. Modulus of elasticity recorded the highest value at 40 wt% wastepaper in the composite. Dynamic mechanical analysis revealed that at 40 oC, the 40 wt% recorded the highest storage modulus, greater than unreinforced material by 40%. Higher filler content recorded increase in damping parameter of the materials. Increasing filler content also introduced a new glass transition behavior. The new glass transition (α) Tg was detected between 120 oC and 145 oC. Although elongation increased with temperature, it decreased with filler content. These properties contribute to establishing concept of waste reuse and recycling as a viable technique in sustainable engineering.
Downloads
References
Abdo, D., Gleadall, A., & Silberschmidt, V. V. (2019). Damage and damping of short-glass-fibre-reinforced PBT composites under dynamic conditions: Effect of matrix behaviour. Composite Structures, 226(May). https://doi.org/ 10.1016/j.compstruct.2019.111286
Adam, J., Korneliusz, B. A., & Agnieszka, M. (2013). Dynamic mechanical thermal analysis of biocomposites based on PLA and PHBV - A comparative study to PP counterparts. Journal of Applied Polymer Science, 130, 5, pp. 3175-3183.
Ahmad, M. A. A., Abdul Majid, M. S., Ridzuan, M. J. M., Mazlee, M. N., & Gibson, A. G. (2018). Dynamic mechanical analysis and effects of moisture on mechanical properties of interwoven hemp/polyethylene terephthalate (PET) hybrid composites. Construction and Building Materials, 179, 10, pp.265-276.
Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology, 68, 2, pp.557-565.
Asasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, B., & Shin, U. C. (2007). Development of coconut coir-based lightweight cement board. Construction and Building Materials, 21, 2, pp.277-288.
Ashton, E. G., Kindlein, W., Demori, R., Cândido, L. H. A., & Mauler, R. (2016). Recycling polymeric multi-material products through micronization. Journal of Cleaner Production, 116, 10, pp.268-278.
Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M. R., Hoque, M. E., & Deng, Y. (2015). A review on pineapple leaves fibre and its composites. International Journal of Polymer Science. https://doi.org/10.1155/ 2015/ -950567
Chun, K. S., Husseinsyah, S., & Osman, H. (2015). Influence of methacrylic acid modification on tensile properties of polypropylene/cocoa pod husk Biocomposites. Polymer - Plastics Technology and Engineering, 54, pp. 296-300. https://doi.org/10.1080/03602559.2014.977425
Diallo, A. K., Jahier, C., Drolet, R., Tolnai, B., & Montplaisir, D. (2019). Cellulose filaments reinforced low-density polyethylene. Polymer Composites, 40, 1, pp. 16-23.
Djafari Petroudy, S. R. (2017). Physical and mechanical properties of natural fibers. In Advanced high strength natural fibre composites in construction. Woodhead Publishing, Elservier, Nethrlands., pp. 59-83. https://doi.org/10.1016/B978-0-08-100411-1.00003-0
Edeerozey, A. M. M., Akil, H. M., Azhar, A. B., & Ariffin, M. I. Z. (2007). Chemical modification of kenaf fibers. Materials Letters, 61, 10, pp. 2023-2025. https://doi.org/10.1016/j.matlet.2006.08.006
Faisal, A., & Salmah, H. (2012). Mechanical and thermal properties of compatibilized waste office white paper-filled low-density polyethylene composites. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/0892705711408164
Faruk, O., & Sain, M. (2014). Biofiber Reinforcements in Composite Materials. In Biofiber Reinforcements in Composite Materials. https://doi.org/10.1016/C2013-0-16470-7
Fiore, V., Scalici, T., Di Bella, G., & Valenza, A. (2015). A review on basalt fibre and its composites. Composites Part B: Engineering. https://doi.org/10.1016/j.compositesb.2014.12.034
Ge, W., Wang, L., Sun, Y., & Liu, X. (2019). An efficient method to generate random distribution of fibers in continuous fiber reinforced composites. Polymer Composites. https://doi.org/10.1002/pc.25344
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances. https://doi.org/10.1126/sciadv.1700782
Ghori, W., Saba, N., Jawaid, M., & Asim, M. (2018). A review on date palm (phoenix dactylifera) fibers and its polymer composites. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/368/1/012009
Govindan, P., & Srinivasan, V. (2016). Mechanical and thermal analysis of basalt/sisal hybrid fiber reinforced poly (lactic acid) composites. International Journal of Control Theory and Applications. @inproceedings{Govindan2016- MechanicalAT,
Gupta, M. K., & Singh, R. (2018). Flexural and Dynamic Mechanical Analysis (DMA) of Polylactic Acid (PLA) Coated Sisal Fibre Reinforced Polyester Composite. Materials Today: Proceedings. https://doi.org/10.1016/j. matpr.2017.12.216
Hameed, N., Sreekumar, P. A., Francis, B., Yang, W., & Thomas, S. (2007). Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016 /j. compositesa.2007.08.009
Han, Y. H., Han, S. O., Cho, D., & Kim, H.-I. (2008). Dynamic mechanical properties of natural fiber/polymer biocomposites: The effect of fiber treatment with electron beam. Macromolecular Research, 16(3), 253–260. https://doi.org/10.1007/BF03218861
Harshavardhan, B., Ravishankar, R., Suresha, B., & Srinivas, S. (2019). Static and Dynamic mechanical performance of carbon fiber reinforced polyethersulfone composites. Applied Mechanics and Materials, 895, 265–271. https:// doi.org/10.4028/www.scientific.net/AMM.895.265
Herrera-Franco, P. J., & Valadez-González, A. (2005). A study of the mechanical properties of short natural-fiber reinforced composites. Composites Part B: Engineering. https://doi. org/10.1016/j.compositesb.2005.04.001
Ilya, K., Andrey, D., Dmytro, H., Ekaterina, V., Vladislav, K., & Oleg, T. (2020). Development thermoplastic elastomer-based fiber-metal laminate for vibration damping application. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2019.12.383
Iwata, T. (2015). Biodegradable and Bio-Based Polymers : Future Prospects of Eco-Friendly Plastics. 150, 3210–3215. https://doi.org/10.1002/anie.201410770
Jawaid, M., & Abdul Khalil, H. P. S. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. In Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2011.04.043
Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering. https://doi.org/10.1016/j.compositesb.2012.04.053
Khan, B., Bilal, M., Niazi, K., Samin, G., & Jahan, Z. (2017). Thermoplastic starch: a possible biodegradable food packaging material — a review. https://doi.org/10.1111/jfpe.12447
Krishna, K. V., & Kanny, K. (2016). The effect of treatment on kenaf fiber using green approach and their reinforced epoxy composites. Composites Part B: Engineering. https://doi.org/10.1016/j.compositesb.2016.08.010
Kumar, N., Bharti, A., & Gupta, M. K. (2020). Effect of treatments on thermo-mechanical properties of epoxy based sisal biocomposites. International Journal on Emerging Technologies, 11, 3, pp. 491-495.
Lau, W. W. Y., Shiran, Y., Bailey, R. M., Cook, E., Stuchtey, M. R., Koskella, J., Velis, C. A., Godfrey, L., Boucher, J., Murphy, M. B., Thompson, R. C., Jankowska, E., Castillo Castillo, A., Pilditch, T. D., Dixon, B., Koerselman, L., Kosior, E., Favoino, E., Gutberlet, J., … Palardy, J. E. (2020). Evaluating scenarios toward zero plastic pollution. Science. https://doi.org/10.1126/science.aba9475
Leão, A. L., Cherian, B. M., Narine, S., Souza, S. F., Sain, M., & Thomas, S. (2015). The use of pineapple leaf fibers (PALFs) as reinforcements in composites. Biofiber Reinforcements in Composite Materials. https://doi.org/10. 1533/ 9781782421276.2.211
Leites, C., Garrido, T., Corralo, J., Cristina, I., & De, K. (2018). International Journal of Biological Macromolecules Development and characterization of cassava starch films incorporated with blueberry pomace. International Journal of Biological Macromolecules, 106, 834–839. https://doi.org/10.1016/j.ijbiomac.2017.08.083
Lu, N., & Oza, S. (2013). Thermal stability and thermo-mechanical properties of hemp-high density polyethylene composites: Effect of two different chemical modifications. Composites Part B: Engineering. https://doi.org/10.1016/ j.compositesb.2012.03.024
Luchese, C. L., Garrido, T., Spada, J. C., Tessaro, I. C., & de la Caba, K. (2018). Development and characterization of cassava starch films incorporated with blueberry pomace. International Journal of Biological Macromolecules. https://doi.org/10.1016/j. ijbiomac.2017.08.083
Mohammed, L., Ansari, M. N. M., Pua, G., Jawaid, M., & Islam, M. S. (2015). A Review on Natural Fiber Reinforced Polymer Composite and Its Applications.International Journal of Polymer Science. https://doi.org/10.1155/2015/243947
Moliner, C., Badia, J. D., Bosio, B., Arato, E., Kittikorn, T., & Strömberg, E. (2017). Thermal and thermo-oxidative stability and kinetics of Decomposition of phbv/sisal vomposites. 6445(October), 0–30. https://doi.org/10. 1080/ 00986445.2017.1384921
Nasrollahzadeh, M., Sajjadi, M., & Sajadi, S. M. (2019). Green nanotechnology. In An Introduction to green nanotechnology (1st ed., Vol. 28). Elsevier Ltd. https://doi.org/10.1016 /B978-0-12-813586-0.00005-5
Oosterhuis, F., Papyrakis, E., & Boteler, B. (2014). Economic instruments and marine litter control. In Ocean and Coastal Management. https://doi.org/10.1016/j.ocecoaman.2014.08.005
Patil, N. V., Rahman, M. M., & Netravali, A. N. (2019). “Green” composites using bioresins from agro-wastes and modified sisal fibers. Polymer Composites. https://doi.org/10.1002/pc.24607
Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). Composites : Part A A review of recent developments in natural fibre composites and their mechanical performance. 83, 98–112. https://doi.org/10.1016/j.compositesa.2015.08.038
Pothan, L. A., Oommen, Z., & Thomas, S. (2003). Dynamic mechanical analysis of banana fiber reinforced polyester composites. Composites Science and Technology. https://doi.org/10.1016/S0266-3538(02)00254-3
Rashid, A. H. A., Ahmad, R., Jaafar, M., Roslan, M. N., & Ariffin, S. (2011). Mechanical properties evaluation of woven coir and kevlar reinforced epoxy composites. Advanced Materials Research. https://doi.org/10.4028/www. scientific.net/AMR.277.36
Rashid, B., Leman, Z., Jawaid, M., Ghazali, M. J., & Ishak, M. R. (2017). Dynamic mechanical analysis of treated and untreated sugar palm fibre-based phenolic composites. In BioResources. https://doi.org/10.15376/biores.12.2.3448-3462
Reale Batista, M. D., Drzal, L. T., Kiziltas, A., & Mielewski, D. (2020). Hybrid cellulose-inorganic reinforcement polypropylene composites: Lightweight materials for automotive applications. Polymer Composites. https://doi.org/10.1002/pc.25439
Saba, N., Jawaid, M., Alothman, O. Y., & Paridah, M. T. (2016). A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials. https://doi.org/10.1016/j. conbuil -dmat.2015.12.075
Saba, N., Paridah, M. T., & Jawaid, M. (2015). Mechanical properties of kenaf fibre reinforced polymer composite: A review. In Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2014.11.043
Sahu, P., & Gupta, M. K. (2018). PLA coated sisal fibre reinforced polyester composite: Static and dynamic mechanical properties. Materials Today: Proceedings, 5, 9, pp.19799-19807. https://doi.org/10.1016/j.matpr.2018.06.343
Salmah, H., Romisuhani, A., & Akmal, H. (2013). Properties of low-density polyethylene/palm kernel shell composites: Effect of polyethylene co-acrylic acid. Journal of Thermoplastic Composite Materials, 26, 1, pp. 3-15.
Sanjay, M. R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2017). Characterization and Properties of Natural Fiber Polymer Composites: A Comprehensive Review. In Journal of Cleaner Production., 172, 20, pp. 566-581. https://doi.org/10.1016/j.jclepro.2017.10.101
Santosha, P. V. C. R. K., Shiva Shankare Gowda, A. S., & Manikanth, V. (2018). Effect of fiber loading on thermal properties of banana and pineapple leaf fiber reinforced polyester composites. Materials Today: Proceedings., 5, 2, pp.5631-5635.
Sarasini, F., & Santulli, C. (2013). Non-destructive testing (ndt) of natural fibre composites: acoustic emission technique. in natural fibre composites: materials, processes and applications. Woodhead Publishing, Elservier, Netherlands
Senthilkumar, K., Rajini, N., Saba, N., Chandrasekar, M., Jawaid, M., & Siengchin, S. (2019). Effect of alkali treatment on mechanical and morphological properties of pineapple leaf fibre/polyester composites. Journal of Polymers and the Environment, 27, pp. 1191-1201. https://doi.org/10.1007/s10924-019-01418-x
Sessini, V., Arrieta, M. P., Raquez, J., Dubois, P., Kenny, M., & Peponi, L. (2019). Thermal and composting degradation of EVA / Thermoplastic starch blends and their nanocomposites. 159, pp. 184–198.
Sever, K., Atagur, M., Altay, L., Seki, Y., Uysalman, T., Sen, I., Kaya, N., Guven, A., & Sarikanat, M. (2018). Effect of diatomite weight fraction on morphology, thermal and physical properties of diatomite filled high density polyethylene composites. Acta Physica Polonica A, 134, 1, pp.281-284.
Sewda, K., & Maiti, S. N. (2013). Dynamic mechanical properties of high density polyethylene and teak wood flour composites. Polymer Bulletin., 70, pp. 2657--2674.
Siakeng, R., Jawaid, M., Ariffin, H., & Sapuan, S. M. (2019). Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites. Polymer Composites, 40, 5, pp.2000-2011. .
Stark, N. M., & Rowlands, R. E. (2003). Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites. Wood and Fiber Science, 35, 2, pp. 167-174.
Tominaga, A., Sekiguchi, H., Nakano, R., Yao, S., & Takatori, E. (2019). Advanced recycling process for waste plastics based on physical degradation theory and its stability. Journal of Material Cycles and Waste Management, 21, pp. 116-124.
Verma, D., & Fortunati, E. (2019) Biobased and Biodegradable Plastics In: Martínez L., Kharissova O., Kharisov B. (eds) Handbook of Ecomaterials. Springer, Cham. doi: 10.1007/978-3-319-68255-6_103
Zhao, X., Shou, T., Liang, R., Hu, S., Yu, P., & Zhang, L. (2020). Bio-based thermoplastic polyurethane derived from polylactic acid with high-damping performance. Industrial Crops and Products, 154, 15,, 112619. https://doi.org/10.1016/j.indcrop.2020.112619
Downloads
Published
Issue
Section
License
Copyright (c) 2010 The Journal and the author
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.