Exploring the Thermoelectric Potential of Trigonal MgS2: A Computational Investigation Using DFT and Boltzmann Transport Theory
Keywords:
thermoelectric properties, chalcogenide, DFT calculations, BoltzTrap, Quantum EspressoAbstract
There has been a shift toward the development of cost-effective and environmentally friendly technologies, due to increased energy demand and attendant environmental degradations. Among these technologies, significant progress has been made in the field of thermoelectricity. Thermoelectric materials are recognized for their proficiency in converting waste heat energy into electricity, with their efficiency commonly assessed using the ZT (Fig. of merit) value.. This study investigates the thermoelectric properties of chalcogenide magnesium sulfide (MgS2), with trigonal lattice structure, using Density Functional Theory (DFT) in conjunction with the Boltzmann Transport Theory. The initial assessment of structural and thermoelectric properties employs the Generalized Gradient Approximation (GGA) based on the Perdew–Burke–Ernzerhof approximation (GGA-PBE).
The results indicate that the studied compounds exhibit characteristics of a p-type semiconductor. The structural confirmation of MgS2 reveals a trigonal configuration. The absolute value of the Seebeck coefficient demonstrates an increase with rising temperature across the measured range (100-400K). Simultaneously, the electrical conductivity exhibits a monotonically decreasing trend with increasing temperature, indicative of degenerating conduction behaviour. The power factor exhibits an upward trajectory with increasing temperature, consequently leading to an augmented dimensionless Fig. of merit ZT. The maximum ZT value observed for MgS2 is 0.057.
Similar Articles
- Musa Ndamadu Farouq, Nwaze Obini Nweze, Monday Osagie Adenomon, Mary Unekwu Adehi, Derivation of a New Odd Exponential-Weibull Distribution , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Okenwa Uchenna Igwe, Ugochukwu Clinton Akwada, Phytochemical Composition and Antioxidant Activity Screening of Extracts from the Leaf of Emilia coccinea (SIMS) G.don , Communication In Physical Sciences: Vol. 8 No. 3 (2022): VOLUME 8 ISSUE 3
- Uche Ibeneme, Kevin Ejiogu, Aiyejagbara Mosunade, Egere Chidi, Zango Leo, Onyemachi David, Mechanical and Morphological Characterization of Recycled Low Density Polyethylene and Polystyrene Blends at Varying Compositions , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Nwoke Linda Chinyere, Uchenna Igwe Okenwa, Onuchi Marygem Mac-Kalunta, Johnbull O. Echeme , Uyanwa Maryjane Nkeiruka, Phytochemical screening and wound healing studies of Chromolaena odorata , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
- Yusuf Mohammad Auwal, Hussaini Shuaibu, Muhammad Sani Isa, Study of Symmetric Nuclear Matter Properties in Non-linear Walecka Model via Relativistic Mean-field approximation at zero-temperature , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Isonguyo Michael Ukpong , Emmanuel Wilfred Okereke, Inverse Cube Root Transformation: Theory and Application to Time Series Data , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Nathaniel Atamas Bahago, Gideon Wyasu, Quality Assessment of Borehole and Sachet Water Samples in Kaduna South Metropolis , Communication In Physical Sciences: Vol. 4 No. 2 (2019): VOLUME 4 ISSUE 2
- Gideon Wyasu, Determination of Bacteriological and some physicochemical properties of Hospital wastewater , Communication In Physical Sciences: Vol. 4 No. 2 (2019): VOLUME 4 ISSUE 2
- Idayat Abubakar Salau, Aminu Suleiman Mohammed, Hussaini Garba Dikko, Type I Half-Logistic Exponentiated Kumaraswamy Distribution With Applications , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Taye Temitope Alawode, Molecular Docking Studies on Eudesmane Sesquiterpenes as Potential Anti-leishmanial Agents , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
You may also start an advanced similarity search for this article.



