Equatorial All-Sky Downward Longwave Radiation Modelling
Keywords:
Machine learning, linear regression, all-sky downward longwave radiation, solar hour angleAbstract
Nsikan Ime Obot*, Busola Olugbon, Ibifubara Humprey and Ridwanulahi Abidemi Akeem
Machine learning algorithms, such as random forests (RF), artificial neural networks (ANN), and support vector regression (SVR), are viable modelling tools because they can learn and replicate data patterns. However, linear regression models are relatively easy to implement. Downward longwave radiation (DLR) is rarely measured due to complications of its measuring instrument, notwithstanding the importance of the radiation in the atmosphere and the energy balance of the Earth’s surface. Besides linear regression, several machine learning modes, such as SVR and RF, were also used to model daily cloudless and all-sky DLR at Ilorin (8.53° N, 4.57° E), Nigeria. We further sought an appropriate ANN unit for estimating the radiation in this study. Predictors comprised the period, clearness index, air temperature, water vapour pressure, relative humidity, global solar radiation, and solar hour angle. We found that solar hour angle actively predicts all-sky DLR. The most vital variables used for an all-sky DLR linear regression model for this clime are water vapour pressure, relative humidity, and solar hour angle. Machine learning systems generalise better with vast data having well-correlated inputs. The results also reveal that several machine learning algorithms, like SVR with Pearson VII kernel function, can be used for modelling DLR.
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Nsikan Ime Obot, Okwisilieze Uwadoka, Oluwasegun Israel Ayayi, Modelling Nonseasonal Daily Clearness Index for Solar Energy Estimation in Ilorin, Nigeria Using Support Vector Regression , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
Similar Articles
- Ifeoma Vivian Nwankwo, Mbajiuka Stella Chinenye, Lovina Odoemelam, Oluchi Maduka, Analysis of Agricultural Development Programme (ADP) Promoted Agrochemical use Among Women Farmers In Abia State , Communication In Physical Sciences: Vol. 10 No. 2 (2023): VOLUME 10 ISSUE 2
- Forward Nsama, Strategic Development of AI-Driven Supply Chain Resilience Frameworks for Critical U.S. Sectors , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Precious Ogechi Ufomba, Ogochukwu Susan Ndibe, IoT and Network Security: Researching Network Intrusion and Security Challenges in Smart Devices , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Electrical Conductivity Profile of upper mantle in the West African Sub region , Communication In Physical Sciences: Vol. 1 No. 1 (2010): VOLUME 1 ISSUE 1
- Abdulateef Oluwakayode Disu, Henry Makinde, Olajide Alex Ajide, Aniedi Ojo, Martin Mbonu, Artificial Intelligence in Investment Banking: Automating Deal Structuring, Market Intelligence, and Client’s Insights Through Machine Learning , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- David Adetunji Ademilua, Advances and Emerging Trends in Cloud Computing: A Comprehensive Review of Technologies, Architectures, and Applications , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3 (2023-2024)
- Simbiat Atinuke Lawal, Samuel Omefe, Adeseun Kafayat Balogun, Comfort Michael, Sakiru Folarin Bello, Itunu Taiwo Owen, Kevin Nnaemeka Ifiora, Circular Supply Chains in the Al Era with Renewable Energy Integration and Smart Transport Networks , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Temitope Sunday Adeusi, Ayodeji Aregbesola, Impact of Climatic Condition on the Life Cycle of Water Contaminants , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Michael Oladipo Akinsanya, Oluwafemi Clement Adeusi, Kazeem Bamidele Ajanaku, A Detailed Review of Contemporary Cyber/Network Security Approaches and Emerging Challenges , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Chukwuemeka. K. Onwuamaeze, Christopher. I. Ejiofor, An Improved Defragmentation Model for Distributed Customer’s Bank Transactions , Communication In Physical Sciences: Vol. 5 No. 3 (2020): VOLUME 5 ISSUE 3
You may also start an advanced similarity search for this article.



