Intelligent Machine Learning Approaches for Data-Driven Cybersecurity and Advanced Protection
Keywords:
Machine Learning, Cybersecurity, Intrusion Detection, Anomaly Detection, RanAbstract
his paper examines the usage of cutting-edge machine learning (ML) techniques for enhancing data-centric cybersecurity, with a focus on detection, classification, and anomaly identification in different attack scenarios. In three case studies—IoT intrusion detection via convolutional neural networks (CNNs), ransomware detection with random forest classifiers, and unsupervised anomaly detection via the CAMLPAD framework—the work demonstrates how domain-specific ML models can address specialized threat environments. The CNN-based IoT intrusion model achieved 99.2% accuracy, 98.8% precision, and 99.0% F1-score across the UNSW-NB15 dataset, significantly better than the traditional statistical baselines. The random forest ransomware detection system achieved 98.5% accuracy, 97.9% recall, and area under the ROC curve (AUC) 0.995, showing robustness in distinguishing malicious and legitimate encryption activity. CAMLPAD identified 94.7% of anomalies with less than a 3% false positive rate and successfully identified zero-day attacks in real time without any labelled training data. . Comparative analysis reveals that supervised methods excel in well-characterised environments, while unsupervised models are indispensable for novel threat discovery. The study also addresses model explainability, adversarial robustness, and mitigation of human error, recommending an adaptive, multi-layered, and interpretable ML-driven cybersecurity architecture that combines continuous retraining, adversarial hardening, and human oversight to sustain high-performance cyber defence.
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Michael Oladipo Akinsanya, Aminath Bolaji Bello, Oluwafemi Clement Adeusi, A Comprehensive Review of Edge Computing Approaches for Secure and Efficient Data Processing in IoT Networks , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Michael Oladipo Akinsanya, Oluwafemi Clement Adeusi, Kazeem Bamidele Ajanaku, A Detailed Review of Contemporary Cyber/Network Security Approaches and Emerging Challenges , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
Similar Articles
- Elizabeth C. Nwaokorongwu, Dual Solution Synthesis and Characterization of Sns:Zns Alloyed Thin Films and Possible Applications in Solar Systems and Others , Communication In Physical Sciences: Vol. 9 No. 2 (2023): VOLUME 9 ISSUE 2
- David Adetunji Ademilua, Advances and Emerging Trends in Cloud Computing: A Comprehensive Review of Technologies, Architectures, and Applications , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3 (2023-2024)
- Emmanuel Oluwemimo Falodun, Faith, Technology, and Safety: A Theoretical Framework for Religious Leaders Using Artificial Intelligence to Advocate for Gun Violence Prevention , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Daniel Chukwunonso Chukwudi, Michael Oladunjoye, Geophysical Exploration of Coastal Saline Water Intrusion: A Study of Ikoyi and Banana Island, Lagos State , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Felicia Uchechukwu Okwunodulu, Stella Mbanyeaku Ufearoh, Amaku James Friday, Angela Nwamaka Anim, Colorimetric detection of Hg(II) ions present in industrial wastewater using zinc nanoparticle synthesized biologically with Rauwolfia vomitoria leaf extract , Communication In Physical Sciences: Vol. 5 No. 4 (2020): VOLUME 5 ISSUE 4
- Ololade Omosunlade, Curriculum Framework for Entrepreneurial Innovation among Special Needs Students in the Age of Artificial Intelligence , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Emmanuel Gbenga Dada, David Opeoluwa Oyewola, Stephen Bassi Joseph, Deep Convolutional Neural Network Model for Detection of Sickle Cell Anemia in Peripheral Blood Images , Communication In Physical Sciences: Vol. 8 No. 1 (2022): VOLUME 8 ISSUE 1
- F. S. Bakpo, A Petri Net Computational Model for Web-based Students Attendance Monitoring , Communication In Physical Sciences: Vol. 1 No. 1 (2010): VOLUME 1 ISSUE 1
- Obialo Solomon Onwuka, Elochukwu Pearl Echezona, Chimankpam Kenneth Ezugwu, Hydrogeology of Uburu and Environs, Southern Eastern, Nigeria , Communication In Physical Sciences: Vol. 3 No. 1 (2018): VOLUME 3 ISSUE 1
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Spiking Neural Networks (SNNs): A Path towards Brain-Inspired AI , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
You may also start an advanced similarity search for this article.