A Deep Neural Network Approach for Cancer Types Classification Using Gene Selection
Keywords:
Deep Learning, Artificial intelligence Neural Network, Autoencoder, K-Nearest Neighbor, Deep Recurrent Neural NetworkAbstract
Florence Omada Ocheme, Hakeem Adewale Sulaimon and Adamu Abubakar Isah
Cancer classification research is one of the significant areas of exploration in the clinical field. Exact forecasting of various tumor types is an extraordinary challenge and giving an exact forecast will have incredible worth in giving better treatment to the patients. In recent years, many analysis-based investigations have led to the revelation of information on disease subtypes, that has generated high throughput innovations Lately, researchers have attempted to dissect a lot of microarray information for getting significant data that can be utilized in malignancy grouping. To accomplish this objective, one can utilize K-Nearest Neighbor, Neural Networks, Decision Tree, Support Vector a that would provide approaches needed to break down microarray information towards the choice of best separating quality called biomarker. These machine learning methodologies had the inherent ability to represent the time varying behavior of the underlying biological network that allows for a better representation of spatiotemporal input-output dependencies. Therefore, the exploitation of time series data regarding deep learning has to have become a valuable strategy for deciphering stochastic processes, such as gene expression and classification. Therefore, in this study, another intriguing strategy is introduced to improve the performance of neural networks utilizing deep autoencoder neural networks. This was accomplished through the choice of the first, relevant data, which was being extracted with a Deep Neural Network hidden layer used to train an autoencoder for the classification of the cancer malignancy based on the second stack autoencoder network. The outcome from the proposed experiment was evaluated with the current techniques. Overall, the proposed deep autoencoder accomplished classification accuracy of 99.2% as against the current Modified KNN and SVM which obtained 96.1% and 98.1% respectively.
Downloads
Published
Issue
Section
Similar Articles
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Spiking Neural Networks (SNNs): A Path towards Brain-Inspired AI , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Humphrey Sam Samuel, Emmanuel Edet Etim, John Paul Shinggu, Bulus. Bako , Machine learning of Rotational spectra analysis in interstellar medium , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Fatima Binta Adamu, Muhammad Bashir Abdullahi, Sulaimon Adebayo Bashir, Abiodun Musa Aibinu, Conceptual Design Of A Hybrid Deep Learning Model For Classification Of Cervical Cancer Acetic Acid Images , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Ayomide Ayomikun Ajiboye, Investigating the Role of Machine Learning Algorithms in Customer Segmentation , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Emmanuel Gbenga Dada, David Opeoluwa Oyewola, Stephen Bassi Joseph, Deep Convolutional Neural Network Model for Detection of Sickle Cell Anemia in Peripheral Blood Images , Communication In Physical Sciences: Vol. 8 No. 1 (2022): VOLUME 8 ISSUE 1
- 1. Anthony I. G. Ekedegwa, Evans Ashiegwuike, Abdullahi Mohammed S. B, Seasonal Short-Term Load Forecasting (STLF) using combined Social Spider Optimisation (SSO) and African Vulture Optimisation Algorithm (AVOA) in Artificial Neural Networks (ANN) , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Humphrey Sam Samuel , Emmanuel Edet Etim, John Paul Shinggu, Bulus Bako, Machine Learning in Thermochemistry: Unleashing Predictive Modelling for Enhanced Understanding of Chemical Systems , Communication In Physical Sciences: Vol. 11 No. 1 (2024): VOLUME 11 ISSUE 1
- 1. Anthony I. G. Ekedegwa, Evans Ashiegwuike, Enhanced Firefly Algorithm Inspired by Cell Communication Mechanism and Genetic Algorithm for Short-Term Electricity Load Forecasting , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- David Adetunji Ademilua, Edoise Areghan, Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Human-AI Collaboration: Enhancing Decision-Making in Critical Sectors , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
You may also start an advanced similarity search for this article.