Spiking Neural Networks (SNNs): A Path towards Brain-Inspired AI
DOI:
https://doi.org/10.4314/0hd1n838Keywords:
Spiking Neural Networks. Brain-Inspired AI, Neuromorphic Computing,.Event-Driven Processing. Edge ComputingAbstract
Spiking Neural Networks (SNNs) represent a significant step toward brain-inspired artificial intelligence by mimicking the temporal dynamics and energy efficiency of biological neurons. Unlike traditional artificial neural networks, SNNs process information through discrete spikes, enabling event-driven computation and efficient learning mechanisms. This paradigm shift enhances real-time processing, low-power consumption, and neuromorphic computing applications. With advancements in hardware and training algorithms, SNNs hold great promise for edge computing, robotics, and cognitive modelling. This paper explores the fundamental principles of SNNs, their advantages over conventional deep learning models, and the challenges in developing large-scale, efficient spiking architectures.
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Human-AI Collaboration: Enhancing Decision-Making in Critical Sectors , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
Similar Articles
- Samira Sanni, A Review on machine learning and Artificial Intelligence in procurement: building resilient supply chains for climate and economic priorities , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Henry Ekene Ohaegbuchu, Obinna Christian Dinneya, Chukwunenyoke Amos-Uhegbu, Paul Igienekpeme Aigba, Groundwater quality index (GQI) assessment of 12 wells in a rural area , Communication In Physical Sciences: Vol. 10 No. 2 (2023): VOLUME 10 ISSUE 2
You may also start an advanced similarity search for this article.



