Structural, Antimicrobial and in Silico Studies of Some Schiff Bases of Trans-paramethoxycinnamaldehyde Derivatives

Authors

  • G. U. Kaior University of Nigeria, Nsukka, Enugu State, Nigeria
  • N. J. Nwodo University of Nigeria, Nsukka, Enugu State, Nigeria
  • U. S. Oruma University of Nigeria, Nsukka, Enugu State, Nigeria
  • A. Ibezim University of Nigeria, Nsukka, Enugu State, Nigeria
  • A. E. Ochonogor University of Nigeria, Nsukka, Enugu State, Nigeria
  • K. K. Onyia University of Nigeria, Nsukka, Enugu State, Nigeria
  • Nnamdi L. Obasi University of Nigeria, Nsukka, Enugu State, Nigeria

Keywords:

Trans-paramethoxycinnamaldehyde;2,4-diaminobenzoic acid;2-aminophenol; 1,8-diamino-3,6-dioxaoctane, binding poses

Abstract

Communication in Physical Sciences 2020, 5(4): 544-566

Received 29 May 2020/Accepted 29 July 2020

Three Schiff bases viz; 3,5-bis[(E)-[(2E)-3-(4-methoxyphenyl)prop-2-en-1-ylidene]benzoic acid (3,5-DA), 2-[(E)-[(2E)-3-(4-methoxyphenyl)prop-2-en-1-ylidene]amino]phenol (OAP) and [3-(4-methoxy-phenyl)-allylidene]-[2-(2-{2-[3-(4-methoxy-phenyl)-allylideneamino]-ethoxy}-ethoxy)-ethyl]-amine (TPMC/DDE) are reported. The Schiff bases were synthesized from the condensation reaction of trans-paramethoxycinnamaldehyde and the primary amines (3,5-diaminobenzoic acid, 2-aminophenol and 1,8-diamino-3,6-dioxaoctane respectively), in dry methanol. The synthesized Schiff bases were characterized using UV-Visible, Fourier transform infrared (FTIR), 1H, and 13C NMR spectroscopies. The In vitro antimicrobial screening of the Schiff bases were carried out on gram-positive bacteria: (Staphylococcus aureus and Bacillus subtillus) and gram-negative bacteria: (Pseudomonasaeruginosa, and Escherichia. coli strain13) and against the fungi, Aspergillus niger and Candida albicans using the agar well diffusion method. The ligands 3,5-DA and OAP only showed activity against the fungus, Candida albicans with inhibition zone diameter (IZD) of 10 mm and minimum inhibitory concentrations (MIC) of 5.0 mg/mL and 3.0 mg/mL respectively. The ligand, TPMC/DDE also showed varying activity against the bacteria, Pseudomonas aeroginosa with an IZD of 8.0 mm and MIC of 7.5 mg/mL while Escherichia coli displayed inhibition with an IZD of 10.0 mm and MIC of 1.9 mg/mL. According to molecular docking studies, the binding affinity of the compounds towards two validated antibiotic and antifungal drug targets (DD-transpeptidase–DDPT and N-myristyol transferase-NMT) were in agreement to their observed in vitro antimicrobial activities. Moreover, their retrieved binding poses explained intermolecular forces behind the interactions that exist between the proteins and the ligands, a knowledge which is very useful in structural modification for activity optimization.

 

Downloads

Download data is not yet available.

Author Biographies

G. U. Kaior, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pure and Industrial Chemistry

N. J. Nwodo, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pharmaceutical and Medicinal Chemistry

U. S. Oruma, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pure and Industrial Chemistry

A. Ibezim, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pure and Industrial Chemistry

A. E. Ochonogor, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pure and Industrial Chemistry

K. K. Onyia, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pure and Industrial Chemistry

Nnamdi L. Obasi, University of Nigeria, Nsukka, Enugu State, Nigeria

Department of Pure and Industrial Chemistry

References

Ahamad, R. P. & Quaraishi, M. A.(2010). Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions. Corrosion Science, 52(3), pp. 933-942.

Andrew, S., Clayton, H. H. & Edward, M. K.(1992). Introduction to Organic Chemistry, 4th Edition, Macmillan Publishing Company, USA, pp. 399.

Arun, S., Bhupendra J., Ruchi D. (2002). Process for the preparation of substituted trans-cinnamaldehyde, a natural yellow dye, from phenylpropane derivatives. US20020133045A1.

Bansode, V. J. (2012). A review on Pharmacological activities of cinnamonium cassia Blume. International Journal of Green Pharmacy, 6, pp. 102-108.

Bell, A. S., Mills, J. E., Williams, G. P., Brannigan, J. A., Wilkinson, A. J., Parkinson, T., Leatherbarrow, R. J., Tate, E. W., Holder, A. A., Smith, D. F. (2012). Selective inhibitors of protozoan protein N-myristoyltransferases as starting points for tropical disease medicinal chemistry programs. PLoS Neglected Tropical Diseases, 6(4):e1625,DOI: 10.1371/journal.pntd.0001625.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E. (2000).The protein data bank. Nucleic Acids Research, 28, pp. 235−342.

Chah, K. F., Eze, C. A., Emuelosi, C. E.& Esimone, C. O. (2006). Antibacterial and Wound Healing properties of Methanolic Extracts of some Nigerian Medicinal plants. Journal of Ethnopharmcology104, 164, pp. 164 – 167.

Finar, I. L, (2006). Organic Chemistry, 5th Edition, Darling Kindersley Publishing Co. India, pp. 844-847.

Golcu, A., Tumer, M., Demirelli, H. & Wheatley,R. A. (2005). Cd(II) and Cu(II) complexes of polydentate Schiff base ligand: synthesis, characterization, properties and biological activity. Inorganica Chimica Acta, 358, pp. 1785-1795.

Halgren, T. A. (1996). Merck molecular force field. Journal of Computational Chemistry, 17, pp. 490−641.

Iihan, S., Temel, H., Yilmaz, J. & Sekera, M. (2007). Synthesis, structural characterization and electrochemical studies of New macrocyclic

Schiff base containing pyridine head and its metal complexes. Journal of OrganoChemical Chemistry, 6, 9, pp. 3855-3865.

Ikechukwu, P. E. & Peter, A. A.(2015). Synthesis, Characterization and Biological Studies of metal (II) Complexes of (3E-3- (2-{E)-(1-[2, 4-

Dihydroxyphenylethylidene]amino}ethyl) imino]-1-phenylbutan-1-one Schiff Base. Molecules, 20, pp. 9788-9802.

Keshvari, M., Asgary, S., Jafarian-Dehkordi, A., Najafi ,S.,& Ghoreyshi-Yazdi, S. M. (2013). Preventive effect of cinnamon essential oil on lipid oxidation of vegetable oil, ARYA Atherosclerosis, 9, 5, pp. 280-286.

Kester, M., Karpa, K. D. &Vrana, K. E. (2012). Elservier’s Integrated Review Pharmacology (Second Edition, pp. 41-78.

Kong, J. –O., Lee, S.-M., Moon, Y.-S., Lee, S.-G.& Ahn, Y.-J. (2007). Nematicidal Activity of Cassia and Cinnamon Oil Compounds and Related Compounds toward Bursaphelenchusxylophilus (Nematoda: Parasitaphelenchidae). Journal of Nematology, 39, 1, pp.31-36.

Mangaiyarkkara, S. P. & Aru,l A. S. (2014). Synthesis, Spectral Characterization and Antimicrobial Studies of Some Novel Schiff, Base Metal Complexes of Vanilin, based Dihydropyrimidone Heterocyclic Product and 4-Aminoantipyrine. Asian Journal of Science and Technology, 5, 6, pp. 340-347.

Mashaly, M. M., Abd-Elwahab, Z. & Faheim, A. A.(2004). Preparation, Spectral, Characterisation and Antimicrobial activities of Schiff base complexes derived from 4-aminoantipyrine, mixed ligand complexes with 2-Aminopyridine 8-hydroxyquinoline and oxalic acid and their pyrolytic products. Journal of Chinese Chemical Society, 5, 5A, pp. 901-915.

Mohammed, N. I & Salaheddin, A. I. S. (2011). Synthesis, characterization and uses of Schiff base as flourimetric analytical reagents. E-Journal of chemistry, 8, 1, pp. 180-184.

Molecular Operating Environment, version 2010; Chemical Computing Group Inc: Montreal, Canada, 2010.

Mokhles, M. A., Mohammad, M. E., Shakodofa, H. A. & Samia, A. M. (2014). Synthesis, characterization and biological activity of some Ferrocenyl complexes containing Antipyrine Moiety. Transactions on Applied Chemistry, 1, 1, pp. 42-52.

Mostafa, M. H. K., Eman, H. I., Gehad, G.M., Eheb, M. Z.& Ahmed, B. (2012). Synthesis and characterization of a novel schiff base metal complexes and their application in determination of iron in different types of natural water. Open Journal of Inorganic Chemistry, 2, 2, pp. 13-21.

Nikaido, H. (1994). Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382±388 PMID: 8153625

Nwuche, C. O., Ujam, O. T., Ibezim, A., & Ujam, I. B. (2017). Experimental and In-Silico Investigation of Anti-Microbial Activity of 1-Chloro-2-Isocyanatoethane Derivatives of Thiomorpholine, Piperazine and Morpholine. PLoS ONE 12(1):e0170150. doi:10.1371/ jounal.pone.0170150

Obasi, N. L., Kaior, G. U., Ibezim, A., Ochonogor, A. E., Rhyman, L., Uahengo, V., Lutter, M., Jurkschat, K., & Ramasami, P. (2017). Synthesis, characterization, antimicrobial screening and in silico studies of Schiff bases derived from trans-paramethoxycinnamaldehyde. Journal of Molecular structure, 1149, pp. 8-16.

Obasi, N. L., Kaior, G. U., Rhyman, L., Ibrahim, A. A., Hoong-Kun, F., & Ramasami, P. (2016) Synthesis, Characterization, Antimicrobial Screening and Computational Studies of 4[-3-(4-methoxy-phenyl)-allylideneamino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one. Journal of Molecular Structure 1120, pp. 180-186.

Ojo, O. O., Ajayi, A. O. & Anibjuwon, I. I. (2007). Antibacterial potency of Extract of lower plants, Journal of Zhejiang University Sciences, 8 (3), pp. 189- 191.

Onoabedje, E. A., Ibezim, A., Okafor, S. N., Onoabedje, U. S., & Okoro, U. C. (2016). Oxazin-5-Ones as a Novel Class of Penicillin Binding ProteinInhibitors: Design, Synthesis and Structure Activity Relationship. PLoS ONE 11, 10, e0163467. doi:10.1371/journal.pone. 0163 4 67

Ooi, L. S.M., Li, Y., Kam, S. –L., Wang, H., Wong, E. Y. L., & Ooi, V. E. C. (2006). Antimicrobial Activities of Cinnamon Oil and Cinnamaldehyde from the Chinese Medicinal Herb Cinnamomum cassia Blume. American Journal of Chinese Medicine, 34,3, pp. 511-522.

Pallavi, G., Dinesh, K. & Sulekh, C. (2014). Schiff Base ligands and their transition metal complexes as Antimicrobial Agents. Journal of Chemical Biological and Physical Sciences, 4, 3, pp. 1946-1964.

Poole, K. (2002). Mechanisms of bacterial biocide and antibiotic resistance. Journal of Applied Microbiology, Symposium Supplement, 91, pp.55-64.

Prakash, A. & Adhikari, D. (2011). Application of Schiff bases and their metal complexes-A Review. International Journal of Chemical Technology Research, 3, 4, pp. 1891-1896.

Raman, N., Ravichandran, S. & Thangaraja, C.(2004).Copper (II), cobalt(II), nickel(II), zinc(II) complexes of Schiff base derived from Benzil -2,4- dinitrophenylhydrazone with Aniline. Journal of chemical sciences, 116, 4, pp. 215-219.

Rhohini, C. & Arul, A. S. (2014). Synthesis and Characterization of Bio-inorganic Transition Metal Complexes Derived From Novel Bignelli

Adduct Coupled Schiff Bases. International Journal of Pharmaceutical Sciences and Research, 2, 10, pp. 4339-4350.

Schmid, G. H. (1996). Organic Chemistry Mossby Year Book, 5th Edition, St Lious Missouri, pp. 620-628

Seelolla, G., Cheera, P., & Ponneri, V. (2014). Synthesis, Antimicrobial and Antioxidant Activities of Novel series of Cinnamamide Derivatives having Morpholine Moiety. Medicinal chemistry, 4, pp. 778-783.

Sobola, A. O., Watkins, G. M. & Brecht, B. V. (2014). Synthesis, characterization and antimicrobial activity of copper (II) complexes of some ortho-substituted aniline Schiff bases; crystal structure of bis(2-methoxy-6-imino)methylphenol copper(II) complex. South African Journal of Chemistry, 67, pp. 45-51 .

Sogabe, S., Masubuchi, M., Sakata, K., Fukam, T. A., Morikami, K., Shiratori, Y., Ebiike, H., Kawasaki, K., Aoki, Y., Shimma, N., D'Arcy, A., Winkler, F. K., Banner, D. W. & Ohtsuka, T.(2002). Crystal Structures of Candida albicans N-Myristoyltransferase with Two Distinct Inhibitors. Chemistry & Biology, 9(10), pp. 1119-1128.

Suresh, M. S. & Prakash, V. (2011). Preparation, characterisation and Antibacterial Studies of Chelates of Schiff Base Derived from 4-aminoantipyrine, furfural and O-phenylamine. E- Journal of Chemistry, 8, 3, pp. 1408-1416.

Thomas, M., Kulandaisamy, A. & Manohar, A. (2012). Synthesis, spectral characterization, Redox and biological screening studies of Schiff base transition metal complexes. Journal of Pharmacy Research, 5, 1, pp. 86-90

Vogel, A. I. (1989). Vogel’s Textbook of practical Organic Chemistry, 5th Edition, Longman Scientific and Technical, Longman House, Burnt Mill, England, pp. 782, 900, 1412-1435.

Wang, K. C., Chang, J. S., Chiang, L. C. & Lin, C. C. (2009). "4-Methoxycinnamaldehyde inhibited human respiratory syncytial virus in a human larynx carcinoma cell line". Phytomedicine. 16, 9, 882–886.

Wolters, K. (2009). Clinical Pharmacology made Incredibly Easy, 3rd ed.; Lippincott, W and Wilkins: USA, pp. 256, 257.

Yannai, S. (2004). Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients., Chapman & Hall/CRC, Boca Raton, xvii, pp. 1763.

Yuan, H., Wang, H., Li, Z., Li, S., Zhang, Y. & Chen, Y. (2015). Synthesis and antifungal property of N,N′-bis(trans-cinnamaldehyde)-1,2-diiminoethane and its derivatives. Journal of Toxicological & Environmental Chemistry, 2015, 97, 3-4, pp. 429-438.

Downloads

Published

2020-07-30