Statistical Characterization of Surface Duct Conditions and their Implications on Microwave Propagation Over Lagos, Nigeria
Keywords:
Surface duct, microwave propagation, coastal region, ECMWF, ERA-5Abstract
Communication in Physical Sciences, 2024, 11(3): 628-640
Authors: Olalekan Lawrence Ojo, Joseph Sunday Ojo and Omotoyosi Omotayo Omoyele
Received: 04 April 2024/Accepted: 11 July 2024
Surface ducts, and atmospheric layers that trap and guide radio waves can significantly impact microwave signal propagation. Consequently, in this study, we analyzed their statistical occurrence in Lagos, Nigeria, using five years (2018-2022) of meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-5 reanalysis. The investigation focused on how factors like temperature, humidity, and pressure influence radio refractivity and the formation of surface ducts at different heights (100 m and 300 m) and observation times (00:00 and 12:00 hours). The results reveal a higher prevalence of surface ducts at 100 meters, particularly during the dry season (November-March) and at noon (12:00 hour). This implies that microwave signals are more likely to be trapped and travel farther during these periods, potentially causing interference with distant communication systems. Our findings establish the importance of considering surface ducts when designing and deploying communication infrastructure in coastal regions like Lagos.
Downloads
References
Adediji, A. T. & Ajewole, M. O. (2008). Vertical profile of radio refractivity gradient in Akure south-west Nigeria. Progress in Electromagnetics Research C, 4, pp.157-168.
Adediji, A. T., & Ajewole, M. O. (2010). Microwave anomalous propagation (AP) measurement over Akure South-Western Nigeria. Journal of Atmospheric and Solar-Terrestrial Physics, 72, pp. 550-555.
Adediji, A. T., Ajewole, M. O., & Falodun, S. E. (2011). Distribution of radio refractivity gradient and effective earth radius factor (k-factor) over Akure, South Western Nigeria. Journal of Atmospheric and Solar-Terrestrial Physics, 73, pp.2300-2304.
Adediji, A. T., Mahamod, I., & Mandeep, J. S. (2013). Variation of radio field strength and radio horizon distance over three stations in Nigeria. Journal of Atmospheric and Solar-Terrestrial Physics, 109, pp.1-6.
Adediji, A. T., & Ogunjo, S. T. (2014). Variations in non-linearity in vertical distribution of microwave radio refractivity. Progress in Electromagnetics Research, 36, pp.177-183.
Adelakun, A. O., Ojo, J. S., & Edward, O. V. (2020). Quantitative analyses of complexity and nonlinear trend of radio refractivity gradient in the troposphere. Advances in Space Research, 65, 9, pp. 2203-2215. doi.org/10.1016/j.asr.2019. -09.055
Adeniji, A. E., Njah, A. N., & Olusola, O. I. (2020). Regional and seasonal variation of chaotic features in hourly solar adiation based on recurrence quantification analysis. Journal of Applied Nonlinear Dynamics, 9, 2, pp. 175-187.
Adeyemi, R. A., & Kolawole, L. B. (1992). Seasonal and diurnal variations of surface refractivity in Akure, South-Western Nigeria. (Unpublished MSc Thesis). Department of Physics, Federal University of Technology, Akure, Nigeria.
Afolabi O. J, Adedamola O, O & Fashola O. K (2017): Socio-Economic Impact of Road Traffic congestion on Urban Mobility: A Case Study of Ikeja Local Government Area of Lagos State, Nigeria. The Pacific Journal of Science and Technology, 18, 2, pp. 246-254.
Afolabi, L. O., Seluwa, E. O., Shogo, O. E., & Adebayo, K. (2018). Monthly classification of tropospheric refraction and duct height near sea-level, Lagos State of Nigeria. Annals of Faculty Engineering – International Journal of Engineering, XV, 1, pp. 81-85.
Agbo, E. P., Ettah, E. B., & Eno, E. E. (2020). The impacts of meteorological parameters on the seasonal, monthly, and annual variation of radio refractivity. Indian Journal of Physics, 95, pp. 195–207 , doi.org/10.1007/s -12648-020-01711-9
Arya, S. P., (1988): Introduction to Micrometeorology. Academic Press, 307 pp.
Ayantunji B. G. & Okeke P. N. (2011) Diurnal and seasonal variation of surface refractivity over Nigeria, Progress In Electromagnetics Research B, 30, pp. 201–222.
Babin, S. M. (1995). A case study of sub-refractive conditions at Wallops Island, Virginia. Journal of Applied Meteorology, 34, pp. 1028-1038.
Babin, S. M., & Rowland, J. R. (1992). Observation of a strong surface radar duct using helicopter acquired fine-scale radio refractivity measurements. Geophysical Research Letters, 19, pp. 917-919.
Barclay, L. (2003). Propagation of radio-waves (2nd ed.). The Institution of Electrical Engineers.
Barry, R.G. & Chorley, R.J. (2010) Atmosphere, Weather and Climate. 9th Edition, Routledge, New York.
Bean, B. R., & Dutton, E. J. (1968). Radio meteorology. Dover Publication Co.
Bonkoungou, Z., & Low, K. (1993). Radio wave propagation measurement in Burkina Faso. SMR on radio wave propagation in tropical regions, Trieste, Italy.
Brook I.M, Goroch A.K & Rogers G (1999): Observations of Strong Surface Radar Ducts over the Persian Gulf, Journal of Applied Meteorology 38(, 9, pp. 1293-1310.
Craig, K. H. (1996). Clear air characteristics of the troposphere. In M. P. Hall, L. W. Barclay, & M. T. Hewitt (Eds.), Propagation of Radio Waves (pp. 105-130). The Institution of Electrical Engineers.
Craig, K. H. & Hayton, T. G. (1995). Climatic mapping of refractivity parameters from radiosonde data. In Proceedings of Conference on Propagation Assessment in Coastal Environments (pp. 43-1–43-14). AGARD-NATO.
Falodun, S. E., & Kolawole, L. B. (2000). Studies of super-refractivity and ducting in Nigeria. Nigeria Journal of Pure and Applied Physics, 1, pp.5-10.
Falodun, S. E., & Ajewole, M. O. (2006). Radio refractive index in the lowest 100-m layer of the troposphere in Akure, South Western Nigeria. Journal of Atmospheric and Solar-Terrestrial Physics, 68, pp. 236-243.
Grabner, M., & Kvicera, V. (2003). Refractive index measurement at TV tower Prague. Radioengineering, 12, 1, pp. 5-7.
Grabner, M., & Kvicera, V. (2003). Clear-air propagation modeling using parabolic equation method. Radioengineering, 12, 4, pp. 50-54.
Hall, M. P. M. (1979). Effect of the troposphere on radio communication electromagnetic waves series. Peter Peregrinus Ltd.
Hitney, H. V., Richter, J. H., Pappert, R. A., Anderson, K. D., & Baumgartner, G. B. Jr. (1985). Tropospheric radio propagation assessment. Proceedings of the IEEE, 73, pp. 265-283.
Holton, J.R. (2004) Introduction to Dynamic Meteorology. 4th Edition, Elsevier, Amsterdam, 535 p.
Hughes, K. A. (1988). CCIR propagation studies for Africa. ITU Telecommunication Journal, 55, pp. 50-66.
Ikharo, A. B., Okereke, U. O., Jiya, J. D., & Amhenrior, H. E. (2023). Tropospheric duct presence and their effects on communication signals in Abidjan, Douala and Libreville. Journal of Energy Technology and Environment, 5, 1, doi.org/10.5281/zenodo.7741288
ITU-R. (1987). The radio refractive index; its formula and refractivity data. ITU-R Recommendation 370, pp. 453-456.
Kolawole, L. B. (1981). Vertical profiles of radio refractivity over Nigeria. Journal of the West African Science Association, 26, pp.41-60.
Kolawole, L. B., & Owonubi, J. J. (1982). The surface radio refractivity over Africa. Nigerian Journal of Science, 16, 1-2, pp. 441-454.
Labe, Z. (2023). Copernicus Programme: Climate Change Service, 3.
Liu, F., Pan, J., Zhou, X., & Li, G. Y. (2021). Atmospheric ducting effect in wireless communications: Challenges and opportunities. Journal of Communications and Information Networks, 6, 2, pp. 101-109. doi.org/10.23919/JCIN.2021.9475120
Mentes, S. S., Topcu, S., Unal, Y., & Borhan, Y. (2001). An overview of wind energy potential along the coastal regions of the Black Sea in the north of Turkey. In Proceedings of the Third European and African Conference on Wind Engineering (pp. 385-392). Eindhoven University of Technology.
Ojo, O. (1977). The Climate of West Africa. Heinemann.
Ojo, O. L., Ojo, J. S., & Akinyemi, P. (2017). Characterization of secondary radioclimatic variables for microwave and millimeter wave link design in Nigeria. Indian Journal of Radio & Space Physics, 46, pp.83-90.
Otasowie, P. O. (2008). A study and analysis of microwave link degradation due to atmospheric conditions: A case study of Akure-Owo digital microwave link (PhD thesis). University of Benin, Benin City, Nigeria.
Otasowie, P. O., & Edeko, F. O. (2009). An investigation of microwave link degradation due to atmospheric conditions: A case study of Akure-Owo digital microwave link. Advances in Materials and System Technologies, 62-64, pp. 159-165.
Owolabi, I. E., & Williams, V. A. (1970). Surface radio refractivity patterns in Nigeria and the Southern Cameroon. Journal of the West African Science Association, 1, pp. 3-17.
Richter, J., & Hitney, H. (1980). The effects of atmospheric refractivity on microwave propagation. In Atmospheric Water Vapour (pp. 203-218).
Saleem, M. U. (2016). Statistical investigation and mapping of monthly modified refractivity gradient over Pakistan at the 700 hectopascal level. Open Journal of Antennas and Propagation, 4, pp. 46-63. https://doi.org/10.4236/ojapr.2016.42005
Willoughby, A. A., Aro, T. O., & Owolabi, I. E. (2002). Seasonal variations of radio refractivity gradients in Nigeria. Journal of Atmospheric and Solar-Terrestrial Physics, 64, pp. 417-425.
Yang, C., Shi, Y., & Wang, J. (2022). The preliminary investigation of communication characteristics using evaporation duct across the Taiwan Strait. Journal of Marine Science and Engineering, 10, 10 1493.doi.org/10. -3390/jmse10101493
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.