Machine Learning in Thermochemistry: Unleashing Predictive Modelling for Enhanced Understanding of Chemical Systems
Keywords:
Machine learning, thermochemistry, Artificial IntelligenceAbstract
Machine Learning (ML) has become a game-changing tool in many scientific sectors, altering research and spurring progress in a wide range of fields. The incorporation of ML approaches has created new predictive modelling opportunities in the context of thermochemistry, enabling more accurate and efficient prediction of the thermodynamic parameters of chemical systems. The article emphasizes the use of machine learning techniques in thermochemistry, highlighting the potential advantages and difficulties encountered in this quickly expanding field. The application of these algorithms helps in the prediction of fundamental thermodynamic quantities, including enthalpy, entropy, heat capacity, and free energy, allowing researchers to learn more about the energetics of chemical reactions and the stability of intricate molecular systems. The article also discusses openness, accountability, and the appropriate use of these formidable tools to ensure scientific integrity and prevent potential biases. These issues are related to the ethical problems linked with the application of ML in thermochemistry. As a result of the application of machine learning to thermochemistry research, a new era of predictive modelling has begun, offering a variety of opportunities to understand the intricate workings of chemical systems. ML provides enormous promise for expediting scientific discovery and improving our comprehension of thermodynamics in chemistry by eliminating obstacles and incorporating moral principles.
Most read articles by the same author(s)
- Humphrey Sam Samuel, Nonelectrochemical Techniques in corrosion inhibition studies: Analytical techniques , Communication In Physical Sciences: Vol. 9 No. 3 (2023): VOLUME 9 ISSUE 3
- Humphrey Sam Samuel, Emmanuel Edet Etim, John Paul Shinggu, Bulus. Bako , Machine learning of Rotational spectra analysis in interstellar medium , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- John Paul Shinggu, Emmanuel Edet Etim, Alfred Ikpi Onen, Quantum Chemical Studies on C2H2O Isomeric Species: Astrophysical Implications, and Comparison of Methods , Communication In Physical Sciences: Vol. 9 No. 2 (2023): VOLUME 9 ISSUE 2
Similar Articles
- Ololade Omosunlade, Curriculum Framework for Entrepreneurial Innovation among Special Needs Students in the Age of Artificial Intelligence , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Temitope Deborah Babayemi, Nafisat Olabisi Raji, Osita Victor Egwuatu, Oludoyi Mayowa Olumide, Integrating Artificial Intelligence with Assistive Technology to Expand Educational Access through Speech to Text, Eye Tracking and Augmented Reality , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Human-AI Collaboration: Enhancing Decision-Making in Critical Sectors , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Spiking Neural Networks (SNNs): A Path towards Brain-Inspired AI , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Dahunsi Samuel Adeyemi, Effectiveness of Machine Learning Models in Intrusion Detection Systems: A Systematic Review , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Ayomide Ayomikun Ajiboye, Investigating the Role of Machine Learning Algorithms in Customer Segmentation , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Ayomide Ayomikun Ajiboye, Muslihat Adejoke Gaffari, Onaara Enitan Obamuwagun, Predictive Analytics in Sport Management: Applying Machine Learning Models for Talent Identification and Team Performance Forecasting , Communication In Physical Sciences: Vol. 12 No. 7 (2025): Volume 12 issue 7
- Yisa Adeniyi Abolade, Bridging Mathematical Foundations and Intelligent Systems: A Statistical and Machine Learning Approach , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- David Adetunji Ademilua, Edoise Areghan, Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Joy Nnenna Okolo, A Review of Machine and Deep Learning Approaches for Enhancing Cybersecurity and Privacy in the Internet of Devices , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
You may also start an advanced similarity search for this article.



