Machine learning of Rotational spectra analysis in interstellar medium
Keywords:
Machine learning, artificial intelligence, interstellar molecules, rotational spectroscopyAbstract
In the investigation of rotating spectra concerning the interstellar medium, machine-learning approaches have been documented as effective instrument. The understanding of molecular rotational transitions in space and can be a significant source of information on the dynamics, physical properties, and chemical make-up of interstellar spaces. Traditional analytical techniques are however confronted with difficulties when dealing with the enormous and complicated information produced by telescopic observations. The handling of these massive datasets and the extraction of useful data from rotating spectra can be accomplished using machine learning methods, which are a promising approach. This article gives a general overview of the developments of machine learning in the analysis of rotational spectra in the interstellar medium. It goes over how to recognize and describe molecular transitions using supervised and unsupervised learning algorithms, deep learning architectures, and spectral line fitting methods. Also, machine learning algorithms can aid detection of spectral lines that are weak or infrequent but may contain important data regarding the chemical complexity of interstellar areas.
They help make new molecular discoveries and enable the research of previously undiscovered spectral regions in the electromagnetic spectrum. Despite these developments, there are still problems to be solved, such as handling data noise, uncertainty, and over fitting. By enabling effective and automatic extraction of chemical information from complicated datasets, machine learning in rotational spectra analysis revolutionizes the study of interstellar chemistry. It enables scientists to learn about the chemical diversity and development of interstellar regions, making crucial contributions to our comprehension of the genesis and development of the universe.
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Humphrey Sam Samuel, Nonelectrochemical Techniques in corrosion inhibition studies: Analytical techniques , Communication In Physical Sciences: Vol. 9 No. 3 (2023): VOLUME 9 ISSUE 3
- John Paul Shinggu, Emmanuel Edet Etim, Alfred Ikpi Onen, Quantum Chemical Studies on C2H2O Isomeric Species: Astrophysical Implications, and Comparison of Methods , Communication In Physical Sciences: Vol. 9 No. 2 (2023): VOLUME 9 ISSUE 2
- Humphrey Sam Samuel , Emmanuel Edet Etim, John Paul Shinggu, Bulus Bako, Machine Learning in Thermochemistry: Unleashing Predictive Modelling for Enhanced Understanding of Chemical Systems , Communication In Physical Sciences: Vol. 11 No. 1 (2024): VOLUME 11 ISSUE 1
Similar Articles
- Itoro Esiet Ukpe, Oluwatosin Atala, Olu Smith, Artificial Intelligence and Machine Learning in English Education: Cultivating Global Citizenship in a Multilingual World , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Abubakar Tahiru, Oluwasanmi M. Odeniran, Shardrack Amoako, Developing Artificial Intelligence-Powered Circular Bioeconomy Models That Transform Forestry Residues into High-Value Materials and Renewable Energy Solutions , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Samira Sanni, A Review on machine learning and Artificial Intelligence in procurement: building resilient supply chains for climate and economic priorities , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Humphrey Sam Samuel , Emmanuel Edet Etim, John Paul Shinggu, Bulus Bako, Machine Learning in Thermochemistry: Unleashing Predictive Modelling for Enhanced Understanding of Chemical Systems , Communication In Physical Sciences: Vol. 11 No. 1 (2024): VOLUME 11 ISSUE 1
- Raymond Sugar Ebere Amougou, AI-Driven DevOps: Leveraging Machine Learning for Automated Software Delivery Pipelines , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Olaleye Ibiyeye, Joy Nnenna Okolo, Samuel Adetayo Adeniji, A Comprehensive Evaluation of AI-Driven Data Science Models in Cybersecurity: Covering Intrusion Detection, Threat Analysis, Intelligent Automation, and Adaptive Decision-Making Systems , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Samuel Omefe, Simbiat Atinuke Lawal, Sakiru Folarin Bello, Adeseun Kafayat Balogun, Itunu Taiwo, Kevin Nnaemeka Ifiora, AI-Augmented Decision Support System for Sustainable Transportation and Supply Chain Management: A Review , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Abdulateef Oluwakayode Disu, Henry Makinde, Olajide Alex Ajide, Aniedi Ojo, Martin Mbonu, Artificial Intelligence in Investment Banking: Automating Deal Structuring, Market Intelligence, and Client’s Insights Through Machine Learning , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Christianah Oluwabunmi Ayodele, Esther Oludele Olaniyi, Chukwuebuka Francis Udokporo, Applications of AI in Enhancing Environmental Healthcare Delivery Systems: A Review , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Fatima Binta Adamu, Muhammad Bashir Abdullahi, Sulaimon Adebayo Bashir, Abiodun Musa Aibinu, Conceptual Design Of A Hybrid Deep Learning Model For Classification Of Cervical Cancer Acetic Acid Images , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
You may also start an advanced similarity search for this article.



