A Mathematical Model of Fluid Dynamics in the Ear due to External Noise
Keywords:
Noise, Cochlea, Potential Theory, Fluid motion, HearingAbstract
A mathematical model of fluid dynamics in the Cochlea was formulated and solved using the potential flow theory. The obtained solutions of the model representing the flow in the Cochlea shows that the flow looks chaotic, but in reality, it is so because of the multi-dimensional nature of the variables associated with noise. Also determined is the nature of the flow at both chambers of the cochlea where we saw that the magnitudes of the velocity potentials are the same with only a difference in sign denoting their positions in relation to the basilar membrane. We observed that the velocity potential in the horizontal axis increases with distance front the base of the basilar 'membrane when the flexural rigidity varies as the distance increases. Other analyses were also carried out to confirm the experimental evidences about the effect of noise in the ear.
Downloads
Published
Issue
Section
Similar Articles
- Richard Alexis Ukpe, The Investigation of the Corrosion Inhibition Efficiency of Aqueous extract of Vernomia Amygdalina for Mild Steel In Various Concentrations of HCl , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Comfort M. Ngwu, Adeniji Moshood Oluwaseyi , Chioma Ikechi Harbour , The Effects of Microplastics and its Additives in Aquatic Ecosystem - A Review , Communication In Physical Sciences: Vol. 10 No. 2 (2023): VOLUME 10 ISSUE 2
- Jibril Yahaya Kajuru, Hussaini Garba Dikko, Aminu Suleiman Mohammed, Aliyu Ibrahim Fulatan, Generalized Odd Gompertz-G Family of Distributions: Statistical Properties and Applications , Communication In Physical Sciences: Vol. 10 No. 2 (2023): VOLUME 10 ISSUE 2
- Ndidiamaka Justina Agbo, Pius Oziri Ukoha, Uchechukwu Susan Oruma, Tania Groutso, Oguejiofo Theophilus Ujam, Solomon Ejike Okereke, Crystal Structure, in Silico Studies and Anti-diabetic Potentials of 3-e-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1h-pyrazol-4-yl)hyd -razinylidene]pentane-2,4-dione(hdpp)and its Cu(II) and Ni(II) complexes , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Charles German Ikimi, Ijeoma Cynthia Anyaoku, Maryann Nonye Nwafor, Biomarker Potentials of Postmortem Vitreous Biochemical Parameters For Resolving Disputed Causes of Death by Drowning Using Animal Models , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
You may also start an advanced similarity search for this article.