Sequestration of Co2+, Zn2+ and Cd2+ by Base Modified Sweet Potato Leaf: Kinetics, Equilibrium and Thermodynamic Studies
Keywords:
Pollution, remediation, biosorption,, sweet potato leaf, heavy metals, kineticsAbstract
Communication in Physical Sciences, 2022, 8(1): 81- 95
Authors: Abimbola A. Ogundiran, Najeem A. A. Babarinde, Edwin A. Ofudje and Olusegun O. Ogundiran
Received: 03 November 2021/Accepted 24 March 2022
The use of base modified sweet potato leaf (BSPL) was demonstrated as an effective adsorbent for the removal of cobalt, zinc and cadmium ions using the batch adsorption process. The biosorption properties of the adsorbent for metal ions were evaluated for sorption time, initial concentration of the contaminants, pH, sorbent dosage and temperature. Maximum uptakes of metal ions were attained after 100 minutes for Zn2+and Cd2+ ions and at 150 minutes for Co2+ ions. Kinetic analysis of the adsorption data revealed that the biosorption data were best described by the Pseudo-second-order model(R2 >0.95). It was also apparent that the data best fitted the Langmuir model, which yielded a maximum adsorption capacity of 3.879, 4.069 and 4.368 mg.g-1 for Zn2+, Cd2+ and Co2+ respectively. Analysis of calculated thermodynamic parameters affirms that the biosorption process is feasible, spontaneous, and endothermic. Evaluated entropy change (ΔS) for the adsorption processes were 162.12, 171.93, and 174.93 J.mol-1.K-1 for Co2+,Zn2+, and Cd2+ ions respectively which is in agreement with the expected randomness of the system. Prominent infrared absorption bands which could be involved in the adsorption process included –OH, -NH2, C=C, C=O, and C-O functional groups, while SEM analysis showed agglomeration of round particles shapes on the surface structure of the biomass. Thus, base-modified sweet potato leaves can be used as an excellent adsorbent to sequester toxic metal ions from wastewater
Downloads
References
Adeogun, A. I., Ofudje, E, A., & Ahmed, S. A. (2012). Biosorption of Cr(VI) ion from aqueous solution by maize husk: Isothermal, kinetic and thermodynamic study. Journal of Chemical Society of Pakistan, 34, 6, pp. 1388-1396. .
Adeogun, A. I., Ofudje, E. A., Idowu, M. A., Kareem, S. O., Vahidhabanu, S. & Babu, B. R. (2018). Biosorption of Cd2+ and Zn2+ from aqueous solution using tilapia fish scale (Oreochromis sp): Kinetics, isothermal and thermodynamic study. Desal. and Water Treatm., 107, pp.:182-194.
Ahmady-Asbchin, S., Andres, Y., Gerente, C. & Cloirec, P. L. (2008). Biosorption of Cu(II) from aqueous solution by Fucus serratus: surface characterization and sorption mechanisms. Bioresour. Technol. 99, pp. 6150–6155.
Ali, R. M., Hamad, H. A., Hussein, M. M. & Malash, G. F. (2016). Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol. Eng. 91, pp. 317–332 .
Bilge, A. & Sevil. V. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J. Hazard Mater 167, pp. 482–488.
Chaabane, L., Beyou, E., El Ghali, A. & Baouab, M. H. V. (2019). Comparative studies on the adsorption of metal ions from aqueous solutions using various functionalized graphene oxide sheets as supported adsorbents. J. Hazard Mater, doi: https://doi.org/10.1016/j.jhazmat.2019.121839.
Cherasse, Y. & Urade, Y. (2017). Dietary Zinc Acts as a Sleep Modulator. International Journal of Molecular Sciences. 18, 11, doi:10.3390 -/ijms18112334.
Dubinin, M. M., Zaverina, E. D. & Radushkevich, L. V. (1947). Sorption and structure of active carbons. I. Adsorption of organic vapors. Zh. Fiz Khim 21, pp. 1351–1362.
Eddy, N. O. (2009). Modeling of the adsorption of Zn2+ from aqueous solution by modified and unmodified Cyperus esculentus shell. Electronic Journal of Environmental, Agriculture. & Food Chemistry, 8, 11, pp. 1177-1185.
Eddy, N. O., Garg, R., Garg, R., Aikoye, A. and Ita, B. I. (2022). Waste to resource recovery: mesoporous adsorbent from orange peel for the removal of trypan blue dye from aqueous solution. Biomass Conversion and Biorefinery, DOI: 10.1007/s13399-022-02571-5.
Farooq, U., Kozinski, J., Ain Khan, M. & Athar, M. (2010). Biosorption of heavy metal ions using wheat based biosorbents – a review of the recent literature. Bioresour. Technol., 101, pp. 5043–5053.
Fosmire, G. J. (1990). Zinc toxicity. American Journal of Clinical Nutrition. 51, 2, pp. 225–7. doi:10.1093/ajcn/51.2.225.
Freundlich, H. M. F. (1906). Über die adsorption in lösungen, Z. Phys. Chem., 57, pp. 385-470.
Ghoneim, M. M., El-Desoky, H. S., El-Moselhy, K. M., Amer, A., El-Naga, E. H. A., Mohamedein, L. I. & Al-Prol, A. E. (2014). Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca. Egyptian J. Aquatic Resear. 40, pp. 235–242.
Hambidge, K. M. & Krebs, N. F. (2007). Zinc deficiency: a special challenge. J. Nutr. 137, 4, pp. 1101–5. doi:10.1093/jn/137.4.1101.
Iqbal, M., Saeed, A. & Zafar, S. I. (2007). Hybrid biosorbent: An innova¬tive matrix to enhance the biosorption of Cd (II) from aqueous solution. J. Hazard. Mater., 148, pp. 47–55.
Ivanets, A. I., Kitikova, N. V., Shashkova, I. L., Oleksiienko, O. V., Levchuk, I. & Sillanpa, M. (2014). Removal of Zn2+, Fe2+, Cu2+, Pb2+, Cd2+, Ni2+ and Co2+ ions from aqueous solutions using modified phosphate dolomite. J. Environ. Chem. Eng., 2, pp. 981–987.
Jaishankar, M., Tseten, T., Anbalagan, N.; Mathew, B.B. & Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicology, 7, 60–72.
Janegitz, B. C., Figueiredo-Filho, L. C. S., Marcolino-Junior, L. H., Souza, S. P. N., Pereira-Filho, E. R. & Fatibello-Filho, O. (2011).
Develop¬ment of a carbon nanotubes paste electrode modified with cross linked chitosan for cadmium (II) and mercury (II) deter¬mination. J. Electroanal. Chem., 660, pp. 209–216.
Kadir, A. A. & Puade, A. (2013). The utilisation of activated carbon (AC) from palm shell waste to treat textile wastewater. Adv. Envi¬ron. Biol., 7, 12, 3621–3627.
Lagergren, S. (1898). Zur Theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens Handlingar, 24, pp. 1-39.
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 40, pp. 1361–1403.
Minceva, M., Fajgar, R., Markovska, L. & Meshko, V. (2008). Comparative Study of Zn2+, Cd2+, and Pb2+ Removal From Water Solution Using Natural Clinoptilolitic Zeolite and Commercial Granulated Activated Carbon. Equilibrium of Adsorption. Separation Science and Technology, 43, pp. 1–27.
Nkiko, M. O., Adeogun, A. I., Babarinde, N. A. & Sharaibi, O. J. (2013). Isothermal, kinetics and thermodynamics studies of the bio¬sorption of Pb (II) ion from aqueous solution using the scale of croaker fish (Genyonemuslineatus). J. Water Reuse Desal., 3, 3, pp. 239–248.
Odoemelam, S. A., Emeh, N. U. & Eddy, N. O. (2018). Experimental and computational Chemistry studies on the removal of methylene blue and malachite green dyes from aqueous solution by neem (Azadiractha indica) leaves. Journal of Taibah University of Science, 12, 3, pp. 255–265 doi.org/10.1080/16583655.2018.1465725.
Ofudje, E. A., Williams, O. D., Asogwa, K. K.& Awotula, A. O. (2013). Assessment of Langmuir, Freundlich and Rubunin- Radushhkevich
Adsorption Isotherms in the study of the biosorption of Mn (II) ions from aqueous solution by untreated and acid-treated corn shaft. Int. J. Sci. and Eng. Res., 4, 7, pp. 1628-1634.
Ofudje, E. A., Adeogun, A. I., Idowu, M. A. & Kareem, S. O. (2018). Synthesis and Characterization of Hydroxyapatite Nanoparticles and Its Adsorption Parameters for Zn2+ and Reactive Yellow 4 Dye in Aqueous Solution. J. Chem. Soci. Nig. 43, 3, pp. 409 -421.
Opiso, E., Sato, T. & Yoneda, T. (2009). Adsorption and co-precipitation behavior of arsenate, chromate, selenate and boric acid with synthetic allophane-like materials. J. Hazard. Mater.,170, pp. 79–86.
Prasad, A. S. (2008). Zinc in Human Health: Effect of Zinc on Immune Cells. Mol.Med. 14, 5–6, pp. 353–7. doi:10.2119/2008-00033.
Seo-Yun, L. & Hee-Jeong, C. (2017). Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution. Journal of Environmental Mangament, . 209, pp. 382e392.
Temkin, M. J. & Pyzhev, V. (1940). Recent modifications to Langmuir isotherms. Acta Physiochim. USSR, pp. 12:217-222.
Uchechukwu, O. F., Azubuike, O. S. & Eddy, N. O.(2015). Biosorption of Cd2+, Ni2+ and Pb2+ by the shell of Pentaclethra macrophylla. Equilibrium isotherm study. Journal of Science, Technology and Environmental Informatics, 2, 1, pp. 26-35.
Veli, S. & Alyüz, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. J. Hazardous Materials, 149, pp. 226–233.
Weber, W. J. & Morris, J. C. (1963). Kinetic of adsorption on carbon from solution, J. Sanit. Eng. Divis., Proceedings of the American Society of Civil Engineers, 89, pp. 31-60.
Witek-Krowiak, A., Szafran, R. G. & Modelski, S. (2011). Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination, 265, 1–3), pp. 126–134.
Yamada, K. (2013). Chapter 9. Cobalt: Its Role in Health and Disease". In Astrid Sigel; Helmut Sigel; Roland K. O. Sigel (eds.). Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences. 13. Springer. pp. 295–320. doi:10.1007/978-94-007-7500-8_9.
Zhang, L., Zhao, Y-H. & Bai, R. (2011). Development of multifunction membrane for chromatic warning and enhanced adsorptive removal of heavy metal ions: application to cadmium. J. Memb. Sc., 379, pp. 69–79.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 The Journal and the author
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.