Resource recovery from Sugar Cane Biomass for the Synthesis of Silicon Nanoparticles
DOI:
https://doi.org/10.4314/aqh0dn30Keywords:
resource recovery, sugar cane, waste, silicon nanoparticles, synthesis, characterizationAbstract
This study presents a green synthesis approach for silicon oxide nanoparticles (SiONPs) using plantain peels, highlighting their structural and surface
properties, potential applications, and environmental benefits. UV-visible absorption spectroscopy revealed a peak absorption at
341 nm, corresponding to a bandgap of 3.87 eV, confirming the semiconductor nature of the synthesized SiONPs. The X-ray diffraction (XRD) analysis displayed a prominent peak at 69.24°, indicative of high crystallinity and minimal amorphous content, with a calculated crystallite size of 0.23 nm based on Scherrer’s equation. Brunauer-Emmett-Teller (BET) surface area analysis showed a surface area of 198.98 m²/g, exceeding literature values and suggesting enhanced adsorption properties. Additional analyses using Barrett-JoynerHalenda (BJH), Dubinin-Radushkevich (DR), and Density Functional Theory (DFT) models indicated a mesoporous structure with an average pore diameter of 5.5545 nm and a pore volume of 0.0371 cc/g, suitable for applications requiring high surface area-to-volume ratios. Compared to reported values for SiONPs synthesized by traditional methods, the SiONPs obtained from plantain peel demonstrate promising structural integrity and
mesoporosity. This research emphasizes the feasibility of using agro-waste for nanoparticle synthesis, offering a sustainable alternative with potential applications in environmental and catalytic processes.
Downloads
Published
Issue
Section
Similar Articles
- Usman Ibrahim, Musa Muhammad, Yakubu Azeh, Muhammad Umar Badeggi , Isolation and Synthesis of Cellulose Nanofibers From Cassava Inner Peel Using Phosphoric Acid , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Enock Aninakwah, Isaac Aninakwah , Emmanuel Yeboah Okyere, Quantitative Analysis of Plastic Waste Accumulation in Coastal Ghana: Implications for Waste Management , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Yusuf James, Yisa Jonathan, Jimoh Oladejo Tijani, Razak Bolakale Salau, Elijah Yanda Shaba , Mr. , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
- Yunusa Habibat, Omoniyi K. Isreal, Stephen Abechi, Aroh A. Oyibo, Owolabi A. Awwal, Imam Naziru, Green Synthesis of Titanium Oxide (TiO2) Nanoparticles Using Phyllanthus Niruri and Assessment of Its Antibacterial Activity in Wastewater Treatment , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Elisha Karu, Buhari Magaji, Zaccheus Shehu, Hadiza Abdulsalam, Biosynthesis of Zinc Oxide Nanoparticles Using Solenostemon Monostachyus Leaf Extract and its Antimicrobial Activity , Communication In Physical Sciences: Vol. 6 No. 1 (2020): VOLUME 6 ISSUE 1
- Elizabeth C. Nwaokorongwu, Dual Solution Synthesis and Characterization of Sns:Zns Alloyed Thin Films and Possible Applications in Solar Systems and Others , Communication In Physical Sciences: Vol. 9 No. 2 (2023): VOLUME 9 ISSUE 2
- Mikyitsabu Ago Atoshi, Ataitiya Hyelalibiya, Production and Characterization of Chemically Activated Carbon from Khaya senegalensis Shell Waste , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Anduang Ofuo Odiongenyi, Adsorption Efficiency of Scotch Bonnet Shells as a Precursor for Calcium Oxide Nanoparticles and an Adsorbent for the Removal of Amoxicillin from Aqueous Solution , Communication In Physical Sciences: Vol. 9 No. 3 (2023): VOLUME 9 ISSUE 3
- Ifeanyi E. Otuokere, J. C. Anyanwu, K. K. Igwe, Ni(II) Complex of a Novel Schiff Base Derived from Benzaldehyde and Sulphathiazole: Synthesis, Characterization and Antibacterial Studies , Communication In Physical Sciences: Vol. 5 No. 2 (2020): VOLUME 5 ISSUE 2
- M. E. Khan , Synthesis, Spectroscopic Characterization and Biological Studies Of 2-{[(2-hydroxy-5-nitrophenyl)methylidene]amino} nicotinic acid and Iron (II) complexes , Communication In Physical Sciences: Vol. 5 No. 2 (2020): VOLUME 5 ISSUE 2
You may also start an advanced similarity search for this article.



