Isolation and Synthesis of Cellulose Nanofibers From Cassava Inner Peel Using Phosphoric Acid
DOI:
https://doi.org/10.4314/mhhbz922Keywords:
Cassava peel Cellulose, Nanocelluloses, SEM, TGA, BETAbstract
This study presents the synthesis and characterization of nanomaterial as a prerequisite for its efficient use in water purification as an alternative to costly activated carbon. Here, solvent-free phosphorylation of nanocellulose using environmentally benign and non-toxic chemicals was pursued resulting in a negatively charged material that was used to remove pollutants. The native material was locally abundant cassava inner peel biowastes which is rich in cellulose fibers. Native cellulose was isolated from the inner peel cassava waste and subsequently, hydrolyzed using phosphoric acid at 200 oC for 1 h on a sand bath at a cellulose/acid ratio of 1 g:25 mL. to afford nanocellulose fibre. The native cellulose was isolated, and the phosphorylated nanocellulose fibre was characterized using scanning electron microscope (SEM), Fourier transforms infrared (FT-IR), thermo-gravimetric analyzer (TGA/DTG) and Brunauer-Emmett-Teller (BET), for its surface features, and functionalities, thermal stability, surface area, and particle size, respectively. SEM analysis revealed highly irregular and tiny individualized nanofiber strands, indicating the presence of nanocellulose fibre. The surface area of the cellulose and nanocellulose was 219.637 m2/g and 299.478 m²/g with pore volumes of 0.108 and 0.146 cm3/g.
Downloads
Published
Issue
Section
Similar Articles
- Abdulfatai A. Otori, Akeem A. Jimoh, John T. Mathew, Development of Heterogeneous Catalyst from Waste Cow Bone Using Parinarium Macrophylum Seed Oil for Biodiesel Production , Communication In Physical Sciences: Vol. 7 No. 3 (2021): VOLUME 7 ISSUE 3
- Patricia Adamma Ekwumemgbo, Gideon Adamu Shallangwa, Idongesit Edem Okon, Ibe Awodi, Green Synthesis and Characterization of Iron Oxide Nanoparticles using Prosopis Africana Leaf Extract , Communication In Physical Sciences: Vol. 9 No. 2 (2023): VOLUME 9 ISSUE 2
- Nwokem, Calvin Onyedika, Kantoma, Dogara , Zakka Israila Yashim , Zaharaddeen Nasiru Garba, Kinetic and Thermodynamic Studies on Adsorption of Pb2+ and Cr3+ from Petroleum Refinery Wastewater using Linde Type a Zeolite Nanoparticle. , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3 (2023-2024)
- Yakubu Azeh, Spectroscopic Characterization of Acetylated Wood Flakes and Its High-Density Polyethylene Blends , Communication In Physical Sciences: Vol. 8 No. 1 (2022): VOLUME 8 ISSUE 1
- Anduang Ofuo Odiongenyi, Adsorption Efficiency of Scotch Bonnet Shells as a Precursor for Calcium Oxide Nanoparticles and an Adsorbent for the Removal of Amoxicillin from Aqueous Solution , Communication In Physical Sciences: Vol. 9 No. 3 (2023): VOLUME 9 ISSUE 3
- Irene Edem Johncross, Fanifosi Seyi Josiah, Abidemi Obatoyinbo Ajayi, Resource recovery from Sugar Cane Biomass for the Synthesis of Silicon Nanoparticles , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
- Richard Alexis Ukpe, Exploration of Orange Peel Waste as Precursor for the Synthesis and Characterization of highly Crystalline and Mesoporous Silicon Oxide Nanoparticles , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
- Patricia Ese Umoru, Femi Emmanuel Awe, Joseph Ifeanyi Uche, Oluwayemi Abiodun Babatunde, Ibrahim Aliyu Salaha, Investigation of the Adsorptive And Inhibitive Properties Of Cucurbita Maxima Peel Extract And Halide Ions As Inhibitors For Stainless Steel in 1m H2so4 Solution , Communication In Physical Sciences: Vol. 10 No. 2 (2023): VOLUME 10 ISSUE 2
- Richard Alexis Ukpe, Joint Effect of Ethanol Extract of Orange Peel and halides on the Inhibition of the Corrosion of Aluminum in 0.1 M HCl: An approach to Resource Recovery , Communication In Physical Sciences: Vol. 4 No. 1 (2019): VOLUME 4 ISSUE 1
- Imeh J. Okop, Richard A. Ukpe, Comparative Study of Proximate and Elemental Composition of Banana Peels and Palm Bunch as Substitutes for Preparing Alkaline Ash for Domestic Consumption , Communication In Physical Sciences: Vol. 7 No. 2 (2021): VOLUME 7 ISSUE 2
You may also start an advanced similarity search for this article.



