A Unique Generalization of Einstein Field Equation; Pathway for Continuous Generation of Gravitational Waves

Authors

  • Koffa Durojaiye Jude Federal University Lokoja, Kogi State, Nigeria
  • Omonile Jocob Funsho Confluence University of Science and Technology, Osara, Nigeria
  • Oladimeji Enock Oluwole Federal University lokoja, Kogi State, Nigeria
  • Edogbanya Helen Olaronke Federal University lokoja, Kogi State, Nigeria
  • Eghaghe Osas Stephen Bingham University, Nasarawa, Nigeria
  • Vivian Onechojo Obaje Kogi State University Lokoja, Anyigba, Kogi State, Nigeria
  • Ibrahim Toyin Taofiq Federal University lokoja, Kogi State, Nigeria

Keywords:

Gravitational waves, spheroidal body, special relativity, golden metric tensor, field equation

Abstract

Communication in Physical Sciences, 2023, 10(1): 122-129

Authors: Koffa Durojaiye Jude, Omonile Jocob Funsho, Oladimeji Enock Oluwole, Edogbanya Helen Olaronke, Eghaghe Osas Stephen,  Vivian Onechojo Obaje, Ibrahim Toyin Taofiq

Received:  04 January 2023/Accepted 30 October 2023

In this theoretical exploration, we introduce a novel extension to the Einstein field Equations by incorporating a newly defined metric tensor, termed the “Golden Metric Tensor”. This approach aims to complement and expand upon the well-established Einstein field equations devoid of its initial incompleteness thereby offering a fresh perspective on the nature of gravity and its interplay with spacetime. Our result is found to be mathematically most elegant, physically most natural, and satisfactory for application to a sinusoidal time distribution of mass within a spheroidal body to generate gravitational waves.

Downloads

Download data is not yet available.

Author Biographies

Koffa Durojaiye Jude, Federal University Lokoja, Kogi State, Nigeria

Department of Physics

Omonile Jocob Funsho, Confluence University of Science and Technology, Osara, Nigeria

Department of Physics, 

Oladimeji Enock Oluwole, Federal University lokoja, Kogi State, Nigeria

Department of Physics

Edogbanya Helen Olaronke, Federal University lokoja, Kogi State, Nigeria

Department of Mathematics

Eghaghe Osas Stephen, Bingham University, Nasarawa, Nigeria

Department of Physics

Vivian Onechojo Obaje, Kogi State University Lokoja, Anyigba, Kogi State, Nigeria

Department of Physics

Ibrahim Toyin Taofiq, Federal University lokoja, Kogi State, Nigeria

Department of Physics

References

Abbott, B. (2016). GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett., 116(24), 241103. https://doi.org/10.1103/physrevlett.116.241103

Acernese, F. (2014). Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quant. Grav., 32, 2,, 024001. https://doi.org/10.1088/0264-9381/32/2/024001

Antoci, S., & Liebscher, D.-E. (2003). Editor’s Note: On the Gravitational Field of a Mass Point According to Einstein’s Theory by K. Schwarzschild. General Relativity and Gravitation, 35, 5, pp. 945–950. https://doi.org/10.1023/A:1022919909683

Contopoulos, I. G., Esposito, F. P., Kleidis, K., Papadopoulos, D. B., & Witten, L. (2016). Generating solutions to the Einstein field equations. International Journal of Modern Physics D, 25, 2, 1650022. https://doi.org/10.1142/S021827181650022X

Fan, Z.-Y., Chen, B., & Lü, H. (2016). Global structure of exact scalar hairy dynamical black holes. Journal of High Energy Physics, 2016(5), 170. https://doi.org/10.1007/JHEP05(2016)170

Fan, Z.-Y., & Lü, H. (2015). Charged black holes with scalar hair. Journal of High Energy Physics, 2015(9), 60. https://doi.org/10.1007/JHEP09(2015)060

Frutos-Alfaro, F., Quevedo, H., & Sanchez, P. A. (2018). Comparison of vacuum static quadrupolar metrics. Royal Society Open Science, 5, 5, , 170826. https://doi.org/10.1098/rsos.170826

Gibbons, G. W., & Volkov, M. S. (2017). Weyl metrics and wormholes. Journal of Cosmology and Astroparticle Physics, 5, 039–039. https://doi.org/10.1088/1475-7516/2017/05/039

Giorgi, E. (2020). Boundedness and Decay for the Teukolsky System of Spin $$pm ,2$$ on Reissner–Nordström Spacetime: The Case $$|Q| ll M$$. Annales Henri Poincaré, 21, 8, pp. 2485–2580. https://doi.org/10.1007/s00023-020-00923-3

Jyoti, D., & Kumar, S. (2020). Exact non-static solutions of Einstein vacuum field equations. Chinese Journal of Physics, 68, pp.735–744. https://doi.org/10.1016/j.cjph.2020.10.006

Kaloper, N., Kleban, M., & Martin, D. (2010). McVittie’s legacy: Black holes in an expanding universe. Physical Review D, 81, 10, 104044. https://doi.org/10.1103/PhysRevD.81.104044

Kim, D. Y., Lasenby, A. N., & Hobson, M. P. (2018). Spherically-symmetric solutions in general relativity using a tetrad-based approach. General Relativity and Gravitation (Vol. 50). Springer US. https://doi.org/10.1007/s10714-018-2347-7

Koffa, D., Omonile, J., Gani, L., & Howusu, S. (2016). Riemannian Curvature Tensor in the Cartesian Coordinate Using the Golden Metric Tensor. British Journal of Applied Science & Technology, 14(2), 1–8. https://doi.org/10.9734/bjast/2016/23593

Koffa, D., Omonile, J., Ogunleye, O., Rabba, J., & Howusu, S. (2016). Riemannian Acceleration in Cartesian Coordinate Based Upon the Golden Metric Tensor. Physical Science International Journal, 9, 3, pp. , 1–7. https://doi.org/10.9734/psij/2016/23360

Lake, K., & Abdelqader, M. (2011). More on McVittie’s legacy: A Schwarzschild–de Sitter black and white hole embedded in an asymptotically Λ CDM cosmology. Physical Review D, 84, 4, 044045. https://doi.org/10.1103/PhysRevD.84.044045

Lematre, A. G. (1931). A Homogeneous Universe of Constant Mass and Increasing Radius accounting for the Radial Velocity of Extra-galactic Nebulae. Monthly Notices of the Royal Astronomical Society, 91, 5, pp. , 483–490. https://doi.org/10.1093/mnras/91.5.483

MacCallum, M. A. H. (2006). Finding and using exact solutions of the Einstein equations. In AIP Conference Proceedings, 84,1 pp. 129–143). AIP. https://doi.org/10.1063/1.2218172

Rincón, Á., Gabbanelli, L., Contreras, E., & Tello-Ortiz, F. (2019). Minimal geometric deformation in a Reissner–Nordström background. The European Physical Journal C, 79, 10, 873. https://doi.org/10.1140/epjc/s10052-019-7397-9

Turimov, B., Ahmedov, B., Kološ, M., & Stuchlík, Z. (2018). Axially symmetric and static solutions of Einstein equations with self-gravitating scalar field. Physical Review D, 98(8), 084039. https://doi.org/10.1103/PhysRevD.98.084039.

Downloads

Published

2023-11-11