A Unique Generalization of Einstein Field Equation; Pathway for Continuous Generation of Gravitational Waves
Keywords:
Gravitational waves, spheroidal body, special relativity, golden metric tensor, field equationAbstract
Communication in Physical Sciences, 2023, 10(1): 122-129
Authors: Koffa Durojaiye Jude, Omonile Jocob Funsho, Oladimeji Enock Oluwole, Edogbanya Helen Olaronke, Eghaghe Osas Stephen, Vivian Onechojo Obaje, Ibrahim Toyin Taofiq
Received: 04 January 2023/Accepted 30 October 2023
In this theoretical exploration, we introduce a novel extension to the Einstein field Equations by incorporating a newly defined metric tensor, termed the “Golden Metric Tensor”. This approach aims to complement and expand upon the well-established Einstein field equations devoid of its initial incompleteness thereby offering a fresh perspective on the nature of gravity and its interplay with spacetime. Our result is found to be mathematically most elegant, physically most natural, and satisfactory for application to a sinusoidal time distribution of mass within a spheroidal body to generate gravitational waves.
Downloads
References
Abbott, B. (2016). GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett., 116(24), 241103. https://doi.org/10.1103/physrevlett.116.241103
Acernese, F. (2014). Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quant. Grav., 32, 2,, 024001. https://doi.org/10.1088/0264-9381/32/2/024001
Antoci, S., & Liebscher, D.-E. (2003). Editor’s Note: On the Gravitational Field of a Mass Point According to Einstein’s Theory by K. Schwarzschild. General Relativity and Gravitation, 35, 5, pp. 945–950. https://doi.org/10.1023/A:1022919909683
Contopoulos, I. G., Esposito, F. P., Kleidis, K., Papadopoulos, D. B., & Witten, L. (2016). Generating solutions to the Einstein field equations. International Journal of Modern Physics D, 25, 2, 1650022. https://doi.org/10.1142/S021827181650022X
Fan, Z.-Y., Chen, B., & Lü, H. (2016). Global structure of exact scalar hairy dynamical black holes. Journal of High Energy Physics, 2016(5), 170. https://doi.org/10.1007/JHEP05(2016)170
Fan, Z.-Y., & Lü, H. (2015). Charged black holes with scalar hair. Journal of High Energy Physics, 2015(9), 60. https://doi.org/10.1007/JHEP09(2015)060
Frutos-Alfaro, F., Quevedo, H., & Sanchez, P. A. (2018). Comparison of vacuum static quadrupolar metrics. Royal Society Open Science, 5, 5, , 170826. https://doi.org/10.1098/rsos.170826
Gibbons, G. W., & Volkov, M. S. (2017). Weyl metrics and wormholes. Journal of Cosmology and Astroparticle Physics, 5, 039–039. https://doi.org/10.1088/1475-7516/2017/05/039
Giorgi, E. (2020). Boundedness and Decay for the Teukolsky System of Spin $$pm ,2$$ on Reissner–Nordström Spacetime: The Case $$|Q| ll M$$. Annales Henri Poincaré, 21, 8, pp. 2485–2580. https://doi.org/10.1007/s00023-020-00923-3
Jyoti, D., & Kumar, S. (2020). Exact non-static solutions of Einstein vacuum field equations. Chinese Journal of Physics, 68, pp.735–744. https://doi.org/10.1016/j.cjph.2020.10.006
Kaloper, N., Kleban, M., & Martin, D. (2010). McVittie’s legacy: Black holes in an expanding universe. Physical Review D, 81, 10, 104044. https://doi.org/10.1103/PhysRevD.81.104044
Kim, D. Y., Lasenby, A. N., & Hobson, M. P. (2018). Spherically-symmetric solutions in general relativity using a tetrad-based approach. General Relativity and Gravitation (Vol. 50). Springer US. https://doi.org/10.1007/s10714-018-2347-7
Koffa, D., Omonile, J., Gani, L., & Howusu, S. (2016). Riemannian Curvature Tensor in the Cartesian Coordinate Using the Golden Metric Tensor. British Journal of Applied Science & Technology, 14(2), 1–8. https://doi.org/10.9734/bjast/2016/23593
Koffa, D., Omonile, J., Ogunleye, O., Rabba, J., & Howusu, S. (2016). Riemannian Acceleration in Cartesian Coordinate Based Upon the Golden Metric Tensor. Physical Science International Journal, 9, 3, pp. , 1–7. https://doi.org/10.9734/psij/2016/23360
Lake, K., & Abdelqader, M. (2011). More on McVittie’s legacy: A Schwarzschild–de Sitter black and white hole embedded in an asymptotically Λ CDM cosmology. Physical Review D, 84, 4, 044045. https://doi.org/10.1103/PhysRevD.84.044045
Lematre, A. G. (1931). A Homogeneous Universe of Constant Mass and Increasing Radius accounting for the Radial Velocity of Extra-galactic Nebulae. Monthly Notices of the Royal Astronomical Society, 91, 5, pp. , 483–490. https://doi.org/10.1093/mnras/91.5.483
MacCallum, M. A. H. (2006). Finding and using exact solutions of the Einstein equations. In AIP Conference Proceedings, 84,1 pp. 129–143). AIP. https://doi.org/10.1063/1.2218172
Rincón, Á., Gabbanelli, L., Contreras, E., & Tello-Ortiz, F. (2019). Minimal geometric deformation in a Reissner–Nordström background. The European Physical Journal C, 79, 10, 873. https://doi.org/10.1140/epjc/s10052-019-7397-9
Turimov, B., Ahmedov, B., Kološ, M., & Stuchlík, Z. (2018). Axially symmetric and static solutions of Einstein equations with self-gravitating scalar field. Physical Review D, 98(8), 084039. https://doi.org/10.1103/PhysRevD.98.084039.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Journal and Author
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.