A Deep Neural Network Approach for Cancer Types Classification Using Gene Selection
Keywords:
Deep Learning, Artificial intelligence Neural Network, Autoencoder, K-Nearest Neighbor, Deep Recurrent Neural NetworkAbstract
Florence Omada Ocheme, Hakeem Adewale Sulaimon and Adamu Abubakar Isah
Cancer classification research is one of the significant areas of exploration in the clinical field. Exact forecasting of various tumor types is an extraordinary challenge and giving an exact forecast will have incredible worth in giving better treatment to the patients. In recent years, many analysis-based investigations have led to the revelation of information on disease subtypes, that has generated high throughput innovations Lately, researchers have attempted to dissect a lot of microarray information for getting significant data that can be utilized in malignancy grouping. To accomplish this objective, one can utilize K-Nearest Neighbor, Neural Networks, Decision Tree, Support Vector a that would provide approaches needed to break down microarray information towards the choice of best separating quality called biomarker. These machine learning methodologies had the inherent ability to represent the time varying behavior of the underlying biological network that allows for a better representation of spatiotemporal input-output dependencies. Therefore, the exploitation of time series data regarding deep learning has to have become a valuable strategy for deciphering stochastic processes, such as gene expression and classification. Therefore, in this study, another intriguing strategy is introduced to improve the performance of neural networks utilizing deep autoencoder neural networks. This was accomplished through the choice of the first, relevant data, which was being extracted with a Deep Neural Network hidden layer used to train an autoencoder for the classification of the cancer malignancy based on the second stack autoencoder network. The outcome from the proposed experiment was evaluated with the current techniques. Overall, the proposed deep autoencoder accomplished classification accuracy of 99.2% as against the current Modified KNN and SVM which obtained 96.1% and 98.1% respectively.
Downloads
Published
Issue
Section
Similar Articles
- Simbiat Atinuke Lawal, Samuel Omefe, Adeseun Kafayat Balogun, Comfort Michael, Sakiru Folarin Bello, Itunu Taiwo Owen, Kevin Nnaemeka Ifiora, Circular Supply Chains in the Al Era with Renewable Energy Integration and Smart Transport Networks , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Oyakojo Emmanuel Oladipupo, Abdulahi Opejin, Jerome Nenger, Ololade Sophiat Alaran, Coastal Hazard Risk Assessment in a Changing Climate: A Review of Predictive Models and Emerging Technologies , Communication In Physical Sciences: Vol. 12 No. 6 (2025): Volume 12 ISSUE 6
- Assumpta Obianuju Ezugwu, Onyinye Nweke, Stephen Okechukwu Aneke, A survey on Students' Academic Performance in Smart Campuses , Communication In Physical Sciences: Vol. 8 No. 2 (2022): VOLUME 8 ISSUE 2
- David Adetunji Ademilua, Cloud Security in the Era of Big Data and IoT: A Review of Emerging Risks and Protective Technologies , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Iroegbu, Chibuisi, Enefiok Etuk, Charles Efe Osodeke, Electromagnetic Field(Emf) Exposure in 5g Utilizations , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Oluwatosin Lawal, Projecting AI-Driven Intersection of FinTech, Financial Compliance, and Technology Law , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Dulo Chukwemeka Wegner, A Review on the Advances in Underwater Inspection of Subsea Infrastructure: Tools, Technologies, and Applications , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Mr. Agada, Prof. M. U. Igboekwe, Dr. Amos-Uhegbu, C., APPLICATION OF THE PQWT-S300 WATER DETECTOR IN MAPPING GROUNDWATER FOR ABSTRACTION , Communication In Physical Sciences: Vol. 12 No. 7 (2025): Volume 12 issue 7
- Oluwafemi Samson Afolabi , Oluwafemi Samson Afolabi , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
- Mujeeb Abdulrazaq, Rare-Event Prediction in Imbalanced Data: A Unified Evaluation and Optimization Framework for High-Risk Systems , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
You may also start an advanced similarity search for this article.



