Machine Learning in Thermochemistry: Unleashing Predictive Modelling for Enhanced Understanding of Chemical Systems
Keywords:
Machine learning, thermochemistry, artificial intelligenceAbstract
Communication in Physical Sciences, 2024, 11(1): 47-75
Authors: Humphrey Sam Samuel, Emmanuel Edet Etim*, John Paul Shinggu. Bulus Bako
Received: 23 December 2023/Accepted: 18 March 2024
Machine Learning (ML) has become a game-changing tool in many scientific sectors, altering research and spurring progress in a wide range of fields. The incorporation of ML approaches has created new predictive modelling opportunities in the context of thermochemistry, enabling more accurate and efficient prediction of the thermodynamic parameters of chemical systems. The article emphasizes the use of machine learning techniques in thermochemistry, highlighting the potential advantages and difficulties encountered in this quickly expanding field. The application of these algorithms helps in the prediction of fundamental thermodynamic quantities, including enthalpy, entropy, heat capacity, and free energy, allowing researchers to learn more about the energetics of chemical reactions and the stability of intricate molecular systems. The article also discusses openness, accountability, and the appropriate use of these formidable tools to ensure scientific integrity and prevent potential biases. These issues are related to the ethical problems linked with the application of ML in thermochemistry. As a result of the application of machine learning to thermochemistry research, a new era of predictive modelling has begun, offering a variety of opportunities to understand the intricate workings of chemical systems. ML provides enormous promise for expediting scientific discovery and improving our comprehension of thermodynamics in chemistry by eliminating obstacles and incorporating moral principles.
Downloads
References
Agúndez, M., Cernicharo, J., & de Vicente P. (2015). Discovery of HC3O+ in space: The chemistry of O-bearing species in TMC-1. Astronomy & Astrophysics, 642, doi:10.1051/0004-6361/201526650.
Andrew, C., Etim E. E, Ushie, O. A. & Khanal. G. P. (2018). Vibrational-Rotational Spectra of Normal Acetylene and Doubly Deuterated Acetylene: Experimental and Computational Studies. Chemical Science Transactions, 7, 1, pp. 77-82. DOI:10.7598/cst2018.1432.
Angulo, A., Yang, L., Aydil, E.,& Modestino, M. A. (2022). Machine learning enhanced spectroscopic analysis: towards autonomous chemical mixture characterization for rapid process optimization. Digital Discovery., 1, 1, pp. 5-44. doi:10. -1039/D1DD00027F
Anikina, O. Ya. Krivuschenko, D. V. Schur, S. Yu. Zaginaichenko, E. A. & Kamenetskaia. (2011). Special features and regularities of interaction between fullerene molecules and aromatic solvents. Pp. 53-74. https://doi.org/10.1007/978-94-007-0899-0_4
Baskes, M. I. (1997). Determination of modified embedded atom method parameters for nickel. Mater. Chem. Phys. 50, pp. 152–158.
Behler, J. (2017). First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew. Chem. Int. Ed. 56, pp. 12828–12840.
Behler, J. & Parrinello, M. (2007). Generalized neural-network represent -ation of highdimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401, https://doi.org/10.1103/PhysRevLett.98.146401
Behn, A., Zimmerman, P.M., Bell, A.T., & HeadGordon, M. (2011). Efficient exploration of reaction paths via a freezing string method. J. Chem. Phys. 135, 224108, doi: 10.1063/1.3664901.
Chen, Z., Alexandre, M., Weihua, Li. & Konstantinos G,. (2020). A deep learning method for bearing fault diagnosis based on Cyclic Spectral Coherence and Convolutional Neural Networks.” Mechanical Systems and Signal Processing, 140, 106683. https://doi.org/10.1016/j.ymssp.2020.106683.
Chowdhury, M, Rice, T. & Oehlschlaeger, M. A. (2021). Evaluation of machine learning methods for classification of rotational absorption spectra for gases in the 220–330 GHz range. Appl. Phys. B 127, 34 https://doi.org/10.1007/ s00340-021-07582-0.
Ding, T., Readshaw, T., Rigopoulos, S. & Jones, W P. (2021). Machine learning tabulation of thermochemistry in turbulent combustion: An approach based on hybrid flamelet/random data and multiple multilayer perceptrons. Combustion and Flame. 231, 111493. doi:10.1016/j.combustflame.2021.111493
Edet, P. I., & Samuel, H. S. (2023). A review of antioxidant applications and phytochemical constituents of Anacardium Occidentale leaf extract. Faculty of Natural and Applied Sciences Journal of Scientific Innovations, 5, 1, pp. 15-20. https://www.fnasjournals.com/index.php/FNAS-JSI/article/view/198
Egwuatu, O .P, Ori, M. O, Samuel, H.S., & Ekpan, F. M. (2024). AI-enabled Diagnostics and Monitoring in Nanomedicine. Eurasian Journal of Science and Technology, 4(3), 208-229. doi: 10.48309/ejst.2024.426725.1116
Ekpan, F. M., Ori, M. O, Samuel, H.S., & Egwuatu, O. P. (2024). Emerging technologies for eco-friendly production of bioethanol from lignocellulosic waste materials. Eurasian Journal of Science and Technology, (), 179-194. doi: 10.48309/ejst.2024.429106.1119
Ertl P. (2019). An algorithm to identify functional groups in organic molecules. J Cheminform 9, 1, pp. 1-7. https://doi.org/10.1186/s13321-017-0225-z
Etim, E. E., Andrew, C., Lawal, U., Udegbunam, I. Etiowo G. (2020). Protonation of Carbonyl Sulfide: Ab initio Study. Journal of Applied Sciences, 20, pp. : 26-34. doi: 10.3923/jas.2020.26.34
Etim, E. E., Asuquo, J. E., Ngana, O.C., & Ogofotha, G. O. (2022). Investigation on the thermochemistry, molecular spectroscopy and structural parameters of pyrrole and its isomers: a quantum chemistry approach. J. Chem. Soc. Nigeria, 47, 1, pp. 129 - 138.
Etim, E. E., Gorai, P., Das, A., Chakrabarti, S. & Arunan, E. (2018). Interstellar Hydrogen Bonding. Advances in Space Research, 61, 11, pp. 2870-2880, https://doi.org/10.1016/j.asr.2018. 03.003.
Etim, E. E., Oko, E. G., Sulaiman, A. O. (2020). Protonation in Noble Gas Containing Molecular Systems: Observing Periodic Trends in CF3Cl, CF3Br, CH3F, CH3Cl. International Journal of Advanced Research in Physical Science (IJARPS) 7(6): 14-19
Etim, E.E., Ugo Nweke-Maraizu., Samuel, H.S, (2023). A Review of Theoretical Techniques in Corrosion Inhibition Studies. Communication in Physical Sciences, 9, 4, pp. 394-403
Etim, E.E., Ashu, H. A., Mbakara, I.E., Inyang, E. J., Ukafia, O. P., Sambo, I. F. (2017). Quantum Chemical Calculations on Oxygen Monofluoride (OF) and its Protonated Analogues: Comparison of Methods. Elixir Computational Chemistry, 111, pp. 3-48827.
Finkelmann, A. R, Göller, H., Schneider, G. (2016). Robust molecular representations for modelling and design derived from atomic partial charges. Chem Commun 52, pp. 681–684. https://doi.org/10.1039/c5cc07887c
Francis-Dominic, M., Ekpan, M. O., Samuel, H. S. & Egwuatu, O. P. (2024). The synergy of AI and Drug delivery: A Revolution in Healthcare. International Journal of Advanced Biological and Biomedical Research, 12, 1, pp. 45-67. https://www.ijabbr.com/article_709788.html
Giambagli, L., Buffoni, L. & Carletti, T. (2021). Machine learning in spectral domain. Nat Commun 12, 1330, https:// doi.org/10.1038/s41467-021-21481-0
Guella, S., Argoub, K. & Benkouider, A. M. (2015). Artificial Neural Network-Group Contribution Method for Predicting Standard Enthalpy of Formation in the Solid State: C–H, C–H–O, C–H–N, and C–H–N–O Compounds. Int J Thermophys 36, pp. 2820–2832 https://doi.org/10.1007/s -10765-015-1928-x
Gúndez, M., Marcelino, N. & Cernicharo, J. (2018). Tentative detection of HC5NH+ in TMC-1. Astronomy & Astrophysics. 861,. doi:10.1051/0004-6361/201833657.
Hirota, T., Ito, T. & Yamamoto, S. (2002). A Study of the Physical and Chemical Properties of the Quiescent Cores L1521B and L1521E. The Astrophysical Journal. 565, pp. 359-372. doi:10.1086/324588.
Hong, Huo., Ngai, T. & Suat, H. (2007). Self-Organization of Double-C60 End-Capped Poly(ethylene oxide) in Chloronaphthalene and Benzene Solvent Mixtures. Langmuir 23, 24, pp. , 12067-12070. https://doi.org /10.1021/la701762e
Jahan, B., Ghasemi, M. & Rofouei, M. (2013). Alignment Independent 3D-QSAR Modeling of Fullerene (C 60) Solubility in Different Organic Solvents. Fullerenes, Nanotubes and Carbon Nanostructures 21, 5, pp. 367-380. https://doi.org/10.1080/1536383X.2011.629751
Janet, J., Kulik, H., Morency, Y., Caucci, M. (2020). Machine Learning in Chemistry. ACS In Focus (Washington, DC: American Chemical Society).
Jia, F., Lei, Y., Guo, L., Lin, J. & Xing. S. (2018). A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines. Neuro -computing. 272, pp. 619-628. doi:10.1016/j.neucom.2017.07.032
Jiménez-Martínez, J. (2020). Homogenization of dissolution and enhanced precipitation induced by bubbles in multiphase fow systems. Geophys. Res. Lett. https://doi.org/10. 1029/2020GL087163
Jochen, S., Florian, F. & Matthias, R. (2019). in need of bias control: evaluating chemical data for machine learning in structure-based virtual screening. Journal of Chemical Information and Modeling 59, 3, pp. 947-961. https://doi.org/10.1021/acs.jcim.8b00712
John, M. & Ryszard, C. (2008). SAMFA: Simplifying Molecular Description for 3D-QSAR. Journal of Chemical Information and Modeling, 48, 6, pp. 1167-173. https://doi.org/10.1021/ci80-0 009u
Kang, Q., Zhang, D. & Chen, S. (2003). Simulation of dissolution and precipitation in porous media. J. Geophys. Res. Solid Earth. https:// doi.org/10.1029/2003JB002504
Khan, M., Naqvi, S., Ullah, Z., Taqvi, S., Khan, M., Farooq, W., Mehran, M. & Juchelková Štěpanec L. (2023). Applications of machine learning in thermochemical conversion of biomass-A review. Fuel. 332(Part 1):126055. doi:10.1016/j.fuel.2022. -126055
Komp, E., Janulaitis, N. & Valleau, S. (2022). Progress towards machine learning reaction rate constants. Physical Chemistry Chemical Physics. https://doi.org/10.1039/D1CP04422B
Kong, Y., & Yu, T. (2018)/ A Deep Neural network model using random forest to extract feature representation for gene expression data classifcation. Sci. Rep. https://doi.org/10.1038/s41598-018-34833-6
Kuz’min, V., Artemenko, A. & Ognichenko, L. (2021). Simplex representation of molecular structure as universal QSAR/QSPR tool. Strutural Chemistry, 32, pp. 1365–1392 https://doi.org/10.1007/s11224-021-01793-z
Lee, K., Loomis, R. & Burkhardt AM. (2021). Discovery of Interstellar trans-cyanovinylacetylene (HC # CCH = CHC # N) and vinylcyanoacetylene (H 2 C = CHC 3 N) in GOTHAM Observations of TMC-1. Astrophysical Journal Letters. 908:L11. doi:10.3847/2041-8213/abdbb9.
Leonard, T., Chun, C. & Wilson, W. (2023). Emotional Variance Analysis: A new sentiment analysis feature set for Artificial Intelligence and Machine Learning applications, PLOS ONE, 18, 1, (e0274299).https://doi.org/ 10.1371/journal.pone.0274299
Longqiang, L., Zhou, L., Guixia, L., Yun, T. & Weihua, L. (2023). Machine Learning Models to Predict Cytochrome P450 2B6 Inhibitors and Substrates. Chemical Research in Toxicology Article ASAP.
Madden, M. & Ryder A. (2002). Machine learning methods for quantitative analysis of Raman Spectroscopy data. In Proceedings of SPIE, 4876, pp. 1013-1019
Maji, D., Santara, A., Ghosh, S., Sheet, D. & Mitra, P. (2015). Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) IEEE, https://doi.org/10.1109/EMBC.2015.7319030.
Mani, S.i, Hamid, M. & Mohsen, M. (2010). Modeling the hydrogen solubility in methanol, ethanol, 1-propanol and 1-butanol. Fluid Phase Equilibria 289 , 1, pp. 32-39. https:// doi.org/10.1016/j.fluid.2009.10.012
Mani, S.i, Hamid, M. & Mohsen, M. (2012). Application of neural network molecular modeling for correlating and predicting Henry's law constants of gases in [bmim][PF6] at low pressures. Fluid Phase Equilibria 332 , 165-172. https://doi.org/10.1016/j.fluid.2012.07.009
Mani, S. I., Hamid, M. & Mohsen, M. (2012).Correlating and predicting low pressure solubility of gases in [bmim][BF4] by neural network molecular modeling. Thermochimica Acta, 545 , pp. 125-130. https://doi .org/ 10.1016/j.tca.2012.07.005
Mattioda, A., Hudgins, D. & Boersma, C. (2020). The NASA Ames PAH IR Spectroscopic Database: The 2019 Release. Astrophysical Journal Supplement Series. 25, doi:10.3847/15 -38 -4365/abb3db.
McGuire B. (2018). 2018 census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules. Astrophys J Suppl Ser. 239(, 1, 17, doi:10.3847/1538-4365/ -aae5d2
Menke, P., Maes, J. & Geiger, S. (2021). Upscaling the porosity–permeability relationship of a microporous carbonate for Darcy-scale fow with machine learning. Sci. Rep. https://doi.org/10.1038/s41598-021-82029-2
Minjie, M., Ziqi, P., Mingkun, L., Huaicheng, S., Yunxia, W., Yongchao, L. & Feng, Z. (2022). Application of Machine Learning in Spatial Proteomics. Journal of Chemical Information and Modeling, 6, 23, pp. 5875-5895. https://doi.org/10.1021/acs .jcim.2c01161
Mohammad, G., Pablo, R., Duchowicz, P., Freitas, F. & Fernández, F. (2010). Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches. Fluid Phase Equilibria, 2932, 2, pp. 130-136. https://doi.org/10.1016/j.fluid.2010.02.025
Neumann, J., Christoph, S., Gabriele, C., Schn¨orr & Steidl, G. (2005). “Combined SVMBased Feature Selection and Classification,” Machine Learning, vol. 61, no. 1-3, pp. 129– 150, issn: 0885-6125. doi: 10.1007/s10994-005-1505-9.
Nikolay, O. & Mchedlov-Petrossyan. (2011). Fullerenes in molecular liquids. Solutions in “good” solvents: Another view. Journal of Molecular Liquids 161, 1, pp. 1-12. https://doi.org/10.1016/j.molliq.2011.04.001
Oliveira, J., Frey, J., Zhang, S., Xu, L., Li, X., Li, S., Hong, X. & Ackermann L. (2022). When machine learning meets molecular synthesis. Trends in Chemistry. 4, 10, pp. 863-885. doi:10.1016/j.trechm.2022.07.005.
Onen, A. I., Joseph, J., Etim, E. E. & Eddy, N. O.(2017). Quantum Chemical Studies on the Inhibition Mechanism of Ficus carica, FC and Vitellaria paradoxa, VP Leaf Extracts. Journal of Advanced Chemical Sciences, 3(3):496-498. http://jacsdirectory.com/ journal-of-advanced-chemical-sciences/articleview.php?id=155
Ori, M. O., Edet, P. I., Ekpan, F. M., Samuel, H. S., Egwuatu, O. P. & Ajor, E. J. (2024). Revisiting on Applications of Industrial Filters in Enhancing Polymer Product Quality and Performance. Eurasian Journal of Science and Technology, 4, 2, pp. 116-132. doi: 10.48309/ejst.2024.423429.1107
Osigbemhe, I. G., Emmanuella, E. O., Hitler L., Emmanuel, M. K., Emmanuel E. E., Henry O., .Edet, Onyinye J. I., Amoawe P. O. & Obuye, F. . (2022). Antibacterial potential of N-(2-furylmethylidene)-1, 3, 4-thiadiazole-2-amine: Experimental and theoretical investigations. Journal of the Indian Chemical Society, 99, 9, 100597. https://www.sciencedirect.com/science/article/abs/pii/S001945222200259X
Osigbemhe, I.G., Louis, H., Khan, E.M., Etim, E. E., Odey, D. O., Oviawe, A. P., Edet, H. O. & Obuye, F. (2022a). Synthesis, characterization, DFT studies, and molecular modeling of 2-(-(2-hydroxy-5-methoxyphenyl)-methylidene)-amino) nicotinic acid against some selected bacterial receptors. J Iran Chem. Soc, https://doi.org/10.1007/s13738-022-02550-7
Palomba, D., Martínez, M., Ponzoni, I., Díaz, M. F., Vazquez, G. E. & Soto, A. J. (2012). QSPR Models for Predicting Log Pliver Values for Volatile Organic Compounds Combining Statistical Methods and Domain Knowledge. Molecules 17, pp. 14937-14953.https://doi.org/10.3390 /molecules171214937
Pedregosa F., Varoquaux G. & Gramfort (2012). A Scikit-learn: machine Learning in Python. J Mach Learn Res 12:2825–2830
Qianyi Z., Jacqueline M., Hughes-Oliver & Raymond T. (2009). A Model-Based Ensembling Approach for Developing QSARs. Journal of Chemical Information and Modeling, 49, 8, pp. 1857-1865. https://doi.org /10.1021/ci900080f
Rabbani, A. (2021). Review of data science trends and issues in porous media research with a focus on image-based techniques. Water Resour. Res. https://doi.org/10.1029/2020WR029472
Rasmussen C., (2004). Gaussian Processes in Machine Learning. In: Bousquet O, von Luxburg U, Rätsch G (eds) Advanced Lectures on Machine Learning: ML Summer Schools Springer, pp 63–71 Berlin Heidelberg,
Robert P., (2012). Three Useful Dimensions for Domain Applicability in QSAR Models Using Random Forest. Journal of Chemical Information and Modeling 52, 3, pp. 814-823. https:// doi. org/10.1021/ci300004n
Samuel, H. S., E. E. Etim, U. & Nweke-Maraizu. (2023). Approaches for Special Characteristics of Chalcogen Bonding: A mini Review. J. Appl. Organomet. Chem. 3(3), 199-212. https://doi.org/10.22034/jaoc.2023.405432.1089
Samuel, H. S., Etim, E. E., Nweke-Maraizu, U. & Andrew, C. (2023). Computational Electrochemistry Techniques Used In Corrosion Inhibition Studies. FUW Trends in Science & Technology Journal, 8, 3, pp. 033-039 https://www.ftstjournal. com/uploads/docs/83%20Article%207.pdf
Samuel, H. S., Etim, E. E., Oladimeji E.O., Shinggu J. P. & Bako B. (2023). Machine Learning in Characterizing Dipole-Dipole Interactions. FUW Trends in Science & Technology Journal, 8, 3, pp. 070-082
Samuel, H.S. U. Nweke-Maraizu, E.E. Etim (2023). Supercritical Fluids: Properties, Formation and Applications. J. Eng. Ind. Res. 4, 3, pp. 176-188. https://doi.org/10 .48309/jeires.2023.3.5
Samuel, H. S., Nweke-Maraizu, U., Johnson, G., & Etim, E. E. (2023). nonelectrochemical techniques in corrosion inhibition studies: analytical techniques. Communication in Physical Sciences, 9(3): 383-393
Samuel, H. S., Nweke-Maraizu, U. & Etim, E. E. (2023). Machine learning for characterizing halogen bonding interactions. Faculty of Natural and Applied Sciences Journal of Scientific Innovations, 5, 1, pp. 103–115. https:// www.fnasjournals.com/index.php/FNAS-JSI/article/view/208
Samuel, H. S., U. Nweke-Mariazu, E. & Etim., E. (2023). Experimental and Theoretical Approaches for Characterizing Halogen Bonding. J. Appl. Organomet. Chem., 3, 3, pp. 169-183. https://doi.org/10.22034/jaoc.2023.405412.1088
Samuel, H. S., Etim, E. E. & Ugo Nweke-Maraizu., (2023). Understanding the experimental and computational approach in characterizing intermolecular and intramolecular hydrogen bond, Journal of Chemical Review, https://doi.org/10.48309/JCR.2023.407989.1235
Samuel, H. S., Etim, E. E., Ugo Nweke-Maraizu., Shinggu, J. P. & Bako B (2023). Machine learning of rotational spectra analysis in interstellar medium. Communication in Physical Sciences, 10, 1, pp. 172-203.
Sarkar, S., Chakraborty, S. & Das S. (2021). Machine learning enabled quantification of the hydrogen bonds inside the polyelectrolyte brush layer probed using all-atom molecular dynamics simulations. J Chem Phys. 155, 14, 144902. doi:10.1063/5.00626 -59
Semenov, N., Charykov, V., Postnov, O. & Krokhina, E. G. (2010). Gruzinskaya. isothermal solubility of individual light fullerenes in the homologous series of n-alkanes, n-alkanols, n-alkylcarboxylic acids, and arenes. Russian Journal of General Chemistry 80 (12), 2443-2449. https://doi.org/10.1134/S1070363210120078
Stein, H. S., Guevarra, D., Newhouse, P. F., Soedarmadjia, E. & Gregoire, J. M. (2019). Machine learning of optical properties of materials – predicting spectra from images and images from spectra. Chemical Science. https://doi.org/10.1039/C8SC03077D
Suwarno, S., Dicky, G., Suyuthi, A., Effendi, M., Witantyo, W., Noerochim, L., and Ismail M. (2022). Machine learning analysis of alloying element effects on hydrogen storage properties of AB2 metal hydrides. Int J Hydrogen Energy. 47, 23, pp. 11938-11947. doi:10.1016/j.ijhydene.2022.01.210
Tessarini, S., Fix, M. K. & Manser, P. (2022). Semi-classical Monte Carlo algorithm for the simulation of X-ray grating interferometry. Sci Rep 12, 2485 https://doi.org/10.1038/s41598-022-05965-7.
Tu, L., Chandana E., Frank R., Burden, & David A. (2012). Water quantitative structure–property relationship modeling of diverse materials properties. Chemical Reviews, 112, 5, pp. 2889-2919. https://doi.org/10.1021 /cr200066h
Ushie, O. A., Etim, E. E., Onen, A. I., Andrew, C., Lawal, U. & Khanal, G.P. (2019). Computational Studies of β-amyrin acetate (C32H52O2) Detected in Methanol Leaf Extract of Chrysophyllum albidium. J. Chem Soc. Nigeria, 4, 3, , pp 561 -581.
Ushie, O. A., Etim, E. E., Adamu, H.,, Chindo, I., Andrew, C., & Khanal, G.P. (2017). Quantum Chemical Studies on Decyl Heptadecanoate (C27H54O2) Detected in Ethyl Acetae Leaf Extract of Chrysophyllum albidium. Elixir Applied Chemistry, 111, pp. 48828-48838.
Velasco, L., Ruiz, M., Shariati, B. & Vela, AP. (2022). Chapter Eight - Machine Learning for optical spectrum analysis. In: Lau APT, Khan FN, eds. Machine Learning for Future Fiber-Optic Communication Systems. Academic Press; 225-279. doi:10.1016/B978-0-32-385227-2.00015-2
Wei, Y., Carol, H., Christopher, C. & Saima H. (2023). A Machine Learning Approach for Early Diagnosis of Cognitive Impairment Using Population-Based Data, Journal of Alzheimer's Disease, 91, 1, pp. 449-461.https://doi.org/10.3233/JAD-220- 776
Weili, L. & Liu Y.(2010) Tailoring the Morphology of the Poly(3-hexylthiophene)/C60 Films and Charge Carrier Mobility. https://doi.org/10.10 -21/bk-2010-1034.ch009
Weili, L., Ruigang, L., Wen, W., Weiwei, L., Wenyong, L., Kai, Z., Lin, M., Ye T., Zhishan B. & Yong H. (2009). Tailoring Nanowire Network Morphology and Charge Carrier Mobility of Poly(3-hexylthiophene)/C60 Films. The Journal of Physical Chemistry C, 113 , 26, pp. 11385-11389. https://doi.org/ 10.1021/jp900042h
Weimin, Z., Yi, Z., Duancheng, Z., Jianrong, X. & Ling, W. (2023). HiGNN: A Hierarchical Informative Graph Neural Network for Molecular Property Prediction Equipped with Feature-Wise Attention. Journal of Chemical Information and Modeling , 63, 1, pp. , 43-55. https://doi.org/ 10.1021/acs.jcim.2c01099
Whitley, D., Sutton, A.M.(2012). Genetic Algorithms — A Survey of Models and Methods. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg https://doi.org/10.1007/978 -3-540-92910-9_21
Wu, L., Guo, T. & Li, T. (2021). Machine learning-accelerated prediction of overpotential of oxygen evolution reaction of single-atom catalysts. iScience, 24, 5, https://doi. -org/10.1016/
Xiangyu, Z., Jing, C., Kexin, Z., Jiasheng, W. & Yongjin, L. (2019). Machine Learning Prediction on Properties of Nanoporous Materials Utilizing Pore Geometry Barcodes. Journal of Chemical Information and Modeling 59, 11, pp. 4636-4644. https://doi.org/10.1021/acs.jcim.9b00623
Yang, Y. (2020). Dynamic pore-scale dissolution by CO2-saturated brine in carbonates: Impact of homogeneous versus fractured versus vuggy pore structure. Water Resour. Res. https://doi.org/10.1029/2019WR026112
Yaroslava, P., Yuriy, K. (2014). A procedure for meaningful unsupervised clustering and its application for solvent classification. Open Chemistry 12, 5, pp. 594-603. https://doi.org/10.2478/s11532-014-0514-6
Zavitsas A. (1998). Energy barriers to chemical reactions. Why, how, and how much? Non-Arrhenius behavior in hydrogen abstractions by radicals. J Am Chem Soc. 120, 26, pp. 6578-6586. doi:10.1021/ja973698y.
Zaw-Myo, W., Allen, M., Cheong, W., and Scott H. (2023). Using Machine Learning To Predict Partition Coefficient (Log P) and Distribution Coefficient (Log D) with Molecular Descriptors and Liquid Chromatography Retention Time. Journal of Chemical Information and Modeling 63 (7), 1906-1913. https://doi.org/10.1021 /acs.jcim.2c01373
Zhang, Z., Huang, W., Liao, Y., Song, Z., Shi, J,, Jiang, X., Shen, C., and Zhu Z. (2022). Bearing fault diagnosis via generalized logarithm sparse regularization. Mechanical Systems and Signal Processing. 167(Part B):108576. doi:10.1016/j.ymssp.2021.108576
Zhao, Z., Li, T., Wu, J., Sun, C., Wang, S., Yan, R., & Chen X. (2020). Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study. ISA Transactions. 107, pp. 224-255. doi:10.1016/j.isatra.2020.08.010
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal and Author
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.