Confinement Effects and Emission Spectra of〖α-Ga〗_x 〖In〗_(1-x) N Quantum Dots Nanostructure
Keywords:
Quantum dot nanostructure, quantum Confinements, nitride, anisotropic band structureAbstract
Onyekwere O. Ikedichukwu and Oriaku I. Chijioke
Quantum confinements in spherical semiconductor quantum dots (QDs) have been theoretically studied using the Particle in a box Model based on the effective mass approximation and quantum confinement effects. The valence band degeneracy in Г point of the Brillouin zone and the effective mass anisotropy are also taken into account. The emission intensity spectrum was also investigated to understand the effect of alloy composition(x) on the spectrum. The results show that the ground state confinement energy is largely dependent on the radius of the dot and alloy composition(x). Thus, as the dot radius decreases, the confinement energy increases. Hence, confinement energies could be tuned by changing the radius of QDs and the GaN compositions, which play a fundamental role in the optical and electronic properties of QDs of all the transitions in the degenerate bands. Also, the theoretically calculated emission intensity spectrum shifted towards higher energy regions (lower wavelengths) by mere increasing the alloy compositions (x) of the semiconductor quantum Dot active region.
Downloads
Published
Issue
Section
Similar Articles
- Akaezue Nelson Nwagbogwu, Ngiangia Alalibor Thompson, Onyeaju Michael Chukwudi, Thermal Properties of Diffusing Species into Some Host Metals , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- S.C Ezugwu, Structural and Optical Properties of Pva Capped Nickel Oxide Thin Films Prepared by Chemical Bath Deposition , Communication In Physical Sciences: Vol. 1 No. 1 (2010): VOLUME 1 ISSUE 1
You may also start an advanced similarity search for this article.