Bridging Mathematical Foundations and Intelligent Systems: A Statistical and Machine Learning Approach
Keywords:
Mathematical Modeling, Statistical Inference, Machine Learning, Predictive Analytics, Intelligent SystemsAbstract
This study presents a comprehensive exploration of the transition from traditional mathematical modeling to intelligent systems empowered by statistics and machine learning. It begins with the mathematical underpinnings essential to model construction, including linear algebra, optimization, and differential equations, and connects these foundations to practical algorithms such as linear regression, support vector machines, principal component analysis, and reinforcement learning. Emphasis is placed on statistical reasoning through Bayesian inference, hypothesis testing, and model validation using cross-validation techniques. Real-world applications in healthcare, finance, and engineering demonstrate the utility and adaptability of these models, where methods like logistic regression achieve AUC scores above 0.85 in patient risk prediction and LSTM networks outperform traditional models in financial time-series forecasting. The work also discusses the emerging integration of symbolic mathematics with deep learning and probabilistic programming as the next frontier of intelligent system design. Findings highlight that combining structure from mathematics, inference from statistics, and adaptivity from machine learning results in robust, interpretable, and high-performing models for data-driven decision-making.
Downloads
Published
Issue
Section
Similar Articles
- Raymond Sugar Ebere Amougou, AI-Driven DevOps: Leveraging Machine Learning for Automated Software Delivery Pipelines , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Samuel Omefe, Simbiat Atinuke Lawal, Sakiru Folarin Bello, Adeseun Kafayat Balogun, Itunu Taiwo, Kevin Nnaemeka Ifiora, AI-Augmented Decision Support System for Sustainable Transportation and Supply Chain Management: A Review , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Ayomide Ayomikun Ajiboye, Muslihat Adejoke Gaffari, Onaara Enitan Obamuwagun, Predictive Analytics in Sport Management: Applying Machine Learning Models for Talent Identification and Team Performance Forecasting , Communication In Physical Sciences: Vol. 12 No. 7 (2025): Volume 12 issue 7
- Oyakojo Emmanuel Oladipupo, Abdulahi Opejin, Jerome Nenger, Ololade Sophiat Alaran, Coastal Hazard Risk Assessment in a Changing Climate: A Review of Predictive Models and Emerging Technologies , Communication In Physical Sciences: Vol. 12 No. 6 (2025): Volume 12 ISSUE 6
- David Adetunji Ademilua, Edoise Areghan, Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Christianah Oluwabunmi Ayodele, Esther Oludele Olaniyi, Chukwuebuka Francis Udokporo, Applications of AI in Enhancing Environmental Healthcare Delivery Systems: A Review , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Forward Nsama, Strategic Development of AI-Driven Supply Chain Resilience Frameworks for Critical U.S. Sectors , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
- Samira Sanni, A Review on machine learning and Artificial Intelligence in procurement: building resilient supply chains for climate and economic priorities , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Ademilola Olowofela Adeleye, Oluwafemi Clement Adeusi, Aminath Bolaji Bello, Israel Ayooluwa Agbo-Adediran, Intelligent Machine Learning Approaches for Data-Driven Cybersecurity and Advanced Protection , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Mujeeb Abdulrazaq, Rare-Event Prediction in Imbalanced Data: A Unified Evaluation and Optimization Framework for High-Risk Systems , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
You may also start an advanced similarity search for this article.



