Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems
DOI:
https://doi.org/10.4314/cvhgc932Keywords:
Solution, real world problem, Cloud computing, ML, predictive analysis, scalability, automationAbstract
This study presents a framework for harnessing cloud computing and machine learning (ML) to address real-world challenges in predictive maintenance, anomaly detection, and sentiment analysis. Leveraging cloud platforms such as AWS and Microsoft Azure, the framework processes large-scale datasets, enabling scalable and efficient solutions across various industries. In the predictive maintenance use case, a machine learning model achieved an accuracy of 92%, precision of 89%, recall of 94%, and an F1 score of 91%, demonstrating its capability to predict equipment failures with high reliability. For anomaly detection, network traffic data was analyzed, yielding a precision of 89%, recall of 85%, and an F1 score of 87%, illustrating the model's efficiency in identifying security threats. In the sentiment analysis task, a subset of 100,000 social media posts was processed, revealing that 45% of the posts were classified as positive, 35% neutral, and 20% negative. The high confidence levels in sentiment predictions, ranging from 85% to 98%, underscore the accuracy and effectiveness of the employed natural language processing (NLP) models. The results align with contemporary studies, which highlight the transformative impact of cloud-based ML systems in enhancing operational efficiency, real-time decision-making, and customer satisfaction across diverse domains (Kairo, 2024;Ucaret al., 2026; Hassan et al., 2024). These findings underscore the potential of combining cloud computing with advanced machine learning algorithms to drive automation, reduce operational costs, and optimize business processes in the digital era
Downloads
Published
Issue
Section
Similar Articles
- Jibril Yahaya Kajuru, Hussaini Garba Dikko, Aminu Suleiman Mohammed, Aliyu Ibrahim Fulatan, Generalized Odd Gompertz-G Family of Distributions: Statistical Properties and Applications , Communication In Physical Sciences: Vol. 10 No. 2 (2023): VOLUME 10 ISSUE 2
- Efe Jessa, Soil Stabilization Using Bio-Enzymes: A Sustainable Alternative to Traditional Methods , Communication In Physical Sciences: Vol. 2 No. 1 (2017): VOLUME 2 ISSUE 1
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Spiking Neural Networks (SNNs): A Path towards Brain-Inspired AI , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Eno John, Promise Asukwo, Nkem Ogbonna, Convergence Analysis of Sinc-Collocation Scheme With Composite Trigonometric Function for Fredholm Integral Equations of the Second Kind , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Abiodun Rasheed Omokanye, Benefit Onu, A Multi-Source Analysis of Water Supply Challenges in Offa Local Government Area, Kwara State, Nigeria , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 1 ISSUE 2
- Olumide Oni, Kenechukwu Francis Iloeje, Optimized Fast R-CNN for Automated Parking Space Detection: Evaluating Efficiency with MiniFasterRCNN , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Bright Adinchezo Adimoha , James Nwawuike Nnadi, Bright Okore Osu, Franca Amaka Nwafor, A Mixed Boundary Value Problem for a Finite Isotropic Wedge Under Antiplane Deformation , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Idayat Abubakar Salau, Aminu Suleiman Mohammed, Hussaini Garba Dikko, Type I Half-Logistic Exponentiated Kumaraswamy Distribution With Applications , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Human-AI Collaboration: Enhancing Decision-Making in Critical Sectors , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Emmanuel John Ekpenyong, Evaluating The Performances of Estimators of Population Mean Weight of Babies in FMC, Imo State Under Simple Random Sampling Scheme , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
You may also start an advanced similarity search for this article.