Predictive Analytics in Sport Management: Applying Machine Learning Models for Talent Identification and Team Performance Forecasting
Keywords:
Machine learning, sports management, predictive analytics, talent identification, team performance forecasting, XGBoostAbstract
The integration of machine learning in the sphere of sports management is a paradigm shift because there is no longer a need to rely on intuition and make decisions based on data. This study examines the application of predictive analytics to find athletic talent and predict team performance in professional basketball based on a large set of data on ten seasons of player statistics, physiological measurements, and team performance. A number of machine learning models were used to predict player development and team success including random forests, gradient boosting models, and neural networks. The ensemble method achieved an accuracy rate of 87.3 per cent of anticipating future elite players among draft candidates, and was the first such method to do so much better than the traditional method of scouting, which averaged 68.5 per cent. The XGBoost algorithm performed better in making predictions about the outcomes of teams with an RMSE of 4.12 wins per season and an explanation of 82.4 percent of the variance in team outcomes. Importance of feature analysis revealed that the player efficiency, advanced defense measures and the injury history were the most significant to individual and team performance forecasting. The authors establish that human judgment in talent evaluation by experts can be improved but not substituted by algorithmic evaluation. The insights have significant implications on player development investment, recruitment and competitiveness in an industry that is dominated by data. The research, methodologically, presents an amalgamation framework fusing the statistical accuracy with sport-related understandings, providing organizations with a systematized method of implementing machine learning into their current management frameworks.
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Ayomide Ayomikun Ajiboye, Investigating the Role of Machine Learning Algorithms in Customer Segmentation , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Onaara Enitan Obamuwagun, A Comprehensive Review on Mental Health, Psychological Well-being, and Performance Challenges of Elite Athletes in Competitive Sports , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
Similar Articles
- F. S. Bakpo, A Petri Net Computational Model for Web-based Students Attendance Monitoring , Communication In Physical Sciences: Vol. 1 No. 1 (2010): VOLUME 1 ISSUE 1
- Amadi Ugwulo Chinyere, Modelling Glucose-Insulin Dynamics: Insights for Diabetes Management , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Godwin Ezikanyi Okey, Yusuf Jibril, G. A. Olarinoye, Comparative Analyses amongst 3 Hybrid Controllers - MPC-HGAFSA, LQR-HGAFSA and PID-HGAFSA in a Micro Grid Power System Using MAD and RMSE as Measures of Performance Metrics , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Aniekan Udongwo, https://dx.doi.org/10.4314/cps.v12i2.17 , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Chukwuemeka. K. Onwuamaeze, Christopher. I. Ejiofor, An Improved Defragmentation Model for Distributed Customer’s Bank Transactions , Communication In Physical Sciences: Vol. 5 No. 3 (2020): VOLUME 5 ISSUE 3
- Muhammad Bello, Musa Bello, Dunah Lawissense Godfrey, Effect of Multimedia-Enriched Lecture Method on Retention Among Secondary School Physics Students in Kano Metropolis, Nigeria , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Michael Oladipo Akinsanya, Oluwafemi Clement Adeusi, Kazeem Bamidele Ajanaku, A Detailed Review of Contemporary Cyber/Network Security Approaches and Emerging Challenges , Communication In Physical Sciences: Vol. 8 No. 4 (2022): VOLUME 8 ISSUE 4
- Precious Ogechi Ufomba, Ogochukwu Susan Ndibe, IoT and Network Security: Researching Network Intrusion and Security Challenges in Smart Devices , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Nsikan Ime Obot, Okwisilieze Uwadoka, Oluwasegun Israel Ayayi, Modelling Nonseasonal Daily Clearness Index for Solar Energy Estimation in Ilorin, Nigeria Using Support Vector Regression , Communication In Physical Sciences: Vol. 11 No. 2 (2024): VOLUME 11 ISSUE 2
- Musaddiq Sirajo, Abubakar Umar, Mardhiyya Falalu, Maimuna Ahmad Aliyu, Regularization Techniques: A Comparative Analysis of Ridge, Lasso, and Elastic Net Approaches in Predicting Mental Health Consequences Using Mental Health Survey Dataset , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 ISSUE 5
You may also start an advanced similarity search for this article.



