Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems
DOI:
https://doi.org/10.4314/cvhgc932Keywords:
Solution, real world problem, Cloud computing, ML, predictive analysis, scalability, automationAbstract
This study presents a framework for harnessing cloud computing and machine learning (ML) to address real-world challenges in predictive maintenance, anomaly detection, and sentiment analysis. Leveraging cloud platforms such as AWS and Microsoft Azure, the framework processes large-scale datasets, enabling scalable and efficient solutions across various industries. In the predictive maintenance use case, a machine learning model achieved an accuracy of 92%, precision of 89%, recall of 94%, and an F1 score of 91%, demonstrating its capability to predict equipment failures with high reliability. For anomaly detection, network traffic data was analyzed, yielding a precision of 89%, recall of 85%, and an F1 score of 87%, illustrating the model's efficiency in identifying security threats. In the sentiment analysis task, a subset of 100,000 social media posts was processed, revealing that 45% of the posts were classified as positive, 35% neutral, and 20% negative. The high confidence levels in sentiment predictions, ranging from 85% to 98%, underscore the accuracy and effectiveness of the employed natural language processing (NLP) models. The results align with contemporary studies, which highlight the transformative impact of cloud-based ML systems in enhancing operational efficiency, real-time decision-making, and customer satisfaction across diverse domains (Kairo, 2024;Ucaret al., 2026; Hassan et al., 2024). These findings underscore the potential of combining cloud computing with advanced machine learning algorithms to drive automation, reduce operational costs, and optimize business processes in the digital era
Downloads
Published
Issue
Section
Similar Articles
- Uba Sani, Abdulkadir Ibrahim, Akande, Esther Oluwatoyosi, John, Oghenetega Mercy, Murtala, Mohammed Rumah, Assessment of Surface Water Quality in Zaria Metropolis: Implications for Environmental Health and Sustainable Management , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Ajogwu Cordelia Odinaka, Aaron Auduson, Tope Alege, Yusuf Odunsanwo, Formation Evaluation Using Integrated Petrophysical Data Analysis of Maboro Field Niger Delta Sedimentary Basin, Nigeria , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Ola-Buraimo A. Olatunji , Musa Rukaya, Granulometric and Petrographic Assessment of the Textural, Minerological and Paleoenvironment of Deposition of Gulma Sandstone Member, Gwandu Formation, Sokoto Basin, Northwestern Nigeria , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Oladimeji Enock Oluwole, Umeh Emmanuel Chukwuebuka, Idundun Victory Toritseju, Koffa Durojaiye Jude , Obaje Vivian Onechojo , Petinrin Moses Omolayo , Adeleke Joshua Toyin, The performance analysis of a Wood-Saxon driven Quantum-Mechanical Carnot Engine , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Thelma Ewere Konyeme, Anthony Ossai Ukpene, Micromorphological and Nutritional Attributes of two Varieties of Vernonia amagdalina Del. Domesticated in Delta State. , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Esharive Ogaga, Onimisi Martins, Abdulateef Onimisi Jimoh, Akudo Ernest orji, Aigbadon Godwin Okumagbe, Achegbulu Ojonimi Emmanuel, Assessment of Geotechnical Attributes of Laterites as Sub-base and Sub-Grade Materials in Parts of Northern Anambra Basin Nigeria: Implications for Road Pavement Construction , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Humphrey Sam Samuel , Emmanuel Edet Etim, John Paul Shinggu, Bulus Bako, Machine Learning in Thermochemistry: Unleashing Predictive Modelling for Enhanced Understanding of Chemical Systems , Communication In Physical Sciences: Vol. 11 No. 1 (2024): VOLUME 11 ISSUE 1
- Nyeneime William Akpanudo, Ojeyemi Matthew Olabemiwo, Pore Parameters Analysis of Echinochloa pyramidalis leaf Dopped Silver Nanoparticles , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Humphrey Sam Samuel, Emmanuel Edet Etim, John Paul Shinggu, Bulus. Bako , Machine learning of Rotational spectra analysis in interstellar medium , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Fabian James Umoren, Mfon Clement Utin, Resource Recovery from Maize Wastes; Synthesis and Characterization of Silicon Oxide Nanoparticles , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
You may also start an advanced similarity search for this article.