Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems
DOI:
https://doi.org/10.4314/cvhgc932Keywords:
Solution, real world problem, Cloud computing, ML, predictive analysis, scalability, automationAbstract
This study presents a framework for harnessing cloud computing and machine learning (ML) to address real-world challenges in predictive maintenance, anomaly detection, and sentiment analysis. Leveraging cloud platforms such as AWS and Microsoft Azure, the framework processes large-scale datasets, enabling scalable and efficient solutions across various industries. In the predictive maintenance use case, a machine learning model achieved an accuracy of 92%, precision of 89%, recall of 94%, and an F1 score of 91%, demonstrating its capability to predict equipment failures with high reliability. For anomaly detection, network traffic data was analyzed, yielding a precision of 89%, recall of 85%, and an F1 score of 87%, illustrating the model's efficiency in identifying security threats. In the sentiment analysis task, a subset of 100,000 social media posts was processed, revealing that 45% of the posts were classified as positive, 35% neutral, and 20% negative. The high confidence levels in sentiment predictions, ranging from 85% to 98%, underscore the accuracy and effectiveness of the employed natural language processing (NLP) models. The results align with contemporary studies, which highlight the transformative impact of cloud-based ML systems in enhancing operational efficiency, real-time decision-making, and customer satisfaction across diverse domains (Kairo, 2024;Ucaret al., 2026; Hassan et al., 2024). These findings underscore the potential of combining cloud computing with advanced machine learning algorithms to drive automation, reduce operational costs, and optimize business processes in the digital era
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- David Adetunji Ademilua, Edoise Areghan, AI-Driven Cloud Security Frameworks: Techniques, Challenges, and Lessons from Case Studies , Communication In Physical Sciences: Vol. 8 No. 4 (2022): Communication in Physical Sciences
- David Adetunji Ademilua, Cloud Security in the Era of Big Data and IoT: A Review of Emerging Risks and Protective Technologies , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Edoise Areghan, From Data Breaches to Deepfakes: A Comprehensive Review of Evolving Cyber Threats and Online Risk Management , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
Similar Articles
- Ifeoma Chikamma Okereke , Peace Nwagor, Chidinma Olunkwa, Amadi Innocent Uchenna, Analytical Solution on Stochastic Systems to Assess the Wealth Function of Periodic Corporate Investors , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Human-AI Collaboration: Enhancing Decision-Making in Critical Sectors , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Idayat Abubakar Salau, Aminu Suleiman Mohammed, Hussaini Garba Dikko, Type I Half-Logistic Exponentiated Kumaraswamy Distribution With Applications , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Onanuga Omotayo Aina, Titus Morrawa Ryaghan, Bello Musa Opeyemi, Momoh Daniel Clement, Goat Horn Biochar as a Low-Cost Adsorbent for the Removal of Cadmium and Zinc ions in Aqueous Solution , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3
- Attah Chuks Emmanuel, Gloria Chika Udeokpote, Ethanol Extract of Vernonia amygdalina Leaf as a Green Corrosion Inhibitor for Carbon Steel in Solution of HCl , Communication In Physical Sciences: Vol. 10 No. 3 (2023): VOLUME 10 ISSUE 3
- Olumide Oni, Kenechukwu Francis Iloeje, Optimized Fast R-CNN for Automated Parking Space Detection: Evaluating Efficiency with MiniFasterRCNN , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Abdulrahman Ndanusa, Convergence of Preconditioned Gauss-Seidel Iterative Method For Matrices , Communication In Physical Sciences: Vol. 6 No. 1 (2020): VOLUME 6 ISSUE 1
- Abdullahi Abdulkadir, Maryam Lawal Atiku, Synthetic Approaches, Classification, Properties and Application of Metal-Organic Frameworks: A Review , Communication In Physical Sciences: Vol. 12 No. 3 (2025): VOLUME 12 ISSUE 3
- Chigozie. Chibuisi, Bright O. Osu, Kevin Ndubuisi C. Njoku, Chukwuka Fernando Chikwe, A Mathematical Investigation of Fuel Subsidy Removal and its Effects on Nigerian Economy , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Amadi Ugwulo Chinyere, Modelling Glucose-Insulin Dynamics: Insights for Diabetes Management , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
You may also start an advanced similarity search for this article.