Spiking Neural Networks (SNNs): A Path towards Brain-Inspired AI
DOI:
https://doi.org/10.4314/0hd1n838Keywords:
Spiking Neural Networks. Brain-Inspired AI, Neuromorphic Computing,.Event-Driven Processing. Edge ComputingAbstract
Spiking Neural Networks (SNNs) represent a significant step toward brain-inspired artificial intelligence by mimicking the temporal dynamics and energy efficiency of biological neurons. Unlike traditional artificial neural networks, SNNs process information through discrete spikes, enabling event-driven computation and efficient learning mechanisms. This paradigm shift enhances real-time processing, low-power consumption, and neuromorphic computing applications. With advancements in hardware and training algorithms, SNNs hold great promise for edge computing, robotics, and cognitive modelling. This paper explores the fundamental principles of SNNs, their advantages over conventional deep learning models, and the challenges in developing large-scale, efficient spiking architectures.
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Human-AI Collaboration: Enhancing Decision-Making in Critical Sectors , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
Similar Articles
- Ayomide Ayomikun Ajiboye, Investigating the Role of Machine Learning Algorithms in Customer Segmentation , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- David Adetunji Ademilua, Edoise Areghan, Cloud Computing and Machine Learning for Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Oluwatosin Lawal, Projecting AI-Driven Intersection of FinTech, Financial Compliance, and Technology Law , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Olalekan Lawrence Ojo, Famoriyo Olakunle Idris, On The Assessment of fade Depth and Geoclimatic Factor for Microwave Link Applications in Lagos, Nigeria , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Oladimeji Enock Oluwole, Umeh Emmanuel Chukwuebuka, Idundun Victory Toritseju, Koffa Durojaiye Jude , Obaje Vivian Onechojo , Petinrin Moses Omolayo , Adeleke Joshua Toyin, The performance analysis of a Wood-Saxon driven Quantum-Mechanical Carnot Engine , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Fatima Binta Adamu, Muhammad Bashir Abdullahi, Sulaimon Adebayo Bashir, Abiodun Musa Aibinu, Conceptual Design Of A Hybrid Deep Learning Model For Classification Of Cervical Cancer Acetic Acid Images , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Olumide Oni, Memory-Enhanced Conversational AI: A Generative Approach for Context-Aware and Personalized Chatbots , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Maxwell O. Akpu, Nnanna A. Lebe, Nwamaka I. Akpu, Lattice Instability in metallic elements: A Review , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Iwuji, Anayo Charles, Okoroafor, Promise Izuchukwu, Owo Awa, Josephine Ezinne, Extended Goal Programming DASH Diet Plan for Stroke Patients , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Taye Temitope Alawode, Identification of Potential Aedes aegypti Juvenile Hormone Inhibitors from Methanol Extract of Leaves of Solanum erianthum: An In Silico Approach , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
You may also start an advanced similarity search for this article.