Spiking Neural Networks (SNNs): A Path towards Brain-Inspired AI
DOI:
https://doi.org/10.4314/0hd1n838Keywords:
Spiking Neural Networks. Brain-Inspired AI, Neuromorphic Computing,.Event-Driven Processing. Edge ComputingAbstract
Spiking Neural Networks (SNNs) represent a significant step toward brain-inspired artificial intelligence by mimicking the temporal dynamics and energy efficiency of biological neurons. Unlike traditional artificial neural networks, SNNs process information through discrete spikes, enabling event-driven computation and efficient learning mechanisms. This paradigm shift enhances real-time processing, low-power consumption, and neuromorphic computing applications. With advancements in hardware and training algorithms, SNNs hold great promise for edge computing, robotics, and cognitive modelling. This paper explores the fundamental principles of SNNs, their advantages over conventional deep learning models, and the challenges in developing large-scale, efficient spiking architectures.
Downloads
Published
Issue
Section
Most read articles by the same author(s)
- Enefiok Archibong Etuk, Omankwu, Obinnaya Chinecherem Beloved, Human-AI Collaboration: Enhancing Decision-Making in Critical Sectors , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
Similar Articles
- Taye Temitope Alawode, Identification of Potential Aedes aegypti Juvenile Hormone Inhibitors from Methanol Extract of Leaves of Solanum erianthum: An In Silico Approach , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Benjamin Odey Omang, Microchemical characterization and stream sediment composition of alluvial gold particles from the Rafin Gora drainage system, Kushaka schist belt, North Western Nigeria , Communication In Physical Sciences: Vol. 9 No. 3 (2023): VOLUME 9 ISSUE 3
- Joseph Amajama, Julius Ushie Akwagiobe, Efa Ubi Ikpi, Analyzing the Relationship between Atmospheric Pressure and Mobile Network Signal Strength in Southern Nigeria , Communication In Physical Sciences: Vol. 12 No. 4 (2025): VOLUME1 2 ISSUE 4
- Daniel Chukwunonso Chukwudi, Identifying Erosion-Prone Areas in the Mackinaw Watershed Using Geospatial Techniques , Communication In Physical Sciences: Vol. 12 No. 5 (2025): Vol 12 Issue 5
- Samuel Omefe, Simbiat Atinuke Lawal, Sakiru Folarin Bello, Adeseun Kafayat Balogun, Itunu Taiwo, Kevin Nnaemeka Ifiora, AI-Augmented Decision Support System for Sustainable Transportation and Supply Chain Management: A Review , Communication In Physical Sciences: Vol. 7 No. 4 (2021): VOLUME 7 ISSUE 4
- Iwuji, Anayo Charles, Okoroafor, Promise Izuchukwu, Owo Awa, Josephine Ezinne, Extended Goal Programming DASH Diet Plan for Stroke Patients , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Solar Activity and Dynamics of Particles in the Ionosphere , Communication In Physical Sciences: Vol. 1 No. 1 (2010): VOLUME 1 ISSUE 1
- Edikan E. Akpanibah, Optimization of investment strategies for a Defined Contribution (DC) plan member with Couple Risky Assets, Tax and Proportional Administrative Fee , Communication In Physical Sciences: Vol. 7 No. 1 (2021): VOLUME 7 ISSUE 1
- Isaac Owoicho Agada, Magnus Uzoma Igboekwe, Faustinus Chukwunweike Anyadiegwu, Characterization of Subsurface Densities Using Aerogravity Data of Okigwe and Environs , Communication In Physical Sciences: Vol. 8 No. 3 (2022): VOLUME 8 ISSUE 3
- Habu Tela Abba, Agada Livinus Emeka, Population Doses from Gamma Radiation Exposure around Damaturu Metropolis, Yobe State, Nigeria , Communication In Physical Sciences: Vol. 5 No. 2 (2020): VOLUME 5 ISSUE 2
You may also start an advanced similarity search for this article.