Graphical Solution of Eigenstate of an Electron in a Finite Quantum Well
Keywords:
Eigenstates, quantum, Schrodinger equation, mechanicsAbstract
This study explores the eigenstates of an electron in a finite quantum well using the Schrödinger wave equation. Quantum mechanics, a fundamental theory in physics, describes the properties of molecules, atoms, and subatomic particles through quantization of energy and wave-particle duality. A quantum well, a nanometer-thin layer in semiconductor materials, confines electrons to a two-dimensional layer, resulting in quantized energy spectra essential for various electronic and optoelectronic devices. Unlike the infinite potential well, the finite potential well allows for the probability of finding particles outside the well, necessitating accurate calculations of bound states. This research employs a graphical method using MATLAB to solve for the eigenstates and eigenenergies of electrons in a finite quantum well. By deriving the time-independent Schrödinger equation, applying boundary conditions, and utilizing transcendental equations, we determine the energy levels and eigenfunctions of the system. The study highlights the practical applications of quantum wells in modern electronic devices and underscores the importance of understanding quantum confinement in developing advanced technologies.
Most read articles by the same author(s)
- Akwuegbu, Ozochi Chinyere, Oriaku, Chijioke Innocent , Dinneya, Obinna Christian, Nkpoku, Emmanuel Chidiebere, Nwaehiodo, Immaculate Ihechi, Graphical Solution of Eigenstate of an Electron in a Finite Quantum Well , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
Similar Articles
- Akwuegbu, Ozochi Chinyere, Oriaku, Chijioke Innocent , Dinneya, Obinna Christian, Nkpoku, Emmanuel Chidiebere, Nwaehiodo, Immaculate Ihechi, Graphical Solution of Eigenstate of an Electron in a Finite Quantum Well , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Samson Osinachi Nwadibia, Henry Patrick Obong, Ephraim Okechukwu Chukwuocha, Analytical Solutions of the Schrodinger Equation with q-Deformed Modified Mobius Square Potential Using the Nikiforov-Uvarov Method , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- Akaezue Nelson Nwagbogwu, Ngiangia Alalibor Thompson, Onyeaju Michael Chukwudi, Thermal Properties of Diffusing Species into Some Host Metals , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Aniekan Udongwo, Oluwafisayomi Folorunso, Resource Recovery from Maize Biomass for the Synthesis of SiO2 Nanoparticles and Crystallographic Analysis for Possible Applications , Communication In Physical Sciences: Vol. 12 No. 2 (2025): VOLUME 12 ISSUE 2
- Oladimeji Enock Oluwole, Umeh Emmanuel Chukwuebuka, Idundun Victory Toritseju, Koffa Durojaiye Jude , Obaje Vivian Onechojo , Petinrin Moses Omolayo , Adeleke Joshua Toyin, The performance analysis of a Wood-Saxon driven Quantum-Mechanical Carnot Engine , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Oladimeji Enock Oluwole, Umeh Emmanuel Chukwuebuka, Idundun Victory Toritseju, Koffa Durojaiye Jude, Obaje Vivian Onechojo , Adeleke Joshua Toyin, Petinrin Moses Omolayo , The performance analysis of a Wood-Saxon driven Quantum-Mechanical Carnot Engine , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Oladimeji Enock Oluwole, Umeh Emmanuel Chukwuebuk, Idundun Victory Toritseju, Koffa Durojaiye Jude , Obaje Vivian Onechojo , Uzer John Mkohol , Etim Emmanuel Edet , The Efficiency of a Quantum Brayton Engine Using Wood-Saxon Potential , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Oladimeji Enock Oluwole, Umeh Emmanuel Chukwuebuka, Idundun Victory Toritseju, Koffa Durojaiye Jude, Obaje Vivian Onechojo, Uzer John Mkohol, Etim Emmanuel Edet, The Efficiency of a Quantum Brayton Engine Using Wood-Saxon Potential , Communication In Physical Sciences: Vol. 11 No. 3 (2024): VOLUME 11 ISSUE 3
- Augustine Osondu Friday Ador, Isaac Mashingil Mankili, Franka Amaka Nwafor, Silas Abahia Ihedioha, Bright Okore Osu, Analyzing Market Price Equilibrium Dynamics with Differential Equations: Incorporating Government Intervention and Market Forces , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Augustine Osondu Friday Ador, Isaac Mashingil Mankili, Franka Amaka Nwafor, Silas Abahia Ihedioha, Bright Okore Osu, Analyzing Market Price Equilibrium Dynamics with Differential Equations: Incorporating Government Intervention and Market Forces , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
You may also start an advanced similarity search for this article.