Radon in soil gas of Johor, Malaysia

Authors

  • Rakiya Haruna Federal College of Education, Zaria P.M.B 1041 Kaduna state, Nigeria
  • M. A Saleh Environmental Public Health, Washington State Department of Health, USA

Keywords:

222Rn in sol gas, geological formations, soil types;, spatial distribution

Abstract

Communication in Physical Sciences, 2021, 7(4): 411- 422

Authors:Haruna*, M. A Saleh, S. Hashim

Received:07 September 2021/Accepted 30 November 2021

This study was conducted to establish baseline data for radon (222Rn) activity concentration in soil gas of Johor, Malaysia. RAD7 alpha detector was used to measure the activity concentration of 222Rn in soil gas. The descriptive statistic and hypothesis tests were done using SPSS software. An inverse distance weighting interpolation (IDW) technique was used to obtain the spatial distribution of the measured 222Rn in soil gas in the ArcGIS software. The measured activity concentration of 222Rn in soil gas varies from MDA to 127250 Bq m⁻3. Higher values of 222Rn in soil gas were found in the soil developed from granitic rocks. A statistically significant difference in the median values of 222Rn activity concentration among the soil types and geological formations of Johor state (P=0.008 and P=0.028, respectively) was observed. A map of the spatial distribution of the measured 222Rn activity concentration in soil gas was created.

Downloads

Download data is not yet available.

Author Biographies

Rakiya Haruna, Federal College of Education, Zaria P.M.B 1041 Kaduna state, Nigeria

Department of Physics, School of Secondary Education (Sciences),

M. A Saleh, Environmental Public Health, Washington State Department of Health, USA

Office of Radiation Protection

References

Almayahi, B. A., Tajuddin, A. A., & Jaafar, M. S. (2013). In situ soil 222Rn and 220Rn and their relationship with meteorological parameters in tropical Northern Peninsular Malaysia. Radiation Physics and Chemistry, 90, pp. 11–20. https://doi.org/10.1016/j.radphyschem .2013.04.028

Alonso, H., Rubiano, J. G. G. G., Guerra, J. G. G. G., Arnedo, M. A. A. A., Tejera, A., & Martel, P. (2019). Assessment of radon risk areas in the Eastern Canary Islands using soil radon gas concentration and gas permeability of soils. Science of the Total Environment, 664, 449–460. https://doi.org/10.1016/j.scitotenv.2019.01.411

Cinelli, G., Tositti, L., Capaccioni, B., Brattich, E., & Mostacci, D. (2015). Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy. Environmental Geochemistry and Health, 37(2), 305–319. https://doi.org/10.1007/s10653-014-9649-9

Demšar, U., & Skeppström, K. (2005). Use of GIS and 3D visualisation to investigate radon problem in groundwater. ScanGIS 2005 - Proceedings of the 10th Scandinavian Research Conference on Geographical Information Sciences.

Department of Statistics Malaysia. (2015). Department of Statistics Malaysia Official Portal. Department of Statistics, Malaysia. https://doi.org/2016-08-11

Director-General of Geological Survey Malaysia. (1985). Geological Map of Peninsular Malaysia.

DURRIDGE Company Inc. (2015). Soil gas probe.

García-Talavera, M., García-Pérez, A., Rey, C., & Ramos, L. (2013). Mapping radon-prone areas using γ-radiation dose rate and geological information. Journal of Radiological Protection, 33, 3, pp. 605–620. https://doi.org/10.1088/0952-4746/ 33/3/605

Haruna, R., Hashim, M. A. S. S., & Sanusi, K. H. J. Z. M. S. M. (2020). Assessment of geogenic radon potential in Johor Malaysia. Journal of

Radioanalytical and Nuclear Chemistry, 326, 2, pp. 1065–1074. https://doi.org/10.1007/s10967-020-07396-y

Johor State Forestry Department. (2006). Summary of the State of Johor Forest Management Plan. In Strategies. Retrieved from https://johor.forestry.gov.my/images/Maklumat-Hutan/MC-and-I/2.Ringkasan-Rancangan-Pengurusan-Hutan-RPH/fmu.pdf

Kardos, R., Gregorič, A., Jónás, J., Vaupotič, J., Kovács, T., & Ishimori, Y. (2015). Dependence of Radon Emanation of Soil on Lithology. Journal of Radioanalytical and Nuclear Chemistry, 304, 3, pp. 1321–1327. https://doi.org/10.1007/s10967-015-3954-3

Lara, E., Rocha, Z., Palmieri, H. E. L., Santos, T. O., Rios, F. J., & Oliveira, A. H. (2015). Radon concentration in soil gas and its correlations with pedologies, permeabilities and 226Ra content in the soil of the Metropolitan Region of Belo Horizonte - RMBH, Brazil. Radiation Physics and Chemistry, 116, pp. 317–320. https://doi.org/10.1016/j.radphys-

chem.2015.02.017

Liu, H., Wang, N., Chu, X., Li, T., Zheng, L., Yan, S., & Li, S. (2016). Mapping radon hazard areas using238U measurements and geological units: a study in a high background radiation city of China. Journal of Radioanalytical and Nuclear Chemistry, 309, 3, pp. 1209–1215. https://doi.org/10.1007/s10967-016-4717-5

Malanca, A., Gaidolfi, L., Pessina, V., & Dallara, G. (1996). Distribution of 226Ra, 232Th, and 40K in soils of Rio Grande do Norte (Brazil). Journal of Environmental Radioactivity, 30, 1, pp. 55–67. https: //doi.org/10.1016/0265-931X(95)00035-9

Mose, D. G., Mushrush, G. W., & Chrosniak, C. E.(1992). Soil radon, permeability, and indoor radon prediction. , 19 Environmental Geology and Water Sciences § (1992).

Nazaroff, W. W. W., Moed, B. A. A., & Sextro, R. G. G. (1988). Soil as a source of indoor radon, generation, migration, and entry. In Radon and its decay products in indoor W.W. Nazaroff, A.V. Nero Jr. , pp. 57–112.

Ng, K. H., Abdullah, B. J. J., & Sivalingam, S. (1999). Medical radiation exposures for diagnostic radiology in Malaysia. In Health Physics (Vol. 77). https://doi.org/10.1097/00004032-199907000-00007

Ramli, A. T., Hussein, A. W. M. A. A., & Lee, M. H. (2001). Geological influence on terrestrial gamma radiation dose rate in the Malaysian State of Johore. Applied Radiation and Isotopes, 54, 2, pp. 327–333.https://doi.org/10.1016/S0969-8043 (00)00103-2

Ramli, A. T., Hussein, A. W. M. A. A., & Wood, A. K. (2005). Environmental 238U and 232Th concentration measurements in an area of high level natural background radiation at Palong, Johor, Malaysia. Journal of Environmental Radioactivity, 80, 3, pp. 287–304.. https://doi.org /10.1016/j.jenvrad.2004.06.008

Ramli, A. T., Rahman, A. T. A., & Lee, M. H. (2003). Statistical prediction of terrestrial gamma radiation dose rate based on geological features and soil types in Kota Tinggi district, Malaysia. Applied Radiation and Isotopes, 59, 5, 6, pp. 393–405.https://doi.org/10.1016/j.apradiso .2003.08.003

Saleh, M. A., Ramli, A. T., Alajerami, Y., & Aliyu, A. S. (2013a). Assessment of environmental 226Ra, 232Th and 40K concentrations in the region of elevated radiation background in Segamat District, Johor, Malaysia. Journal of Environmental Radioactivity, 124, pp. 130–140. https://doi.org/10.1016/j.jenvrad.2013.04.013

Saleh, M. A., Ramli, A. T., Alajerami, Y., & Aliyu, A. S. (2013b). Assessment of natural radiation levels and associated dose rates from surface soils in Pontian district, Johor, Malaysia. Journal of Ovonic Research, 9, 1, pp. 17–27.

Saleh, M. A., Ramli, A. T., Alajerami, Y., Aliyu, A. S., & Bt Basri, N. A. (2013). Radiological study of Mersing District, Johor, Malaysia. Radiation Physics and Chemistry, 85, pp. 107–117. doi.org/ 10.1016/j.radphyschem.2012.12.045

Saleh, M. A., Ramli, A. T., Alajerami, Y., Mhareb, M. H. A., Aliyu, A. S., Gabdo, H. T., & Garba, N. N. (2014). Assessment of radiological health from ambient environment in the Muar district, Johor, Malaysia. Radiation Physics and Chemistry, 103, 1, pp. 243–252. https://doi.org/10.1016/j.radphyschem.2014.05.054

Saleh, M. A., Ramli, A. T., bin Hamzah, K., Alajerami, Y., Moharib, M., Saeed, I., … Saeed, I. (2015). Prediction of terrestrial gamma dose rate based on geological formations and soil types in the Johor State, Malaysia. Journal of Environmental Radioactivity, 148, pp. 111–122. https://doi.org/10.1016/j.jenvrad.2015.05.019

Salih, I. M., Pettersson, H. B. L. L., Sivertun, A., & Lund, E. (2002). Spatial correlation between radon (222-Rn) in groundwater and bedrock uranium (238-U): GIS and geostatistical analyses. Journal of Spatial Hydrologoy, 2, 2, pp. 1–10.

Sanusi, M. S. M. M., Ramli, A. T., Basri, N. A., Heryanshah, A., Said, M. N., Lee, M. H., … Saleh, M. A. (2017). Thorium distribution in the soils of Peninsular Malaysia and its implications for Th resource estimation. Ore Geology Reviews, 80, pp. 522–535. https://doi.org/10.1016/j.oregeorev.2016.07.021

Skeppström, K., & Olofsson, B. (2006). A prediction method for radon in groundwater using GIS and multivariate statistics. Science of the Total Environment, 367, 2, 3, pp. 666–680. https://doi.org/10.1016/j.scitotenv.2006.02.044

UNSCEAR. (2008). Sources, Effects and risks of ionizing radiation. In United Nations Scientific Commitee on the Effect of Atomic Radiation, 1, . https://doi.org /10.2307/3577647.

Downloads

Published

2021-12-25