Nickel-doped Zeolite cluster as adsorbent material for the adsorption of biodiesel oxidation products: Approach from computational study
DOI:
https://doi.org/10.4314/qnkvdx25Keywords:
Biodiesel, oxidation, zeolite, adsorption, DFTAbstract
This study investigates the adsorption behaviour of various biodiesel oxidation products onto the surface of nickel doped zeolite as an efficient adsorbent zeoliteĀ (Ni-clo) through adsorption studies, quantum theory of atoms in molecules (QTAIM) analysis, and sensor performance evaluations using density functional theory. Adsorption studies reveal strong interactions between the surface and the biodiesel products, with ketone compounds exhibiting the most negative adsorption energy, indicating strong attraction to the Ni-clo surface. QTAIM analysis further elucidates the nature of these interactions, showing moderate to strong covalent bond formations and structural stability across all systems. Sensor performance evaluations highlight the electrical conductivity, charge transfer mechanism, back donation, and the fraction of electron transfer, indicating the potential of the sensor device to detect and desorb the targeted adsorbate. The findings suggest that the complexes exhibit relatively high reactivity. Overall, this comprehensive investigation provides insights into the adsorption behaviour and sensor performance of organic compounds on a Ni-clo zeolite surface.
Downloads
Published
Issue
Section
Similar Articles
- Nyeneime William Akpanudo, Ojeyemi Matthew Olabemiwo, Pore Parameters Analysis of Echinochloa pyramidalis leaf Dopped Silver Nanoparticles , Communication In Physical Sciences: Vol. 11 No. 4 (2024): VOLUME 11 ISSUE 4
- Asishana Paul Onivefu, Temperature Programmed Desorption Approach in Understanding the Development of Semiconductors and Catalyst , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Irene Edem Johncross, Fanifosi Seyi Josiah, Abidemi Obatoyinbo Ajayi, Resource recovery from Sugar Cane Biomass for the Synthesis of Silicon Nanoparticles , Communication In Physical Sciences: Vol. 12 No. 1 (2024): VOLUME 12 ISSUE 1
- A. O. Odiongenyi, Adsorption and Thermodynamic Studies on the Removal of Congo Red Dye from Aqueous Solution by Alumina and Nano-alumina , Communication In Physical Sciences: Vol. 4 No. 1 & 2 (2019): VOLUME FOUR(ISSUE 1&2)
- Ubong Ime Essien, Anduang Odiongenyi, Clement Obadimu, Iniobong Enengedi, Investigation of Snail shells as an Adsorbent and Precursor for the synthesis of Calcium Oxide Nanoparticles for the Removal of Amoxicillin from Aqueous Solution , Communication In Physical Sciences: Vol. 9 No. 4 (2023): VOLUME 9 ISSUE 4
- F. E. Awe, Adsorptive studies of the inhibitive properties of ethanolic extracts of Parinari polyandra on Mild steel in acidic media , Communication In Physical Sciences: Vol. 4 No. 1 & 2 (2019): VOLUME FOUR(ISSUE 1&2)
- Richard Alexis Ukpe, Joint Effect of Ethanol Extract of Orange Peel and halides on the Inhibition of the Corrosion of Aluminum in 0.1 M HCl: An approach to Resource Recovery , Communication In Physical Sciences: Vol. 4 No. 1 & 2 (2019): VOLUME FOUR(ISSUE 1&2)
- Stephen Eyije Abechi, Casmir Emmanuel Gimba , Adamu Uzairu, Odike Jotham Ocholi, Comparative Analysis of Methods of Activated Carbon Surface Area Determination , Communication In Physical Sciences: Vol. 10 No. 1 (2023): VOLUME 10 ISSUE 1
- Anduang Ofuo Odiongenyi, Removal of Ethyl Violet Dye from Aqueous Solution by Graphite Dust and Nano Graphene Oxide Synthesized from Graphite Dust , Communication In Physical Sciences: Vol. 4 No. 1 & 2 (2019): VOLUME FOUR(ISSUE 1&2)
- S. A. Odoemelam, Inhibition of Corrosion of Mild Steel in Hydrochloric Acid Solution by two Schiff Bases Derived from Benheric and Linoleic Acids , Communication In Physical Sciences: Vol. 4 No. 1 & 2 (2019): VOLUME FOUR(ISSUE 1&2)
You may also start an advanced similarity search for this article.